Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = Schottky barrier height

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 52
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

13 pages, 10650 KiB  
Article
Barrier-Free Carrier Injection in 2D WSe2-MoSe2 Heterostructures via Fermi-Level Depinning
by Tian-Jun Dai, Xiang Xiao, Zhong-Yuan Fan, Zi-Yan Zhang, Yi Zhou, Yong-Chi Xu, Jian Sun and Xue-Fei Liu
Nanomaterials 2025, 15(13), 1035; https://doi.org/10.3390/nano15131035 - 3 Jul 2025
Viewed by 286
Abstract
Fermi-level pinning (FLP) at metal–semiconductor interfaces remains a key obstacle to achieving low-resistance contacts in two-dimensional (2D) transition metal dichalcogenide (TMDC)-based heterostructures. Here, we present a first-principles study of Schottky barrier formation in WSe2-MoSe2 van der Waals heterostructures interfaced with [...] Read more.
Fermi-level pinning (FLP) at metal–semiconductor interfaces remains a key obstacle to achieving low-resistance contacts in two-dimensional (2D) transition metal dichalcogenide (TMDC)-based heterostructures. Here, we present a first-principles study of Schottky barrier formation in WSe2-MoSe2 van der Waals heterostructures interfaced with four representative metals (Ag, Al, Au, and Pt). It was found that all metal–WSe2/MoSe2 direct contacts induce pronounced metal-induced gap states (MIGSs), leading to significant FLP inside the WSe2/MoSe2 band gaps and elevated Schottky barrier heights (SBHs) greater than 0.31 eV. By introducing a 2D metal-doped metallic (mWSe/mMoSe) layer between WSe2/MoSe2 and the metal electrodes, the MIGSs can be effectively suppressed, resulting in nearly negligible SBHs for both electrons and holes, with even an SBH of 0 eV observed in the Ag-AgMoSe-MoSe2 contact, thereby enabling quasi-Ohmic contact behavior. Our results offer a universal and practical strategy to mitigate FLP and achieve high-performance TMDC-based electronic devices with ultralow contact resistance. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

16 pages, 3131 KiB  
Article
Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation
by Akeel Qadir, Munir Ali, Afshan Khaliq, Shahid Karim, Umar Farooq, Hongsheng Xu and Yiting Yu
Nanomaterials 2025, 15(13), 985; https://doi.org/10.3390/nano15130985 - 25 Jun 2025
Viewed by 272
Abstract
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically [...] Read more.
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically insensitive to water adsorption, making it difficult for adsorbed H2O to effectively dope the graphene. In contrast, when graphene is supported on the silicon substrate, water molecules can effectively dope the graphene by modifying the silicon’s impurity bands and their hybridization with graphene. This humidity-induced doping leads to a significant modulation of the Schottky barrier at the graphene–silicon interface, which serves as the core sensing mechanism. We investigate the current–voltage (I–V) characteristics of these devices as a function of trench width and relative humidity. Our analysis shows that humidity influences key device parameters, including the Schottky barrier height, ideality factor, series resistance, and normalized sensitivity. Specifically, larger trench widths reduce the graphene density of states, an effect that is accounted for in our analysis of these parameters. The sensor operates under both forward and reverse bias, enabling tunable sensitivity, high selectivity, and low power consumption. These features make it promising for applications in industrial and home safety, environmental monitoring, and process control. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

9 pages, 2014 KiB  
Article
Pd-Gated N-Polar GaN/AlGaN High-Electron-Mobility Transistor for High-Sensitivity Hydrogen Gas Detection
by Long Ge, Haineng Bai, Yidi Teng and Xifeng Yang
Crystals 2025, 15(6), 578; https://doi.org/10.3390/cryst15060578 - 18 Jun 2025
Viewed by 284
Abstract
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a [...] Read more.
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a hydrogen sensor. The device achieves ppm-level H2 detection with rapid recovery and reusability, which is comparable to or even exceeds the performance of conventional Ga-polar HEMTs. The N-polar structure enhances sensitivity through its unique polarization-induced 2DEG and intrinsic back barrier, while the Pd layer catalyzes H2 dissociation, forming a dipole layer that can modulate the Schottky barrier height. Experimental results demonstrate superior performance at both room temperature and elevated temperatures. Specifically, at 200 °C, the sensor exhibits a response of 102% toward 200 ppm H2, with response/recovery times of 150 s/17 s. This represents a 96% enhancement in sensitivity and a reduction of 180 s/14 s in response/recovery times compared to room-temperature conditions (23 °C). These findings highlight the potential of N-polar HEMTs for high-performance hydrogen sensing applications. Full article
Show Figures

Figure 1

12 pages, 1849 KiB  
Article
Study on Photoelectric Properties of Graphene/Molybdenum Disulfide Heterojunction
by Hui Ren, Xing Wei and Jibin Fan
Nanomaterials 2025, 15(11), 787; https://doi.org/10.3390/nano15110787 - 23 May 2025
Viewed by 387
Abstract
The zero-bandgap of graphene means that it can achieve a full spectral range response for graphene-based photodetectors. But the zero bandgap of graphene also brings relatively large dark current. To improve this issue and achieve low-cost graphene-based photodetectors, radio frequency (RF) magnetron-sputtered molybdenum [...] Read more.
The zero-bandgap of graphene means that it can achieve a full spectral range response for graphene-based photodetectors. But the zero bandgap of graphene also brings relatively large dark current. To improve this issue and achieve low-cost graphene-based photodetectors, radio frequency (RF) magnetron-sputtered molybdenum disulfide constructed with graphene to form heterojunction was investigated. The results indicated that graphene/molybdenum disulfide heterojunction could provide a Schottky barrier height value of 0.739 eV, which was higher than that of the graphene/Si photodetector. It is beneficial to suppress the generation of the dark current. Different sputtering conditions were also studied. Testing results indicated that for the optimized process, the responsivity, detectivity, and quantum efficiency of graphene/molybdenum disulfide heterojunction photodetectors could reach up to 126 mA/W, 1.21 × 1011 Jones, and 34%, respectively. In addition, graphene/molybdenum disulfide heterojunction on flexible PET substrate showed good stability, indicating that graphene/molybdenum disulfide heterojunction also has a good potential application in the field of flexible electronics. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

10 pages, 13473 KiB  
Article
Robust Transition Metal Contacts for Aligned Carbon Nanotubes
by Gang Huang, Junhong Wu, Haiou Li and Honggang Liu
Nanomaterials 2025, 15(10), 736; https://doi.org/10.3390/nano15100736 - 14 May 2025
Viewed by 337
Abstract
Aligned carbon nanotubes (A-CNTs) are emerging as one of the most promising materials for next-generation nanoelectronics. However, achieving reliable ohmic contacts between A-CNTs and metals remains a critical challenge. In this study, we employ rapid thermal annealing (RTA) to facilitate the formation of [...] Read more.
Aligned carbon nanotubes (A-CNTs) are emerging as one of the most promising materials for next-generation nanoelectronics. However, achieving reliable ohmic contacts between A-CNTs and metals remains a critical challenge. In this study, we employ rapid thermal annealing (RTA) to facilitate the formation of transition metal carbides at the metal–CNT interface, significantly reducing contact resistance and enhancing stability. Using the transmission line method (TLM), we demonstrate that RTA reduces the contact resistance at the Ti/A-CNT interface from 112.26 kΩ·μm to 1.57 kΩ·μm and at the Ni/A-CNT interface from 81.72 kΩ·μm to 1.17 kΩ·μm, representing a reduction of over an order of magnitude. Moreover, the Schottky barrier heights (SBHs) for both the Ti/A-CNT and Ni/A-CNT interfaces decreases by approximately 50% after annealing. A comparative analysis with Pd/A-CNT contacts shows that Ti and Ni contacts exhibit superior reliability under harsh conditions. This work provides a viable solution for improving the electrical performance and reliability of CNT-based devices, offering a pathway toward the development of future CMOS technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

15 pages, 15113 KiB  
Article
Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
by Javier Martinez-Gil, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr and Oleg Cojocari
Electronics 2025, 14(10), 1957; https://doi.org/10.3390/electronics14101957 - 11 May 2025
Viewed by 650
Abstract
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer [...] Read more.
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer a notable advantage in terms of reduced power requirements due to their lower barrier height, enabling optical pumping with the incorporation of photodiodes acting as photonic local oscillators (LOs). In this study, we present the first comparative analysis of GaAs and InGaAs diode technologies under both electrical and optical pumping, which are also being compared for the first time, particularly in the context of a wireless communication system, transmitting up to 80 Gbps at 0.3 THz using 16-quadrature amplitude modulation (QAM). The terahertz transmitter and the optical receiver’s LO are based on modified uni-traveling-carrier photodiodes (MUTC-PDs) driven by free-running lasers. The investigation covers a total of two mixers, including narrow-band GaAs and InGaAs. The results reveal that, despite InGaAs mixers exhibiting higher conversion loss, the bit error rate (BER) can be as low as that with GaAs. This is attributed to the purity of optically generated LO signals in the receiver. This work positions InGaAs Schottky technology as a compelling candidate for terahertz reception in the context of optical wireless communication systems. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

13 pages, 5682 KiB  
Article
Temperature-Dependent Optical Absorption and DLTS Study of As-Grown and Electron-Irradiated GaSe Crystals
by Ruslan A. Redkin, Nikolay I. Onishchenko, Alexey V. Kosobutsky, Valentin N. Brudnyi, Xinyang Su and Sergey Yu. Sarkisov
Crystals 2025, 15(4), 372; https://doi.org/10.3390/cryst15040372 - 18 Apr 2025
Viewed by 483
Abstract
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals measured at temperatures in the range from 9.5 to 300 K were analyzed. The absorption spectra with features caused by Ga vacancies in two charge states and direct interband transitions were fitted by a [...] Read more.
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals measured at temperatures in the range from 9.5 to 300 K were analyzed. The absorption spectra with features caused by Ga vacancies in two charge states and direct interband transitions were fitted by a model equation. Temperature dependencies of the defect concentrations and optical transition energies, as well as of the GaSe band gap, were determined. Current- and capacitance-voltage characteristics and DLTS spectra were measured for as-grown and electron-irradiated GaSe slabs with Sc (barrier) and Pt (ohmic) contacts. An experimental Sc/GaSe Schottky barrier height of 1.12 eV was determined in close agreement with a theoretical estimate. The activation energy and the hole capture cross-section deduced from the DLTS data are 0.23 (0.66) eV and 1.5 × 10−19 (2.3 × 10−15) cm−2 for the supposed VGa1 (VGa2) defect. For the electron-irradiated GaSe crystals, the found activation energies are close to the values inferred from the optical measurements. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 3973 KiB  
Article
Impact of Processing Parameters on Ti Schottky Contacts on 4H-SiC
by Marilena Vivona, Gabriele Bellocchi, Valeria Puglisi, Corrado Bongiorno, Salvatore Adamo, Filippo Giannazzo, Simone Rascunà and Fabrizio Roccaforte
Materials 2025, 18(7), 1447; https://doi.org/10.3390/ma18071447 - 25 Mar 2025
Viewed by 588
Abstract
In this paper, we investigated the effects of the processing parameters, such as deposition methods, annealing temperature, and metal thickness, on the electrical characteristics of Ti/4H-SiC contacts. A reduction of the Schottky barrier height from 1.19 to 1.00 eV following an increase of [...] Read more.
In this paper, we investigated the effects of the processing parameters, such as deposition methods, annealing temperature, and metal thickness, on the electrical characteristics of Ti/4H-SiC contacts. A reduction of the Schottky barrier height from 1.19 to 1.00 eV following an increase of the annealing temperature (475–700 °C) was observed for a reference contact with an 80 nm-thick Ti layer. The current transport mechanisms can be described according to the thermionic emission (TE) and thermionic field emission (TFE) models under forward and reverse biases, respectively. The comparison with an e-beam evaporated Ti(80 nm)/4H-SiC contact did not show significant differences for the forward characteristics, while an increase of the leakage current was observed under high reverse voltage (>500 V). Finally, a thickness variation from 10 to 80 nm induced a reduction of the Schottky barrier height, due to the reaction occurring at the interface with a Ti-Al region extended up to the 4H-SiC surface. In addition to a deeper understanding of the Schottky barrier properties, this work is useful for the development of Schottky barrier diodes with tailored characteristics. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

11 pages, 2286 KiB  
Article
The Barrier Inhomogeneity and the Electrical Characteristics of W/Au β-Ga2O3 Schottky Barrier Diodes
by Lei Xie, Tao Zhang, Shengrui Xu, Huake Su, Hongchang Tao, Yuan Gao, Xu Liu, Jincheng Zhang and Yue Hao
Micromachines 2025, 16(4), 369; https://doi.org/10.3390/mi16040369 - 25 Mar 2025
Viewed by 597
Abstract
In this work, the electrical properties of the Ga2O3 Schottky barrier diodes (SBDs) using W/Au as the Schottky metal were investigated. Due to the 450 °C post-anode annealing (PAA), the reduced oxygen vacancy defects on the β-Ga2O [...] Read more.
In this work, the electrical properties of the Ga2O3 Schottky barrier diodes (SBDs) using W/Au as the Schottky metal were investigated. Due to the 450 °C post-anode annealing (PAA), the reduced oxygen vacancy defects on the β-Ga2O3 surface resulted in the improvement in the forward characteristics of the W/Au Ga2O3 Schottky diode, and the breakdown voltage was significantly enhanced, increasing by 56.25% from 400 V to 625 V after PAA treatment. Additionally, the temperature dependence of barrier heights and ideality factors was analyzed using the thermionic emission (TE) model combined with a Gaussian distribution of barrier heights. Post-annealing reduced the apparent barrier height standard deviation from 112 meV to 92 meV, indicating a decrease in barrier height fluctuations. And the modified Richardson constants calculated for the as-deposited and annealed samples were in close agreement with the theoretical value, demonstrating that the barrier inhomogeneity of the W/Au Ga2O3 SBDs can be accurately explained using the TE model with a Gaussian distribution of barrier heights. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

14 pages, 3518 KiB  
Article
On the Current Conduction and Interface Passivation of Graphene–Insulator–Silicon Solar Cells
by Hei Wong, Jieqiong Zhang, Jun Liu and Muhammad Abid Anwar
Nanomaterials 2025, 15(6), 416; https://doi.org/10.3390/nano15060416 - 8 Mar 2025
Viewed by 853
Abstract
Interface-passivated graphene/silicon Schottky junction solar cells have demonstrated promising features with improved stability and power conversion efficiency (PCE). However, there are some misunderstandings in the literature regarding some of the working mechanisms and the impacts of the silicon/insulator interface. Specifically, attributing performance improvement [...] Read more.
Interface-passivated graphene/silicon Schottky junction solar cells have demonstrated promising features with improved stability and power conversion efficiency (PCE). However, there are some misunderstandings in the literature regarding some of the working mechanisms and the impacts of the silicon/insulator interface. Specifically, attributing performance improvement to oxygen vacancies and characterizing performance using Schottky barrier height and ideality factor might not be the most accurate or appropriate. This work uses Al2O3 as an example to provide a detailed discussion on the interface ALD growth of Al2O3 on silicon and its impact on graphene electrode metal–insulator–semiconductor (MIS) solar cells. We further suggest that the current conduction in MIS solar cells with an insulating layer of 2 to 3 nm thickness is better described by direct tunneling, Poole–Frenkel emission, and Fowler–Nordheim tunneling, as the junction voltage sweeps from negative to a larger forward bias. The dielectric film thickness, its band offset with Si, and the interface roughness, are key factors to consider for process optimization. Full article
Show Figures

Figure 1

10 pages, 4178 KiB  
Brief Report
Optimization of Cross-Bridge Kelvin Resistor (CBKR) Layout for the Precise Contact Resistance Measurement of TiSi2/n+ Si
by Hyungju Noh, Changmin Chae, Yelim Jeon, Dongseok Oh and Sangwan Kim
Electronics 2025, 14(4), 762; https://doi.org/10.3390/electronics14040762 - 15 Feb 2025
Viewed by 1138
Abstract
This study investigates the impact of cross-bridge Kelvin resistor (CBKR) layout designs on specific contact resistivity (ρc) measurements between TiSi2 and n+ Si. The theoretical ρc is calculated as a function of silicon doping concentration (N [...] Read more.
This study investigates the impact of cross-bridge Kelvin resistor (CBKR) layout designs on specific contact resistivity (ρc) measurements between TiSi2 and n+ Si. The theoretical ρc is calculated as a function of silicon doping concentration (NSi) and Schottky barrier height (ϕb) to evaluate the measurement value. Various CBKR patterns are fabricated and measured with different contact hole areas (Ac) and aligned margins (δ) to evaluate measurement accuracy. The results show that CBKR with a narrow active width (W) can more accurately measure the ρc compared to the conventional layout mainly attributed to the current path confinement. In addition, if the contact hole length (L) is smaller than the transfer length (LT), the entire Ac contributes to the voltage drop of contact resistance (Rc), resulting in improved measurement accuracy. In contrast, if δ is increased, the measurement error decreases due to current dispersion near the recessed TiSi2 region, which is different from conventional CBKR layouts. Consequently, the measured ρc with an optimized layout shows a close value to the theoretical ρc. Full article
Show Figures

Figure 1

12 pages, 3122 KiB  
Article
Effect of p-InGaN Cap Layer on Low-Resistance Contact to p-GaN: Carrier Transport Mechanism and Barrier Height Characteristics
by Mohit Kumar, Laurent Xu, Timothée Labau, Jérôme Biscarrat, Simona Torrengo, Matthew Charles, Christophe Lecouvey, Aurélien Olivier, Joelle Zgheib, René Escoffier and Julien Buckley
Crystals 2025, 15(1), 56; https://doi.org/10.3390/cryst15010056 - 8 Jan 2025
Cited by 1 | Viewed by 1660
Abstract
This study investigated the low contact resistivity and Schottky barrier characteristics in p-GaN by modifying the thickness and doping levels of a p-InGaN cap layer. A comparative analysis with highly doped p-InGaN revealed the key mechanisms contributing to low-resistance contacts. Atomic force microscopy [...] Read more.
This study investigated the low contact resistivity and Schottky barrier characteristics in p-GaN by modifying the thickness and doping levels of a p-InGaN cap layer. A comparative analysis with highly doped p-InGaN revealed the key mechanisms contributing to low-resistance contacts. Atomic force microscopy inspections showed that the surface roughness depends on the doping levels and cap layer thickness, with higher doping improving the surface quality. Notably, increasing the doping concentration in the p++-InGaN cap layer significantly reduced the specific contact resistivity to 6.4 ± 0.8 × 10−6 Ω·cm2, primarily through enhanced tunneling. Current–voltage (I–V) characteristics indicated that the cap layer’s surface properties and strain-induced polarization effects influenced the Schottky barrier height and reverse current. The reduction in barrier height by approximately 0.42 eV in the p++-InGaN layer enhanced hole tunneling, further lowering the contact resistivity. Additionally, polarization-induced free charges at the metal–semiconductor interface reduced band bending, thereby enhancing carrier transport. A transition in current conduction mechanisms was also observed, shifting from recombination tunneling to space-charge-limited conduction across different voltage ranges. This research underscores the importance of doping, cap layer thickness, and polarization effects in achieving ultra-low contact resistivity, offering valuable insights for improving the performance of p-GaN-based power devices. Full article
Show Figures

Figure 1

12 pages, 921 KiB  
Article
Electronic Barriers Behavioral Analysis of a Schottky Diode Structure Featuring Two-Dimensional MoS2
by Wendy Liliana Martínez-Angeles, Orfil González-Reynoso, Gregorio Guadalupe Carbajal-Arizaga and Mario Alberto García-Ramírez
Electronics 2024, 13(20), 4008; https://doi.org/10.3390/electronics13204008 - 12 Oct 2024
Viewed by 2286
Abstract
This research presents a comprehensive study of a Schottky diode fabricated using a gold wafer and a bilayer molybdenum disulfide (MoS2) film. Through detailed simulations, we investigated the electric field distribution, potential profile, carrier concentration, and current–voltage characteristics of the [...] Read more.
This research presents a comprehensive study of a Schottky diode fabricated using a gold wafer and a bilayer molybdenum disulfide (MoS2) film. Through detailed simulations, we investigated the electric field distribution, potential profile, carrier concentration, and current–voltage characteristics of the device. Our findings confirm the successful formation of a Schottky barrier at the Au/MoS2 interface, characterized by a distinct nonlinear I–V relationship. Comparative analysis revealed that the Au/MoS2 diode significantly outperforms a traditional W/Si structure in terms of rectification performance. The Au/MoS2 diode exhibited a current density of 1.84 × 109 A/cm2, substantially lower than the 3.62 × 105 A/cm2 in the W/Si diode. Furthermore, the simulated I–V curves of the Au/MoS2 diode closely resembled the ideal diode curve, with a Pearson correlation coefficient of approximately 0.9991, indicating an ideality factor near 1. A key factor contributing to the superior rectification performance of the Au/MoS2 diode is its higher Schottky barrier height of 0.9 eV compared to the 0.67 eV of W/Si. This increased barrier height is evident in the band diagram analysis, which further elucidates the underlying physics of Schottky barrier formation in the Au/MoS2 junction. This research provides insights into the electronic properties of Schottky contacts based on two-dimensional MoS2, particularly the relationship between electronic barriers, system dimensions, and current flow. The demonstration of high-ideality-factor Au/MoS2 diodes contributes to the design and optimization of future electronic and optoelectronic devices based on 2D materials. These findings have implications for advancements in semiconductor technology, potentially enabling the development of smaller, more efficient, and flexible devices. Full article
(This article belongs to the Special Issue 2D Materials-Based Devices and Applications)
Show Figures

Figure 1

15 pages, 7408 KiB  
Article
Schottky Barrier Formation Mechanism and Thermal Stability in Au-Free Cu/Metal–Silicide Contacts to GaN-Cap/AlGaN/AlN-Spacer/GaN-on-Si Heterostructure
by Marek Wzorek, Marek Ekielski, Krzysztof Piskorski, Jarosław Tarenko, Michał A. Borysiewicz, Ernest Brzozowski and Andrzej Taube
Electronics 2024, 13(17), 3429; https://doi.org/10.3390/electronics13173429 - 29 Aug 2024
Viewed by 1657
Abstract
In this study, metal–silicide-based contacts to GaN-cap/AlGaN/AlN-spacer/GaN-on-Si heterostructure were investigated. Planar Schottky diodes with Cu-covered anodes comprising silicide layers of various metal–silicon (M–Si) compositions were fabricated and characterized in terms of their electrical parameters and thermal stability. The investigated contacts included Ti–Si, Ta–Si, [...] Read more.
In this study, metal–silicide-based contacts to GaN-cap/AlGaN/AlN-spacer/GaN-on-Si heterostructure were investigated. Planar Schottky diodes with Cu-covered anodes comprising silicide layers of various metal–silicon (M–Si) compositions were fabricated and characterized in terms of their electrical parameters and thermal stability. The investigated contacts included Ti–Si, Ta–Si, Co–Si, Ni–Si, Pd–Si, Ir–Si, and Pt–Si layers. Reference diodes with pure Cu or Au/Ni anodes were also examined. To test the thermal stability, selected devices were subjected to subsequent annealing steps in vacuum at incremental temperatures up to 900 °C. The Cu/M–Si anodes showed significantly better thermal stability than the single-layer Cu contact, and in most cases exceeded the stability of the reference Au/Ni contact. The work functions of the sputtered thin layers were determined to support the discussion of the formation mechanism of the Schottky barrier. It was concluded that the barrier heights were dependent on the M–Si composition, although they were not dependent on the work function of the layers. An extended, unified Schottky barrier formation model served as the basis for explaining the complex electrical behavior of the devices under investigation. Full article
(This article belongs to the Special Issue New Advances in Semiconductor Devices/Circuits)
Show Figures

Figure 1

Back to TopTop