Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
Abstract
:1. Introduction
2. Description of the THz Wireless Communication Setup
2.1. THz Transmission Setup
2.2. THz Receiver Setup
- Optical pumping consists of a similar approach as the transmitter, as is seen in Figure 1c). The optical signal from the two different lasers is coupled to a 50:50 coupler. The output is amplified using an EDFA which is again connected to a probed MUTC-PD which acts as an LO source to pump the mixers. This is possible due to the high output power of the diodes provided by the UDE [32,34] and the low LO power requirements of the InGaAs mixers. The photodiodes used in this study were not able to achieve the required output power to pump the GaAs mixer. However, recent advancements in photodiode technology have demonstrated the ability to generate a few milliwatts of output power at higher frequencies [35,36].
- The second approach is to use multiplication chains based on GaAs diodes; see Figure 1d). This technique has been widely used in extenders, sources, and active multiplier chains (AMCs) to reach frequencies above 500 GHz [37]. The AMC used in this study is provided by ACST. Its typical 10 dBm of output power is enough to be used as an LO source in both the GaAs and InGaAs mixers. Although, to be used with InGaAs diodes, a waveguide variable attenuator is placed between the mixer’s LO port and the AMC output to reduce the power to levels below the damage threshold.
2.3. DSP Algorithm
3. Results and Discussion
3.1. Constellation Diagrams
3.2. Bit Error Rate and Error Vector Magnitude
3.3. The Effect of Using Non-Optimal Carrier Phase Estimation
3.4. Improving the Conversion Loss of InGaAs Diodes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petrov, V.; Pyattaev, A.; Moltchanov, D.; Koucheryavy, Y. Terahertz band communications: Applications, research challenges, and standardization activities. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Lisbon, Spain, 18–20 October 2016; pp. 183–190. [Google Scholar]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.; Jia, S.; Morioka, T.; Zhang, X.; Jepsen, P.U.; Oxenløwe, L.K. Exploring thz band for high speed wireless communications. In Proceedings of the International Conference on Infrared, Millimeter, and TerahertzWaves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Lopacinski, L.; Buechner, S.; Nolte, J.; Brzozowski, M.; Kraemer, R. Towards 100 gbps wireless communication: Energy efficiency of arq, fec, and rf-frontends. In Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland, 20–23 September 2016; pp. 320–324. [Google Scholar]
- Petrov, V.; Kurner, T.; Hosako, I. IEEE 802.15.3d: First standardization efforts for sub-terahertz band communications toward 6 g. IEEE Commun. Mag. 2020, 58, 20–33. [Google Scholar] [CrossRef]
- Cao, X.-C.; Hao, J.-H.; Zhao, Q.; Zhang, F.; Fan, J.-Q.; Dong, Z.-W. Analysis of high-frequency atmospheric windows for terahertz transmission along earth-space paths. IEEE Trans. Antennas Propag. 2022, 70, 5715–5724. [Google Scholar] [CrossRef]
- Melinger, J.S.; Yang, Y.; Mandeghar, M.; Shutler, A.; Grischkowsky, D. Thz detection of small molecule vapors over long paths in the atmospheric transmission windows. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Houston, TX, USA, 2–7 October 2011; pp. 1–3. [Google Scholar]
- Harter, T.; Ummethala, S.; Blaicher, M.; Muehlbrandt, S.; Wolf, S.; Weber, M.; Adib, M.M.H.; Kemal, J.N.; Merboldt, M.; Boes, F.; et al. Wireless thz link with optoelectronic transmitter and receiver. Optica 2019, 6, 1063–1070. [Google Scholar] [CrossRef]
- Andrianopoulos, E.; Lyras, N.K.; Pikasis, E.; Schwanke, G.; Deumer, M.; Nellen, S.; Qian, T.; Ntouni, G.D.; Loghis, E.C.; Tsirbas, E.D.; et al. Real-time sub-thz link enabled purely by optoelectronics: 90–310 ghz seamless operation. IEEE Photonics Technol. Lett. 2023, 35, 237–240. [Google Scholar] [CrossRef]
- Stöhr, A.; Hermelo, M.F.; Steeg, M.; Shih, P.-T.B.; Ng’oma, A. Coherent radio-over-fiber thz communication link for high data-rate 59 gbit/s 64-qam-ofdm and real-time hdtv transmission. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 21–23 March 2017; pp. 1–3. [Google Scholar]
- Harter, T.; Füllner, C.; Kemal, J.N.; Ummethala, S.; Steinmann, J.L.; Brosi, M.; Hesler, J.L.; Bründermann, E.; Müller, A.-S.; Freude, W.; et al. Generalized Kramers–Kronig receiver for coherent terahertz communications. Nat. Photonics 2020, 10, 601–606. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Oogimoto, K.; Yasuda, Y.; Fujita, Y.; Inubushi, Y.; Hisatake, S.; Agoues, A.M.; Lopez, G.C. 300-ghz-band wireless transmission at 50 gbit/s over 100 m. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Pang, X.; Jia, S.; Ozolins, O.; Yu, X.; Hu, H.; Marcon, L.; Guan, P.; Ros, F.D.; Popov, S.; Jacobsen, G.; et al. 260 gbit/s photonic-wireless link in the thz band. In Proceedings of the EEE Photonics Conference (IPC), Waikoloa, HI, USA, 9–13 November 2016; pp. 1–2. [Google Scholar]
- Ghate, N.; Pokle, S. Vlsi design of ism band rf down conversion mixer. In Proceedings of the International Conference on Emerging Trends in Engineering and Technology, Goa, India, 19–21 November 2010; pp. 726–730. [Google Scholar]
- Mehdi, I.; Siles, J.V.; Lee, C.; Schlecht, E. THz diode technology: Status, prospects, and applications. Proc. IEEE 2010, 105, 726–730. [Google Scholar] [CrossRef]
- Pardo, D.; Pérez, S.; Grajal, J.; Mateos, J.; González, T. Comparison of noise characteristics of GaAs and GaN Schottky diodes for millimeter and submillimeter applications. In Proceedings of the 21st International Conference on Noise and Fluctuations, Toronto, ON, Canada, 12–16 June 2011; pp. 106–109. [Google Scholar]
- Zhao, R.; Kang, X.; Zheng, Y.; Wu, H.; Gao, J.; Wei, K.; Liu, X. Fast Recovery Performance and Design Method for High-Power Microwave Limiter Using GaN-SBD Technology. IEEE Trans. Microw. Theory Tech. 2024, 72, 4822–4832. [Google Scholar] [CrossRef]
- Íñiguez-de-la-Torre, I.; Daher, C.; Millithaler, J.-F.; Torres, J.; Nouvel, P.; Varani, L.; Sangaré, P.; Ducournau, G.; Gaquière, C.; González, T.; et al. Operation of GaN Planar Nanodiodes as THz Detectors and Mixers. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 670–677. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiong, W.; Yang, X.; Zhu, L.; Chen, K.; Huang, P.; Ma, X.; Zhou, C.; Chen, W.; Zhang, B. Ultrathin-Barrier AlGaN/GaN Hybrid-Anode-Diode With Optimized Barrier Thickness for Zero-Bias Microwave Mixer. IEEE Trans. Electron Devices 2020, 67, 828–833. [Google Scholar] [CrossRef]
- Maestrini, A.; Siles, J.; Lee, C.; Lin, R.; Philip, L.; Mehdi, I. Thz receiver for thermospheric science with 7000k dsb noise temperature at room temperature. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, QC, Canada, 17–22 September 2023; pp. 1–2. [Google Scholar]
- Jayasankar, D.; Drakinskiy, V.; Myremark, M.; Sobis, P.; Stake, J. Design and development of 3.5 thz schottky-based fundamental mixer. In Proceedings of the 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 595–598. [Google Scholar]
- Maestrini, A.; Gatilova, L.; Treuttel, J.; Jin, Y.; Cavanna, A.; Valentin, J.; Vacelet, T.; Féret, A.; Caroopen, S.; Gay, G.; et al. Terahertz schottky mixers for atmospheric and planetary sciences. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Kolberg, E.L.; Tolmunen, T.J.; Frerking, M.A.; East, J.R. Current saturation in submillimeter-wave varactors. IEEE Trans. Microw. Theory Tech. 1992, 40, 831–838. [Google Scholar] [CrossRef]
- Ji, D.F.; Zhang, B.; Zhang, L.; Xing, D.; Fan, Y. A 620–690 ghz sub-harmonic mixer based on monolithic GaAs integrated schottky diodes. In Proceedings of the International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 1–4 August 2017; pp. 1–2. [Google Scholar]
- Chen, R.; Zhang, B.; Fan, Y. Aesign. 440ghz sub-harmonic gaas schottky diode mixer. In Proceedings of the IEEE International Conference on Electron Devices and Solid-State Circuits, Chengdu, China, 18–20 June 2014; pp. 1–2. [Google Scholar]
- Martinez-Gil, J.; Moro-Melgar, D.; Negrus, A.; Oprea, I.; Cojocari, O. Efficiency assessment of traditional GaAs and low-power InGaAs schottky diodes in full-band mixers at 0.3 THz. Electronics 2023, 12, 4518. [Google Scholar] [CrossRef]
- ACST GmbH. Broadband Sources. Available online: https://acst.de/product/broadband-sources/ (accessed on 1 March 2025).
- Belio-Apaolaza, I.; Seddon, J.; Moro-Melgar, D.; Indiran, H.P.; Graham, C.; Balakier, K.; Cojocari, O.; Renaud, C.C. Photonically-driven schottky diode based 0.3 THz heterodyne receiver. Opt. Express 2022, 30, 43223–43236. [Google Scholar] [CrossRef] [PubMed]
- Makhlouf, S.; Martinez-Gil, J.; Grzeslo, M.; Moro-Melgar, D.; Cojocari, O.; Stöh, A. High-power UTC-photodiodes for an optically pumped subharmonic terahertz receiver. Opt. Express 2022, 30, 43798–43814. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, J.; Tebart, J.; Füllner, C.; Koos, C.; Stöhr, A.; Randel, S. 200 gbit/s wireless thz transmission over 52 m using optoelectronic signal generation. In Proceedings of the European Microwave Conference (EuMC), Berlin, Germany, 19–21 September 2023; pp. 134–137. [Google Scholar]
- Deng, X.; Yang, H.; Wu, Q.; Jiang, J.; Lin, C. Phase noise effects on the performance of high-order digital modulation terahertz communication system. Chin. J. Electron. 2022, 31, 589–594. [Google Scholar] [CrossRef]
- Grzeslo, M.; Dülme, S.; Clochiatti, S.; Neerfeld, T.; Haddad, T.; Lu, P.; Tebart, J.; Makhlouf, S.; Biurrun-Quel, C.; Estévez, J.L.F.; et al. High saturation photocurrent thz waveguide-type mutc-photodiodes reaching mW output power within the wr3.4 band. Opt. Express 2023, 31, 6484–6498. [Google Scholar] [CrossRef]
- Harter, T.; Füllner, C.; Kemal, J.N.; Ummethala, S.; Brosi, M.; Bründermann, E.; Freude, W.; Randel, S.; Koos, C. 10-m thz wireless transmission at 100 gbit/s using a kramers-kronig schottky barrier diode receiver. In Proceedings of the European Conference on Optical Communication (ECOC), Rome, Italy, 1–5 October 2023. [Google Scholar]
- Abacıoğlu, E.; Grzeslo, M.; Neerfeld, T.; Mohammed, A.S.; Estévez, J.L.F.; Ducournau, G.; Stöhr, A. 500 ghz operational bandwidth mutc-photodiodes with milliwatt terahertz output power levels. In Proceedings of the European Conference on Optical Communication (ECOC), Glasgow, Scotland, 1–5 October 2018; pp. 1–3. [Google Scholar]
- Ohara, T.; Ishibashi, T.; Kawamoto, Y.; Tojo, M.; Maekawa, K.; Nagatsuma, T. 2-mW-Output Power Uni-Traveling-Carrier Photodiodes in 300-GHz-Band. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, 5–8 December 2023; pp. 676–678. [Google Scholar]
- Nagatsuma, T.; Ohara, T.; Kawamoto, Y.; Maekawa, K.; Ishibashi, T. SiC-substrate uni-traveling-carrier photodiode modules for 300-GHz-band wireless communications. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Perth, Australia, 1–6 September 2024; pp. 1–2. [Google Scholar]
- ACST GmbH. Broadband AMCS. Available online: https://acst.de/product/broadband-amc/ (accessed on 1 March 2025).
- Pfau, T.; Hoffmann, S.; Noe, R. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for m-qam constellations terahertz output power levels. J. Light. Technol. 2009, 27, 989–999. [Google Scholar] [CrossRef]
- Huynh, T.N.; Nguyen, A.T.; Ng, W.-C.; Nguyen, L.; Rusch, L.A.; Barry, L.P. HBER Performance of Coherent Optical Communications Systems Employing Monolithic Tunable Lasers With Excess Phase Noise. J. Light. Technol. 2014, 32, 1973–1980. [Google Scholar] [CrossRef]
- Liu, Q.; Baxley, R.J.; Ma, X.; Zhou, G.T. Error vector magnitude optimization for OFDM systems with a deterministic peak-to-average power ratio constraint. In Proceedings of the Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 19–21 March 2008; pp. 101–104. [Google Scholar]
- Schmogrow, R.; Nebendahl, B.; Winter, M.; Josten, A.; Hillerkuss, D.; Koenig, S.; Meyer, J.; Dreschmann, M.; Huebner, M.; Koos, C.; et al. Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats. IEEE Photonics Technol. Lett. 2012, 24, 61–63. [Google Scholar] [CrossRef]
- Fatadin, I. Estimation of BER from Error Vector Magnitude for Optical Coherent Systems. Photonics 2016, 3, 21. [Google Scholar] [CrossRef]
- Oprea, I.; Walber, A.; Cojocari, O.; Gibson, H.; Zimmermann, R.; Hartnagel, H. 183 GHz mixer on InGaAs schottky diodes. In Proceedings of the International Symposium on Space Terahertz Technology (ISSTT), Oxford, UK, 23–25 March 2010. [Google Scholar]
- Khanal, S.; Kiuru, T.; Hoefle, M.; Montero, J.; Cojocari, O.; Mallat, J.; Piironen, P.; Räisänen, A.V. Characterisation of low-barrier schottky diodes for millimeter wave mixer applications. In Proceedings of the Global Symposium on Millimeter Waves (GSMM) and ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, Finland, 6–8 June 2016; pp. 1–4. [Google Scholar]
- Rademacher, G.; Luís, R.S.; Puttnam, B.J.; Ryf, R.; Heide, S.v.; Eriksson, T.A.; Fontaine, N.K.; Chen, H.; Essiambre, R.-J.; Awaji, Y.; et al. High-capacity long-haul optical fiber transmission. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 185–232. [Google Scholar]
- Rice, M. Digital Communications: A Discrete-Time Approach; Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
Mixer | Diode Technology | Frequency (GHz) | IF Bandwidth (GHz) | DSB CL (dB) | P LO (mW) |
---|---|---|---|---|---|
Narrow Band | GaAs | 270–320 | 0–25 | 6 | 1–3 |
Narrow Band | InGaAs | 270–320 | 0–25 | 13 | 0.1–0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Gil, J.; Belio-Apaolaza, I.; Tebart, J.; Fernández Estévez, J.L.; Moro-Melgar, D.; Renaud, C.C.; Stöhr, A.; Cojocari, O. Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems. Electronics 2025, 14, 1957. https://doi.org/10.3390/electronics14101957
Martinez-Gil J, Belio-Apaolaza I, Tebart J, Fernández Estévez JL, Moro-Melgar D, Renaud CC, Stöhr A, Cojocari O. Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems. Electronics. 2025; 14(10):1957. https://doi.org/10.3390/electronics14101957
Chicago/Turabian StyleMartinez-Gil, Javier, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr, and Oleg Cojocari. 2025. "Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems" Electronics 14, no. 10: 1957. https://doi.org/10.3390/electronics14101957
APA StyleMartinez-Gil, J., Belio-Apaolaza, I., Tebart, J., Fernández Estévez, J. L., Moro-Melgar, D., Renaud, C. C., Stöhr, A., & Cojocari, O. (2025). Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems. Electronics, 14(10), 1957. https://doi.org/10.3390/electronics14101957