Conservation Genetics of Lake Sturgeon (Acipenser fulvescens): Nuclear Phylogeography Drives Contemporary Patterns of Genetic Structure and Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Isolation and Genotyping
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernatchez, L.; Wilson, C.C. Comparative phylogeography of Nearctic and Palearctic fishes. Mol. Ecol. 1998, 7, 431–452. [Google Scholar] [CrossRef]
- Palsbøll, P.J.; Berube, M.; Allendorf, F.W. Identification of management units using population genetic data. Trends Ecol. Evol. 2007, 22, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Harkness, W.J.K.; Dymond, J.R. The Lake Sturgeon: The History of Its Fishery and Problems of Conservation; Ontario Department of Lands and Forests, Fish and Wildlife Branch: Toronto, ON, Canada, 1961; p. 121. [Google Scholar]
- Bruch, R.M.; Haxton, T.J.; Koenigs, R.; Welsh, A.; Kerr, S.J. Status of Lake Sturgeon (Acipenser fulvescens Rafinesque 1817) in North America. J. Appl. Ichthyol. 2016, 32, 162–190. [Google Scholar] [CrossRef]
- Committee on the Status of Endangered Wildlife in Canada [COSEWIC]. COSEWIC Assessment and Status Report on the Lake Sturgeon Acipenser fulvescens, Western Hudson Bay Populations, Saskatchewan-Nelson River Populations, Southern Hudson Bay James Bay Populations and Great Lakes-Upper St. Lawrence Populations in Canada. Ottawa. 2017, pp. xxx + 53. Available online: https://publications.gc.ca/collections/collection_2018/eccc/CW69-14-484-2017-eng.pdf (accessed on 17 November 2022).
- Haxton, T.; Bruch, R. Acipenser fulvescens. The IUCN Red List of Threatened Species. E.T223A58134229. 2022. Available online: https://www.iucnredlist.org/ja/species/223/58134229 (accessed on 17 November 2022).
- Peng, Z.; Ludwig, A.; Wang, D.; Diogo, R.; Wei, Q.; He, S. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol. Phylo. Evol. 2007, 42, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, N.; Liu, Z.; Chen, Q.; Li, Y. Phylogenetic perspective on the relationships and evolutionary history of the Acipenseriformes. Genomics 2020, 112, 3511–3517. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.Y.; Scribner, K.T.; Forsythe, P.S.; Crossman, J.A.; Baker, E.A. Interannual variation in effective number of breeders and estimation of effective population size in long-lived iteroparous lake sturgeon (Acipenser fulvescens). Mol. Ecol. 2013, 22, 1282–1294. [Google Scholar] [CrossRef]
- NatureServe. NatureServe Explorer: An Online Encyclopedia of Life [Web Application]. Version 7.1. 2022. Available online: http://www.natureserve.org/taxon/ELEMENT_GLOBAL.@104232/Acipenser_fulvescens (accessed on 1 March 2023).
- Lee, D.S.; Gilbert, C.R.; Hocutt, C.H.; Jenkins, R.E.; McAllister, D.E.; Stauffer, J.R., Jr. Atlas of North American Freshwater Fishes; N.C. State Museum of Natural History: Raleigh, NC, USA, 1980; p. 854. [Google Scholar]
- Stewart, K.W.; Lindsey, C.C. Postglacial dispersal of lower vertebrates in the Lake Agassiz region. In Glacial Lake Agassiz; Geological Association of Canada Special Paper 26; Teller, J.T., Clayton, L., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1983; pp. 391–419. [Google Scholar]
- Crossman, E.J.; McAllister, D.E. Zoogeography of freshwater fishes of the Hudson Bay drainage, Ungava Bay and the Arctic Archipelago. In The Zoogeography of North American Freshwater Fishes; Hocutt, C.H., Wiley, E.O., Eds.; John Wiley and Sons: New York, NY, USA, 1986; pp. 53–104. [Google Scholar]
- Mandrak, N.E.; Crossman, E.J. Postglacial dispersal of freshwater fishes into Ontario. Can. J. Zool. 1992, 70, 2247–2259. [Google Scholar] [CrossRef]
- Ferguson, M.M.; Bernatchez, L.; Gatt, M.; Konkle, B.R.; Lee, S.; Malott, M.L.; McKinley, R.S. Distribution of mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the Moose River Basin, Ontario, Canada. J. Fish Biol. 1993, 43, 91–101. [Google Scholar] [CrossRef]
- Guénette, S.; Fortin, R.; Rassart, E. Mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the St. Lawrence River and James Bay drainage basins in Quebec, Canada. Can. J. Fish. Aquat. Sci. 1993, 50, 659–664. [Google Scholar] [CrossRef]
- Ferguson, M.M.; Duckworth, G.A. The status and distribution of lake sturgeon, Acipenser fulvescens, in the Canadian provinces of Manitoba, Ontario and Quebec: A genetic perspective. Env. Biol. Fish. 1997, 48, 299–310. [Google Scholar] [CrossRef]
- McQuown, E.; Gall, G.A.E.; May, B. Characterization and inheritance of six microsatellite loci in lake sturgeon. Trans. Amer. Fish. Soc. 2002, 131, 299–307. [Google Scholar] [CrossRef]
- DeHaan, P.W.; Libants, S.V.; Elliott, R.F.; Scribner, K.T. Genetic population structure of remnant lake sturgeon populations in the Upper Great Lakes Basin. Trans. Amer. Fish. Soc. 2006, 135, 1478–1492. [Google Scholar] [CrossRef]
- Welsh, A.; Hill, T.; Quinlan, H.; Robinson, C.; May, B. Genetic assessment of Lake Sturgeon population structure in the Laurentian Great Lakes. N. Am. J. Fish. Man. 2008, 28, 572–591. [Google Scholar] [CrossRef]
- McDermid, J.; Wozney, K.; Kjartanson, S.; Wilson, C.C. Quantifying historical, contemporary, and anthropogenic influences on the geographic genetic structure and diversity of lake sturgeon in northern Ontario. J. Appl. Ichthyol. 2011, 27 (Suppl. 2), 12–23. [Google Scholar] [CrossRef]
- Wilson, C.C.; McDermid, J.L.; Wozney, K.M.; Kjartanson, S.L.; Haxton, T. Genetic estimation of evolutionary and contemporary effective population size in lake sturgeon (Acipenser fulvescens) populations. J. Appl. Ichthyol. 2014, 30, 1290–1299. [Google Scholar] [CrossRef]
- Welsh, A.; McLeod, D.T. Detection of natural barriers to movement of lake sturgeon (Acipenser fulvescens) within the Namakan River, Ontario. Can. J. Zool. 2010, 88, 390–397. [Google Scholar] [CrossRef]
- Wilson, C.C.; Haxton, T.J.; Wozney, K.M.; Friday, M. Historical watershed-level connectivity of lake sturgeon in a dammed Great Lakes tributary. J. Great Lakes Res. 2022, 48, 798–805. [Google Scholar] [CrossRef]
- Drauch, A.M.; Fish, B.E.; Latch, E.K.; Fike, J.A.; Rhodes, O.E., Jr. Evaluation of a remnant lake sturgeon population’s utility as a source for reintroductions in the Ohio River system. Cons. Genet. 2008, 9, 1195–1209. [Google Scholar] [CrossRef]
- Whitaker, J.M.; Price, L.E.; Boase, J.C.; Bernatchez, L.; Welsh, A.B. Detecting fine-scale population structure in the age of genomics: A case study of lake sturgeon in the Great Lakes. Fish. Res. 2020, 230, 105646. [Google Scholar] [CrossRef]
- McDermid, J.L.; Nienhuis, S.; Alshamlih, M.; Haxton, T.J.; Wilson, C.C. Evaluating the genetic consequences of river fragmentation on lake sturgeon populations. J. Appl. Ichthyol. 2014, 30, 1514–1523. [Google Scholar] [CrossRef]
- Miliot, E.; Côté, G.; Papillon, L.; Nelson, P.A.; Bernatchez, L. Preliminary Investigation of Population Genetics of Lake Sturgeon from the Lower Nelson River; Manitoba Hydro: Winnipeg, MB, Canada, 2007; p. 60. [Google Scholar]
- Wozney, K.; Haxton, T.; Kjartanson, S.L.; Wilson, C.C. Genetic assessment of Lake Sturgeon (Acipenser fulvescens) population structure in the Ottawa River. Env. Biol. Fishes 2011, 90, 183–195. [Google Scholar] [CrossRef]
- May, B.; Krueger, C.C.; Kincaid, H.L. Genetic variation at microsatellite loci in sturgeon: Primer sequence homology in Acipenser and Scaphirhynchus. Can. J. Fish. Aquat. Sci. 1997, 54, 1542–1547. [Google Scholar] [CrossRef]
- Pyatskowit, J.D.; Krueger, C.C.; Kincaid, H.L.; May, B. Inheritance of microsatellite loci in the polyploid lake sturgeon (Acipenser fulvescens). Genome 2001, 44, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Welsh, A.; Blumberg, M.; May, B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol. Ecol. Notes 2003, 3, 47–55. [Google Scholar] [CrossRef]
- Welsh, A.; May, B. Development and standardization of disomic microsatellite markers for lake sturgeon genetic studies. J. Appl. Ichthyol. 2006, 22, 337–344. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Winter, D.J. NMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 2012, 12, 1158–1160. [Google Scholar] [CrossRef]
- Alberto, F. standArich_v1.00: An R Package to Estimate Population Allelic Richness Using Standardized Sample Size [Internet]. 2006. Available online: http://www.ccmar.ualg.pt/maree/software.php?soft=sarich (accessed on 25 November 2022).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software Structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing other population statistics. Mol. Biol. Evol. 2014, 31, 1622–1624. [Google Scholar] [CrossRef]
- Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef]
- Waples, R.S.; Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 2010, 3, 244–262. [Google Scholar] [CrossRef]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef]
- Wu, C.H.; Drummond, A.J. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics 2011, 188, 151–164. [Google Scholar] [CrossRef]
- Batchelor, C.L.; Margold, M.; Krapp, M.; Murton, D.K.; Dalton, A.S.; Gibbard, P.L.; Stokes, C.R.; Murton, J.B.; Manica, A. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Comm. 2019, 10, 3713. [Google Scholar]
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The last glacial maximum. Science 2009, 325, 710–714. [Google Scholar]
- Dyke, A.S.; Andrews, J.T.; Clark, P.U.; England, J.H.; Miller, G.H.; Shaw, J.; Veillette, J.J. The Laurentide and Innuitian ice sheets during the last glacial maximum. Quat. Sci. Rev. 2002, 21, 9–31. [Google Scholar] [CrossRef]
- Billington, N.; Strange, R.M. Mitochondrial DNA analysis confirms the existence of a genetically divergent walleye population in northeastern Mississippi. Trans. Am. Fish. Soc. 1995, 124, 770–776. [Google Scholar] [CrossRef]
- Dyke, A.S. An outline of North American deglaciation with emphasis on central and northern Canada. Dev. Quat. Sci. 2004, 2, 373–424. [Google Scholar]
- Billington, N.; Hebert, P.D.N. Mitochondrial DNA diversity in fishes and its implications for introductions. Can. J. Fish. Aquat. Sci. 1991, 48 (Suppl. 1), 80–94. [Google Scholar] [CrossRef]
- Wilson, C.C.; Haxton, T.J. Contemporary genetic structure of walleye (Sander vitreus) reflects a historical inter-basin river diversion. J. Great Lakes Res. 2021, 47, 884–891. [Google Scholar] [CrossRef]
- Teller, J.T.; Clayton, L. (Eds.) Glacial Lake Agassiz; Special Paper 26; Geological Association of Canada: St. John’s, NL, Canada, 1983. [Google Scholar]
- Leverington, D.W.; Teller, J.T. Paleotopographic reconstructions of the eastern outlets of glacial Lake Agassiz. Can. J. Earth Sci. 2003, 40, 1259–1278. [Google Scholar] [CrossRef]
- Haxton, T.; Friday, M.; Gillespie, M. Dynamics of lake sturgeon (Acipenser fulvescens Rafinesque, 1817) in a ‘pristine’ river. J. Appl. Ichthyol. 2018, 34, 290–301. [Google Scholar] [CrossRef]
- McDougall, C.A.; Welsh, A.B.; Gosselin, T.; Anderson, W.G.; Nelson, P.A. Rethinking the influence of hydroelectric development on gene flow in a long-lived fish, the lake sturgeon Acipenser fulvescens. PLoS ONE 2017, 12, e0174269. [Google Scholar] [CrossRef]
- McLeod, C.; Hildebrand, L.; Radford, D. A synopsis of lake sturgeon management in Alberta, Canada. J. Appl. Ichthyol. 1999, 15, 173–179. [Google Scholar] [CrossRef]
- George, S.S. Streamflow in the Winnipeg River basin, Canada: Trends, extremes and climate linkages. J. Hydrol. 2007, 332, 15–17. [Google Scholar]
- Hedrick, P.W. Genetics of Populations, 3rd ed.; Jones and Bartlett Publishers: Sudbury, MA, USA, 2005. [Google Scholar]
- Haxton, T.; Friday, M.; Cano, T.; Hendry, C. Assessing the magnitude of effect of hydroelectric production on lake sturgeon abundance in Ontario. N. Am. J. Fish. Man. 2015, 35, 930–941. [Google Scholar] [CrossRef]
- Haxton, T.J.; Findlay, C.S. Variation in lake sturgeon abundance and growth among river reaches in a large regulated river. Can. J. Fish. Aquat. Sci. 2008, 65, 645–657. [Google Scholar] [CrossRef]
- Waples, R.S. Testing for Hardy–Weinberg proportions: Have we lost the plot? J. Hered. 2015, 106, 1–19. [Google Scholar] [CrossRef]
- Lande, R. Genetics and demography in biological conservation. Science 1988, 241, 1455–1460. [Google Scholar]
- Luikart, G.; Ryman, N.; Tallmon, D.A.; Schwartz, M.K.; Allendorf, F.W. Estimation of census and effective population sizes: The increasing usefulness of DNA-based approaches. Cons. Genet. 2010, 11, 355–373. [Google Scholar] [CrossRef]
- England, P.R.; Luikart, G.; Waples, R.S. Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Cons. Genet. 2010, 11, 2425–2430. [Google Scholar] [CrossRef]
- Antao, T.; Perez-Figueroa, A.; Luikart, G. Early detection of population declines: High power of genetic monitoring using effective population size estimators. Evol. Appl. 2011, 4, 144–154. [Google Scholar] [CrossRef]
- Waples, R.S.; Antao, T.; Luikart, G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 2014, 197, 769–780. [Google Scholar] [CrossRef]
- Robinson, J.D.; Moyer, G.R. Linkage disequilibrium and effective population size when generations overlap. Evol. Appl. 2013, 6, 290–302. [Google Scholar] [CrossRef]
- Velez-Espino, L.A.; Koops, M.A. Recovery potential assessment for lake sturgeon in Canadian Designatable Units. N. Am. J. Fish. Man. 2009, 29, 1065–1090. [Google Scholar] [CrossRef]
Population | N | Lat. | Long. | HE | HO | AR | AS30 | FIS | Ne |
---|---|---|---|---|---|---|---|---|---|
Western Hudson Bay | |||||||||
Churchill R. | 34 | 56.29 | −100.49 | 0.46 | 0.46 | 3.07 | 3.03 | −0.002 | 547 (35–∞) |
Saskatchewan-Nelson R. Basin | |||||||||
Saskatchewan R. | 220 | 54.28 | −104.28 | 0.50 | 0.47 | 4.14 | 3.54 | 0.042 | 463 (64–∞) 2 |
N. Saskatchewan R. | 10 | 53.83 | −112.96 | 0.45 | 0.50 | 2.86 | -- | −0.139 | 81 (3–∞) 1 |
S. Saskatchewan R. | 53 | 50.41 | −110.62 | 0.48 | 0.45 | 3.79 | 3.58 | 0.044 | 103 (34–∞) 1 |
Assiniboine R. | 30 | 50.99 | −101.40 | 0.51 | 0.53 | 3.21 | 3.21 | −0.035 | 14 (6–33) |
Berens R. | 35 | 51.78 | −93.75 | 0.28 | 0.22 | 2.93 | 2.83 | 0.205 | 63 (12–∞) |
English R. | 109 | 50.16 | −94.07 | 0.36 | 0.36 | 3.29 | 2.68 | 0.018 | 123 (46–∞) |
Lac la Croix | 14 | 48.37 | −92.16 | 0.37 | 0.41 | 2.50 | -- | −0.106 | ∞ (8–∞) |
Lake of the Woods | 30 | 49.19 | −95.70 | 0.45 | 0.41 | 3.43 | 3.43 | 0.075 | 113 (24–∞) |
Little Turtle Lk | 29 | 48.78 | −92.64 | 0.23 | 0.22 | 2.5 | -- | 0.016 | 11 (6–∞) |
Namakan R. | 205 | 48.46 | −92.37 | 0.41 | 0.41 | 3.86 | 3.05 | −0.066 | ∞ (130–∞) |
Nelson R. | 59 | 55.50 | −96.78 | 0.50 | 0.49 | 3.36 | 3.19 | 0.036 | 107 (28–∞) |
Quetico Prov. Pk. | 45 | 48.67 | −91.15 | 0.37 | 0.37 | 2.86 | 2.68 | −0.015 | 48 (14–∞) |
Rainy R. | 30 | 48.72 | −94.59 | 0.48 | 0.47 | 3.5 | 3.50 | 0.003 | 10 (4–17) |
Seine R. | 115 | 48.74 | −92.39 | 0.39 | 0.37 | 3.50 | 2.97 | 0.033 | 171 (59–∞) |
Sturgeon R. | 31 | 48.48 | −91.63 | 0.41 | 0.41 | 2.71 | 2.70 | −0.004 | ∞ (21–∞) |
Winnipeg R. | 444 | 49.56 | −94.76 | 0.49 | 0.48 | 4.43 | 3.65 | 0.009 | 68 (53–87) |
Hudson Bay Basin | |||||||||
Abitibi R. | 38 | 49.30 | −81.17 | 0.51 | 0.52 | 3.29 | 3.18 | −0.013 | 72 (19–∞) |
Attawapiskat R. | 256 | 52.95 | −82.30 | 0.53 | 0.50 | 4.86 | 3.68 | 0.052 | 321 (155–1643) |
Burntbush Lk. | 86 | 49.60 | −79.98 | 0.47 | 0.46 | 3.36 | 3.00 | 0.011 | 108 (46–1872) |
Fox R. | 20 | 55.99 | −93.61 | 0.53 | 0.51 | 3.50 | -- | 0.045 | 94 (17–∞) |
Frederick House R. | 36 | 49.30 | −81.27 | 0.48 | 0.49 | 3.29 | 3.18 | −0.026 | 154 (40–∞) |
Groundhog R. | 54 | 49.05 | −82.13 | 0.48 | 0.47 | 3.00 | 2.91 | 0.023 | 66 (25–∞) |
Hayes R. | 13 | 56.47 | −92.76 | 0.52 | 0.57 | 3.21 | -- | −0.099 | 53 (8–∞) |
Kenogami R. | 218 | 50.58 | −84.49 | 0.51 | 0.50 | 4.79 | 3.69 | 0.024 | 605 (165–∞) |
Maicasagi R. | 168 | 49.93 | −76.67 | 0.53 | 0.52 | 4.21 | 3.67 | 0.016 | 94 (55–193) |
Mattagami R. | 58 | 50.72 | −81.48 | 0.52 | 0.52 | 3.71 | 3.41 | 0.003 | 2225 (57–∞) |
Mikwam Lk. | 75 | 49.52 | −80.17 | 0.46 | 0.47 | 3.14 | 2.91 | −0.022 | 62 (28–253) |
Moose R. | 133 | 51.22 | −80.82 | 0.50 | 0.45 | 4.29 | 3.53 | 0.127 | 224 (72–∞) |
Ogoki R. | 11 | 50.79 | −88.17 | 0.53 | 0.53 | 2.86 | -- | −0.002 | 2 (1–28) |
Rupert R. | 55 | 51.76 | −77.60 | 0.50 | 0.52 | 3.21 | 3.05 | −0.052 | 93 (28–∞) |
Smoothrock Lk. | 50 | 50.53 | −89.46 | 0.52 | 0.55 | 3.57 | 3.34 | −0.042 | 49 (20–601) |
Winisk R. | 15 | 54.99 | −85.43 | 0.51 | 0.52 | 3.14 | -- | −0.033 | ∞ (20–∞) |
Great Lakes–St. Lawrence Basin | |||||||||
Lake Nipigon | 81 | 49.33 | −88.74 | 0.53 | 0.55 | 3.50 | 3.25 | −0.036 | 24 (14–43) |
Lk Superior tributaries | |||||||||
Black Sturgeon R. | 273 | 48.84 | −88.40 | 0.58 | 0.60 | 4.64 | 3.91 | −0.048 | 62 (51–89) 2 |
Kaministiquia R. | 483 | 48.36 | −89.27 | 0.57 | 0.59 | 5.07 | 3.99 | −0.045 | 45 (38–65) 2 |
Pic R. | 46 | 48.60 | −86.30 | 0.58 | 0.56 | 4.14 | 4.01 | 0.002 | 93 (34–∞) |
White R. | 61 | 48.55 | −86.25 | 0.58 | 0.59 | 4.5 | 4.17 | −0.032 | 79 (38–411) |
Lk Huron tributaries | |||||||||
Garden R. | 26 | 46.43 | −84.53 | 0.58 | 0.65 | 4.14 | -- | −0.139 | 438 (32–∞) |
Spanish R. | 66 | 46.18 | 82.30 | 0.57 | 0.58 | 4.36 | 3.98 | −0.064 | 14 (8–25) |
Lake Nipissing | 73 | 46.15 | −79.71 | 0.56 | 0.59 | 4.29 | 3.84 | −0.050 | 622 (99–∞) |
Ottawa R. | 638 | 45.92 | −77.25 | 0.56 | 0.59 | 6.43 | 4.43 | −0.020 | 983 (370–∞) 1 |
Petawawa R. | 7 | 45.99 | −77.70 | 0.34 | 0.29 | 2.21 | -- | 0.156 | 1 (0.1–∞) |
St. Lawrence R. | 33 | 46.97 | −70.81 | 0.56 | 0.55 | 4.50 | 4.46 | 0.023 | 667 (49–∞) |
Wolf R., WI | 26 | 44.20 | −88.90 | 0.50 | 0.46 | 4.07 | -- | 0.085 | ∞ (46–∞) |
Mississippi River Basin | |||||||||
E. Chippewa R., WI | 18 | 45.92 | −91.01 | 0.52 | 0.58 | 3.43 | -- | −0.106 | 31 (11–∞) |
Kettle R. | 19 | 44.70 | −92.80 | 0.45 | 0.38 | 3.29 | -- | 0.127 | ∞ (29–∞) |
Upper Mississippi R. | 18 | 44.06 | −91.65 | 0.55 | 0.57 | 3.71 | -- | −0.041 | 265 (20–∞) |
Wissota R. | 49 | 44.93 | 91.32 | 0.47 | 0.52 | 4.21 | 3.90 | −0.097 | 462 (55–∞) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjartanson, S.L.; Haxton, T.; Wozney, K.; Lovejoy, N.R.; Wilson, C.C. Conservation Genetics of Lake Sturgeon (Acipenser fulvescens): Nuclear Phylogeography Drives Contemporary Patterns of Genetic Structure and Diversity. Diversity 2023, 15, 385. https://doi.org/10.3390/d15030385
Kjartanson SL, Haxton T, Wozney K, Lovejoy NR, Wilson CC. Conservation Genetics of Lake Sturgeon (Acipenser fulvescens): Nuclear Phylogeography Drives Contemporary Patterns of Genetic Structure and Diversity. Diversity. 2023; 15(3):385. https://doi.org/10.3390/d15030385
Chicago/Turabian StyleKjartanson, Shawna L., Tim Haxton, Kristyne Wozney, Nathan R. Lovejoy, and Chris C. Wilson. 2023. "Conservation Genetics of Lake Sturgeon (Acipenser fulvescens): Nuclear Phylogeography Drives Contemporary Patterns of Genetic Structure and Diversity" Diversity 15, no. 3: 385. https://doi.org/10.3390/d15030385
APA StyleKjartanson, S. L., Haxton, T., Wozney, K., Lovejoy, N. R., & Wilson, C. C. (2023). Conservation Genetics of Lake Sturgeon (Acipenser fulvescens): Nuclear Phylogeography Drives Contemporary Patterns of Genetic Structure and Diversity. Diversity, 15(3), 385. https://doi.org/10.3390/d15030385