Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = Si-Ti composite film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3382 KB  
Article
Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator
by Tianjiao Wu, Tianshu Wang and Baoqun Li
Photonics 2026, 13(1), 37; https://doi.org/10.3390/photonics13010037 - 31 Dec 2025
Viewed by 316
Abstract
A composite dual-cavity passively mode-locked fiber laser based on a functionalized microsphere resonator is proposed and experimentally demonstrated. The nonlinear response of the resonator is enhanced by depositing TiO2 film on a SiO2 microsphere, which leads to improved mode-locking performance. The [...] Read more.
A composite dual-cavity passively mode-locked fiber laser based on a functionalized microsphere resonator is proposed and experimentally demonstrated. The nonlinear response of the resonator is enhanced by depositing TiO2 film on a SiO2 microsphere, which leads to improved mode-locking performance. The wavelength selectivity and optical field confinement of the microsphere resonator are exploited, allowing it to simultaneously serve as an intracavity narrowband filter and a nonlinear modulation element. The threshold of the mode-locked laser was measured to be as low as 34 mW, and stable mode-locked operation was achieved at a pump power of 105.7 mW, with a pulse duration of 2.8 ns, a repetition rate of 13.88 MHz, and a signal-to-noise ratio of 74.86 dB. The output spectrum exhibited a central wavelength of 1560.12 nm, a 3 dB linewidth of 0.06 nm, and a side-mode suppression ratio of 55.13 dB. This straightforward design provides an effective approach for the miniaturization of passively mode-locked fiber lasers. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application: 2nd Edition)
Show Figures

Figure 1

21 pages, 10830 KB  
Article
A Study of Speckle Materials for Digital Image Correlation (DIC): Thermal Stability and Color Change Mechanisms at High Temperatures
by Yunzhu Ni, Yan Wang, Zhongya Zhang and Huilong Zheng
Coatings 2025, 15(12), 1444; https://doi.org/10.3390/coatings15121444 - 8 Dec 2025
Viewed by 509
Abstract
This study focused on the measurement requirements of Digital Image Correlation (DIC) in high-temperature environments of aero-engines and systematically investigated the applicability and stability of high-temperature speckle materials. Five common coating materials (Ti, TiN, Ta, NiCr alloy, and SiC) were selected. Corresponding thin [...] Read more.
This study focused on the measurement requirements of Digital Image Correlation (DIC) in high-temperature environments of aero-engines and systematically investigated the applicability and stability of high-temperature speckle materials. Five common coating materials (Ti, TiN, Ta, NiCr alloy, and SiC) were selected. Corresponding thin films were deposited on Al2O3 ceramic substrates using magnetron sputtering technology, and their surface color evolution from room temperature up to 1200 °C was examined. The film compositions were analyzed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), revealing the mechanisms behind the color changes. The results indicate that Ti, TiN, Ta, and NiCr alloy exhibit significant color variations, which leads to insufficient color contrast for high-temperature speckle patterns. Further investigation shows that depositing an outer SiO2 coating can improve surface scattering and reflection, while also inhibiting oxygen penetration, thereby enhancing oxidation resistance and improving speckle contrast. The SiC/SiO2 composite structure demonstrates excellent thermal stability, making it an ideal speckle material for high-temperature DIC measurements. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

19 pages, 5487 KB  
Article
Effect of Addition of Cr on the Structural Properties of Copper Films on BaTiO3 Ceramic Substrates
by Fengtian Shi, Heda Bai, Yuanhao Liao, Jin Li and Xiangli Liu
Materials 2025, 18(21), 4851; https://doi.org/10.3390/ma18214851 - 23 Oct 2025
Viewed by 539
Abstract
In the application of ceramic dielectric filters, to achieve electromagnetic shielding of signals and subsequent integrated applications, it is necessary to carry out metallization treatment on their surfaces. The quality of metallization directly affects the performance of the filter. However, when in use, [...] Read more.
In the application of ceramic dielectric filters, to achieve electromagnetic shielding of signals and subsequent integrated applications, it is necessary to carry out metallization treatment on their surfaces. The quality of metallization directly affects the performance of the filter. However, when in use, the filter may encounter harsh environmental conditions. Therefore, the surface-metallized film needs to have strong corrosion resistance to ensure its long-term stability during use. In this paper, Cu films and copper–chromium alloy films were fabricated on Si (100) substrates and BaTiO3 ceramic substrates by HiPIMS technology. The effects of different added amounts of Cr on the microstructure, electrical conductivity, and corrosion resistance of the Cu films were studied. The results show that with an increase in Cr content, the preferred orientation of the (111) crystal plane gradually weakens, and the grains of the Cu-Cr alloy film gradually decrease. The particles on the film surface are relatively coarse, increasing the surface roughness of the film. However, after doping, the film still maintains a relatively low surface roughness. After doping with Cr, the resistivity of the film increases with the increase in Cr content. The film–substrate bonding force shows a trend of first increasing and then decreasing with the increase in Cr content. Among them, when the Cr content is 2 at.%, the film–substrate bonding force is the greatest. The Cu-Cr alloy film has good corrosion resistance in static corrosion. With the increase in Cr content, the Tafel slope of the cathode increases, and the polarization resistance Rp also increases with the increase in Cr content. After the addition of Cr, both the oxide film resistance and the charge transfer resistance of the electrode reaction of the Cu-Cr alloy film are greater than those of the Cu film. This indicates that the addition of Cr reduces the corrosion rate of the alloy film and enhances its corrosion resistance in a NaCl solution. 2 at.% Cr represents a balanced trade-off in composition. While ensuring the film is dense, uniform, and has good electrical conductivity, the adhesion between the film and the substrate is maximized, and the corrosion resistance of the Cu film is also improved. Full article
(This article belongs to the Special Issue Advanced Thin Films: Structural, Optical, and Electrical Properties)
Show Figures

Figure 1

15 pages, 23278 KB  
Article
Assessing the Influence of Inorganic Nanoparticles on the Mechanical and Tribological Performance of PPS-Based Composites: A Comparative Study
by Jixiang Li, Mei Liang, Xiaowen Zhao, Shengtai Zhou and Huawei Zou
Polymers 2025, 17(19), 2573; https://doi.org/10.3390/polym17192573 - 23 Sep 2025
Cited by 2 | Viewed by 676
Abstract
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene [...] Read more.
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene sulphide (PPS) composites. The results showed that the flexural strength and modulus of PPS composites increased with the addition of inorganic nanoparticles. Moreover, the inorganic nanoparticles not only exhibited a ‘micro-bearing’ effect during friction tests, but also promoted the formation of high-quality transfer film on the surface of a friction pair, significantly improving the self-lubricating performance of PPS composites. XPS analysis confirmed the occurrence of friction-induced chemical reactions during the friction process in nanoparticle-containing PPS/i-PTFE/SCF composites, which was helpful in improving the tribological performance. PPS/i-PTFE/SCF/SiC composite demonstrated an average friction coefficient of 0.083 and specific wear rate of 9.04 × 10−6 mm3/Nm, which was the best among the studied systems. This work provided valuable insights for developing high-performance self-lubricating polymer composites that can be applied in high-end engineering sectors. Full article
Show Figures

Graphical abstract

46 pages, 7349 KB  
Review
Convergence of Thermistor Materials and Focal Plane Arrays in Uncooled Microbolometers: Trends and Perspectives
by Bo Wang, Xuewei Zhao, Tianyu Dong, Ben Li, Fan Zhang, Jiale Su, Yuhui Ren, Xiangliang Duan, Hongxiao Lin, Yuanhao Miao and Henry H. Radamson
Nanomaterials 2025, 15(17), 1316; https://doi.org/10.3390/nano15171316 - 27 Aug 2025
Cited by 1 | Viewed by 2189
Abstract
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) [...] Read more.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of −4.2%/K and significant 1/f noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding −5%/K, while titanium oxide (TiOx) attains TCR values up to −7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of −6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VOx-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 1010 cm⋅Hz 1/2/W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 3706 KB  
Article
Controllable Preparation of TiO2/SiO2@Blast Furnace Slag Fiber Composites Based on Solid Waste Carriers and Study on Mechanism of Photocatalytic Degradation of Urban Sewage
by Xinwen Luo, Jinhu Wu, Guangqian Zhu, Xinyu Han, Junjian Zhao, Yaqiang Li, Yingying Li and Shaopeng Gu
Catalysts 2025, 15(8), 755; https://doi.org/10.3390/catal15080755 - 7 Aug 2025
Cited by 1 | Viewed by 804
Abstract
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and [...] Read more.
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and UV-Vis absorption spectra, as well as spectrophotometric measurements, were employed to analyze the physicochemical properties of TiO2. The influence of SiO2 coating, the number of impregnations in TiO2 sol, the calcination temperature, and the number of repeated usages on the activity of TiO2/SiO2/BFSF was researched by analyzing the degradation of methylene blue (MB) aqueous solution. The results show that SiO2 could increase the load of TiO2, impede the growth of TiO2 grains, and inhibit the recombination of electron–hole pairs, ultimately enhancing the photocatalytic activity of samples. The activity of TiO2/SiO2/BFSF first quickly increased and then slowly decreased with an increase in the loading times of TiO2 sol and calcination temperature. After three impregnations in TiO2 sol and calcining at 450 °C for 2.5 h, a uniform and compact anatase TiO2 thin film was deposited on the surface of TiO2/SiO2/BFSF, showing the strongest activity. When this sample was used to degrade MB aqueous solution for 180 min under ultraviolet light irradiation, the degradation proportion reached a maximum of 96%. After four reuses, the degradation ratio could still reach 67%. In addition, three potential photocatalytic mechanisms were proposed. Finally, the high-value-added application of blast furnace slag for preparing photocatalytic composite materials was achieved, successfully turning solid waste into “treasure”. Full article
(This article belongs to the Special Issue Enhanced Photocatalytic Activity over Ti, Zn, or Sn-Based Catalysts)
Show Figures

Figure 1

14 pages, 2180 KB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 - 5 Aug 2025
Viewed by 1303
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue Advances in Corrosion, Oxidation, and/or Wear-Resistant Coatings)
Show Figures

Figure 1

11 pages, 1391 KB  
Article
Influence of Thickness on the Structure and Properties of TiAl(Si)N Gradient Coatings
by Alexey Kassymbaev, Alexandr Myakinin, Gulzhas Uazyrkhanova, Farida Belisarova, Amangeldi Sagidugumar and Ruslan Kimossov
Coatings 2025, 15(6), 710; https://doi.org/10.3390/coatings15060710 - 13 Jun 2025
Cited by 1 | Viewed by 1148
Abstract
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient [...] Read more.
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient coatings using reactive magnetron sputtering, employing a controlled modulation of aluminum and silicon content across the film thickness. Three samples, with thicknesses of ~400 nm, ~600 nm, and ~800 nm, were deposited under uniform Ar/N2 gas flow ratios, and their microstructural, mechanical, and tribological characteristics were rigorously examined. SEM investigation demonstrated a significant change across thicknesses. XRD results validated the emergence of a predominant cubic TiAl(Si)N phase alongside a secondary hexagonal AlN phase, signifying partial phase segregation. The nanoindentation results indicated that Sample 2 exhibited the maximum hardness (~38 GPa) and Young’s modulus (~550 GPa) due to an optimized equilibrium between solid solution strengthening and nanocomposite production. Tribological testing revealed that Sample 1 displayed the lowest and most consistent friction coefficient, corresponding to its superior H/E and H3/E2 ratios, which signify improved elasticity and resistance to plastic deformation. The findings emphasize that the implementation of a compositional gradient, especially in the distribution of Si and Al, markedly affects the microstructure and performance of TiAl(Si)N coatings. Gradient structures enhance the microstructure, optimize hardness, and increase the friction coefficient. Ongoing refinement of gradient profiles and deposition parameters may further improve the characteristics of TiAl(Si)N coatings, facilitating their wider industrial use. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

13 pages, 3697 KB  
Article
Interfacial Chemical and Electrical Performance Study and Thermal Annealing Refinement for AlTiO/4H-SiC MOS Capacitors
by Yu-Xuan Zeng, Wei Huang, Hong-Ping Ma and Qing-Chun Zhang
Nanomaterials 2025, 15(11), 814; https://doi.org/10.3390/nano15110814 - 28 May 2025
Viewed by 810
Abstract
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process [...] Read more.
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process to form a composite AlTiO gate dielectric on a 4H-SiC substrate. TDMAT and TMA were the precursors selected and deposited at 200 °C, and the samples were Ar or N2 annealed at temperatures ranging from 300 °C to 700 °C. An XPS analysis suggested that the AlTiO film had been deposited with a high overall quality and the involvement of Ti atoms had increased the interfacial bonding with the substrate. The as-deposited MOS structure had band shifts of ΔEC = 1.08 eV and ΔEV = 2.41 eV. After annealing, the AlTiO bandgap increased by 0.85 eV at most, and better band alignment was attained. Leakage current and breakdown voltage characteristic investigations were conducted after Al electrode deposition. The leakage current density and electrical breakdown field of an MOS capacitor structure with a SiC substrate were ~10−3 A/cm2 and 6.3 MV/cm, respectively. After the annealing process, both the measures of the JV performance of the MOS capacitor had improved to ~10−6 A/cm2 and 7.2 MV/cm. The interface charge Neff of the AlTiO layer was 4.019 × 1010 cm−2. The AlTiO/SiC structure fabricated in this work proved the feasibility of adjusting the properties of single-component gate dielectric materials using the ALD method, and using a suitable thermal annealing process has great potential to improve the performance of the compound MOS dielectric layer. Full article
(This article belongs to the Special Issue Advanced Studies in Wide-Bandgap Nanomaterials and Devices)
Show Figures

Figure 1

20 pages, 13076 KB  
Article
Enhancement of a Magnetically Controlled Cathodic Arc Source for the Deposition of Multi-Component Hard Nitride Coatings
by Van-Tien Tang, Yin-Yu Chang and Yi-Ru Chen
Materials 2025, 18(10), 2276; https://doi.org/10.3390/ma18102276 - 14 May 2025
Cited by 1 | Viewed by 1205
Abstract
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. [...] Read more.
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. Furthermore, this approach provides precise control over the chemical composition and thickness of the coating, ensuring consistent quality across the entire surface. However, uneven evaporation and ejection of molten metal droplets from the cathode during cathode arc deposition produce particles and droplets, resulting in an uneven coating surface. This study presents a new design for a magnetically controlled cathode arc source to effectively reduce particles and droplets during the cathodic arc deposition of multi-component alloy targets for nitride-based hard coatings. The study compares the performance of a new source with a conventional magnetic-controlled arc source for depositing TiAlNbSiN and AlCrSiN films. In the conventional source, the magnetic field is generated by a permanent magnet (PM), whereas in the new source, it is generated and controlled using an electromagnet (EM). Both films are produced using multi-component alloy targets (TiAlNbSi and AlCrSi) with identical composition ratios. The plasma characteristics of the two different arc sources are investigated using an optical emission spectrometer (OES), and the surface morphology, structural characteristics, deposition rate, uniformity, and surface roughness (Sa) are examined using scanning electron microscopy (SEM). When the EM was applied to have high plasma density, the hardness of the TiAlNbSiN film deposited with the novel arc source measured 31.2 ± 1.9 GPa, which is higher than that of the PM arc source (28.3 ± 1.4 GPa). In contrast, the AlCrSiN film created using a typical arc source exhibited a hardness of only 25.5 ± 0.6 GPa. This lower hardness may be due to insufficient ion kinetic energy to enhance stress blocking and increase hardness, or the presence of the h-AlN phase in the film, which was not detected by XRD. The electromagnet arc source, with its adequate ion bombardment velocity, facilitated a complementary effect between grain growth and stress blocking, leading to a remarkable hardness of 32.6 ± 0.5 GPa. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

13 pages, 4614 KB  
Article
Corrosion Resistance and Wear Properties of CoCrFeNiMn/TiC High-Entropy Alloy-Based Composite Coatings Prepared by Laser Cladding
by Qiang Zhan, Fangyan Luo, Jiang Huang, Zhanshan Wang, Bin Ma and Chengpu Liu
Lubricants 2025, 13(5), 210; https://doi.org/10.3390/lubricants13050210 - 10 May 2025
Cited by 1 | Viewed by 1433
Abstract
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of [...] Read more.
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of TiC and M23C6 are introduced, and lattice distortion occurs simultaneously (accompanied by the broadening and leftward shift of the main Face-Centered Cubic (FCC) peak). Scanning electron microscopy (SEM) reveals that the incompletely melted TiC particles in the coating (S2) are uniformly distributed in the matrix with 20 wt% TiC, while in the coating (S1) with 10 wt% TiC, due to gravitational sedimentation and decomposition during laser processing, the distribution of the reinforcing phase is insufficient. When rubbed against Si3N4, with the addition of TiC, S2 exhibits the lowest friction coefficient of 0.699 and wear volume of 0.0398 mm3. The corrosion resistance of S2 is more prominent in the simulated seawater (3.5 wt% NaCl). S2 shows the best corrosion resistance: it has the largest self-corrosion voltage (−0.425 V vs. SCE), the lowest self-corrosion current density (1.119 × 10−7 A/cm2), and exhibits stable passivation behavior with a wide passivation region. Electrochemical impedance spectroscopy (EIS) confirms that its passivation film is denser. This study shows that the addition of 20 wt% TiC optimizes the microstructural homogeneity and synergistically enhances the mechanical strengthening and electrochemical stability of the coating, providing a new strategy for the making of HEA-based layers in harsh wear-corrosion coupling environments. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

12 pages, 4676 KB  
Article
Enhancement of (100) Orientation and Dielectricity in PZT Thin Films Prepared by Radio Frequency Magnetron Sputtering Method
by Xing Wang and Helin Zou
Coatings 2025, 15(3), 336; https://doi.org/10.3390/coatings15030336 - 14 Mar 2025
Viewed by 1491
Abstract
PZT thin films with a sol–gel-derived seed layer of Pb1.2(Zr0.3, Ti0.7)O3 were deposited on Pt/Ti/SiO2/Si substrates via the magnetron sputtering process. The purpose of this present study was to investigate the influence of sputtering [...] Read more.
PZT thin films with a sol–gel-derived seed layer of Pb1.2(Zr0.3, Ti0.7)O3 were deposited on Pt/Ti/SiO2/Si substrates via the magnetron sputtering process. The purpose of this present study was to investigate the influence of sputtering process parameters and heat treatment parameters on the crystal orientation, microstructure, and dielectric behaviors of PZT films. X-ray diffraction (XRD) analysis shows that the (100) orientation degree of the PZT films first increases and then decreases with the increase in oxygen partial pressure during sputtering. The PZT film annealed at a temperature of 550 °C exhibits a pure (100) perovskite phase. There are no significant changes in crystal orientation and the (100) orientation degree with increasing annealing time. An improved surface density, more uniform grains, and clear grain boundaries were detected by scanning electron microscope (SEM) characterization as the annealing time increased to 30 min. Optimal dielectricity was obtained in the film deposited on an O2/Ar composition of 10/90 with a sputtering pressure of 2 Pa and annealed at 600 °C for 30 min, which presents a permittivity of 852 and a loss factor of 0.026 at a frequency of 1 kHz and a remanent polarization of 18.5 μC/cm2. Full article
Show Figures

Figure 1

11 pages, 4211 KB  
Communication
Investigation of the Influence of Adhesion Layers on the Gas Sensing Performance of CuO/Cu2O Thin Films
by Christian Maier, Larissa Egger, Anton Köck and Klaus Reichmann
Chemosensors 2025, 13(3), 80; https://doi.org/10.3390/chemosensors13030080 - 2 Mar 2025
Cited by 2 | Viewed by 2555
Abstract
This parameter study examines the impact of two distinct adhesion layers, chromium (Cr) and titanium (Ti), on the performance of CuO/Cu2O-based chemoresistive gas sensors by varying the layer thickness. The sensing material utilised on a Si-SiO2 sensor chip with Pt [...] Read more.
This parameter study examines the impact of two distinct adhesion layers, chromium (Cr) and titanium (Ti), on the performance of CuO/Cu2O-based chemoresistive gas sensors by varying the layer thickness. The sensing material utilised on a Si-SiO2 sensor chip with Pt electrodes is an ultrathin CuO/Cu2O film fabricated through thermal deposition of Cu and subsequent oxidation. The sensors were evaluated by measuring the change in electrical resistance against a range of target gases, including carbon monoxide (CO), carbon dioxide (CO2) and a mixture of hydrocarbons (HCMix), in order to assess any potential cross-sensitivity issues. As the reactions occur at the surface, the surface was characterised by scanning electron microscopy (SEM) and the composition by grazing incidence X-Ray diffraction (GIXRD) measurement to gain further insight into the influence of the adhesion layer on the sensing performance. Full article
(This article belongs to the Special Issue Recent Advances in Metal Oxide-Based Gas Sensors)
Show Figures

Figure 1

16 pages, 3148 KB  
Article
Preparation, Characterization and Evaluation of the Antibacterial Activity of Ag Nanoparticles Embedded in Transparent Oxide Matrices
by Cristina-Ștefania Gălbau, Mihaela Idomir, Cătălin Vițelaru, Adrian Emil Kiss, Anca Constantina Parau, Lidia Ruxandra Constantin, Mihaela Dinu, Iulian Pana, Alina Vlădescu (Dragomir), Elena Laura Gaman, Marius Alexandru Moga, Cătălin Mișarcă, Mihai Vârciu, Claudia Alexandrina Irimie and Mihaela Badea
Appl. Sci. 2025, 15(5), 2599; https://doi.org/10.3390/app15052599 - 27 Feb 2025
Viewed by 1358
Abstract
Daily exposure to contaminated environments and surfaces leads to serious health issues, increasing healthcare costs. Active materials that act against pathogens can effectively prevent their proliferation and contribute to increased protection against infections. In this contribution, nanostructured thin films containing silver are investigated, [...] Read more.
Daily exposure to contaminated environments and surfaces leads to serious health issues, increasing healthcare costs. Active materials that act against pathogens can effectively prevent their proliferation and contribute to increased protection against infections. In this contribution, nanostructured thin films containing silver are investigated, using SiO2 and TiO2 as transparent matrices to embed the Ag atoms. The thin transparent films were obtained via magnetron sputtering, using HiPIMS for Ag deposition and RF sputtering for oxides, in either an Ar or Ar/O2 environment. Atomic Force Microscopy provided information on coating topography and the thin films’ preferential growth on the textured polymer foil, X-Ray Diffraction highlighted the structural difference between different versions, Ultraviolet–Visible–Near-Infrared spectroscopy proved the thin films’ optical quality and their transparency and Energy-Dispersive X-ray Spectroscopy revealed the composition changes for different processes. The effect of O2 addition is analyzed and compared in terms of changes induced on the properties of the thin films. Following 24 h of incubation in a media containing 104 CFU/mL Escherichia coli, the TiO2+Ag sample with O2 addition showed the highest antibacterial effectiveness, as indicated by the largest inhibition zone. Experiments on selective media showed a hierarchy of efficiency, namely, TiO2+Ag+O2 > TiO2+Ag > SiO2+Ag. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

21 pages, 3737 KB  
Article
Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering
by Helena Cristina Vasconcelos, Maria Meirelles, Reşit Özmenteş and Luís Santos
Foundations 2025, 5(1), 5; https://doi.org/10.3390/foundations5010005 - 12 Feb 2025
Cited by 1 | Viewed by 1818
Abstract
This study employs advanced structural characterization techniques, including anomalous small-angle X-ray scattering (ASAXS), small-angle X-ray scattering (SAXS), and X-ray photoelectron spectroscopy (XPS), to investigate erbium (Er3+)-doped silica-based glass-ceramic thin films synthesized via the sol–gel method. This research examines the SiO2 [...] Read more.
This study employs advanced structural characterization techniques, including anomalous small-angle X-ray scattering (ASAXS), small-angle X-ray scattering (SAXS), and X-ray photoelectron spectroscopy (XPS), to investigate erbium (Er3+)-doped silica-based glass-ceramic thin films synthesized via the sol–gel method. This research examines the SiO2-TiO2 and SiO2-TiO2-PO2.5 systems, focusing on the formation, dispersion, and structural integration of Er3+-containing nanocrystals within the amorphous matrix under different thermal treatments. Synchrotron radiation tuned to the LIII absorption edge of erbium enabled ASAXS measurements, providing element-specific details about the localization of Er3+ ions. The findings confirm their migration into crystalline phases, such as erbium phosphate (EPO) and erbium titanate (ETO). SAXS and Guinier analysis quantified nanocrystal sizes, revealing trends influenced by their composition and heat treatment. Complementary XPS analysis of the Er 5p core-level states provided detailed information on the chemical and electronic environment of the Er3+ ions, confirming their stabilization within the crystalline structure. Transmission electron microscopy (TEM) highlighted the nanoscale morphology, verifying the aggregation of Er3+ ions into well-defined nanocrystals. The results offer a deeper understanding of their size, distribution, and interaction with the surrounding matrix. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

Back to TopTop