Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (427)

Search Parameters:
Keywords = Salvia L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 725 KiB  
Article
Antibacterial Activity of Ethanolic Extracts of Origanum majorana, Salvia officinalis, and Ribes nigrum Against Digestive Pathogens: Polyphenolic Composition and In Vitro Assessment
by Oana-Roxana Haralambie, Cristiana-Ștefania Novac, Dragoș Hodor, Florica Ranga and Sanda Andrei
Molecules 2025, 30(16), 3341; https://doi.org/10.3390/molecules30163341 - 11 Aug 2025
Viewed by 272
Abstract
Digestive pathologies are commonly encountered in both human and veterinary medicine, frequently requiring antibiotic intervention. However, their extensive use has contributed to the global increase in antimicrobial resistance, posing a major public health challenge. With the emergence of multidrug-resistant bacteria, alternative antimicrobial strategies [...] Read more.
Digestive pathologies are commonly encountered in both human and veterinary medicine, frequently requiring antibiotic intervention. However, their extensive use has contributed to the global increase in antimicrobial resistance, posing a major public health challenge. With the emergence of multidrug-resistant bacteria, alternative antimicrobial strategies are urgently needed. This study assessed the total polyphenolic content and in vitro antimicrobial activity of ethanolic extracts from Origanum majorana, Salvia officinalis, and Ribes nigrum fruits against six digestive bacterial pathogens: Escherichia coli, Salmonella enteritidis, Enterobacter cloacae, Yersinia enterocolitica, Listeria monocytogenes, and Enterococcus faecalis. Antimicrobial activity was evaluated using agar well diffusion and minimum inhibitory concentration (MIC) assays. The total polyphenolic content of the extracts was 8509.457 μg/g for Salvia officinalis, 8140.996 μg/g for Origanum majorana, and 5776.616 μg/g for Ribes nigrum. R. nigrum showed the strongest antimicrobial effect (MIC 0.002 μg/μL; MBC 0.001 μg/μL) against Y. enterocolitica. S. officinalis had the highest efficacy against E. faecalis, while O. majorana was effective against both Y. enterocolitica and E. faecalis. All extracts showed bactericidal activity with MIC index values between 0.5 and 4. These findings suggest that these polyphenol-rich plant extracts may serve as promising natural antimicrobials or as adjuvants to conventional antibiotics. Full article
(This article belongs to the Special Issue Antibacterial Agents from Natural Source, 2nd Edition)
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 - 7 Aug 2025
Viewed by 371
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 - 7 Aug 2025
Viewed by 416
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Graphical abstract

17 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Viewed by 386
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

16 pages, 1613 KiB  
Article
Allelopathic Effect of Salvia pratensis L. on Germination and Growth of Crops
by Marija Ravlić, Renata Baličević, Miroslav Lisjak, Željka Vinković, Jelena Ravlić, Ana Županić and Brankica Svitlica
Crops 2025, 5(4), 45; https://doi.org/10.3390/crops5040045 - 22 Jul 2025
Viewed by 307
Abstract
Salvia pratensis L. is a valuable medicinal plant rich in bioactive compounds, yet its allelopathic potential remains underexplored. This study evaluated allelopathic effects and total phenolic (TPC) and flavonoid (TFC) contents of water extracts from the dry aboveground biomass of S. pratensis. [...] Read more.
Salvia pratensis L. is a valuable medicinal plant rich in bioactive compounds, yet its allelopathic potential remains underexplored. This study evaluated allelopathic effects and total phenolic (TPC) and flavonoid (TFC) contents of water extracts from the dry aboveground biomass of S. pratensis. To assess their selectivity and potential application in sustainable weed management, extracts at five different concentrations were tested on the germination and early growth of lettuce, radish, tomato, and carrot. The results demonstrated that the phytotoxic effects of S. pratensis extracts were both concentration- and species-dependent. Higher extract concentrations significantly inhibited germination and seedling growth, while lower concentrations of extracts stimulated shoot elongation by up to 30% compared to the control. Phytochemical analysis revealed that S. pratensis extracts contain notable TPC and TFC contents, with their concentrations increasing consistently with the extract concentration. Correlation analysis showed that higher TPC and TFC contents were strongly negatively correlated with germination and seedling growth parameters. Radish exhibited the highest sensitivity to the extracts, while lettuce was the most tolerant. Further research under field conditions is needed to assess the efficacy, selectivity, and practical potential of S. pratensis extracts in sustainable crop production systems. Full article
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 394
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

14 pages, 3306 KiB  
Article
Optimization of Saponin Extract from Red Sage (Salvia miltiorrhiza) Roots Using Response Surface Methods and Its Antioxidant and Anticancer Activities
by Hoang Chau Le, Hai Dang Le, Thi Dung Tran, Loan Thi Thanh Nguyen and Hang T. T. Nguyen
Processes 2025, 13(7), 2225; https://doi.org/10.3390/pr13072225 - 11 Jul 2025
Viewed by 485
Abstract
Red sage (Salvia miltiorrhiza Bunge) is a perennial herb containing various bioactive compounds that promote human health. In this study, single-factor experiments were first conducted, followed by the optimization of extraction conditions to maximize the saponin content from red sage root extracts. [...] Read more.
Red sage (Salvia miltiorrhiza Bunge) is a perennial herb containing various bioactive compounds that promote human health. In this study, single-factor experiments were first conducted, followed by the optimization of extraction conditions to maximize the saponin content from red sage root extracts. In the single-factor experiments, the highest saponin content (47.5 ± 0.88 mg/g) was obtained using 80% ethanol, a solvent-to-material ratio of 40:1 (mL/g), an extraction period of 3 h, and an extraction temperature of 60 °C. Response Surface Methodology (RSM) was performed to optimize the extraction parameters with a material-to-solvent ratio of 41.31:1 (mL/g), an extraction temperature of 58.08 °C, and an extraction time of 3.16 h. Under these optimized conditions, the experimental saponin content reached 47.71 ± 0.15 mg/g. Additionally, crude extract of red sage exhibited antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals with an IC50 value of 16.24 µg/mL. This extract also demonstrated anticancer against 61.79 ± 3.57% HepG2 cancer cells at a concentration of 100 µg/mL. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

18 pages, 1456 KiB  
Review
Taxonomy, Phylogeny, Genomes, and Repeatomes in the Subgenera Salvia, Sclarea, and Glutinaria (Salvia, Lamiaceae)
by Julia V. Kalnyuk, Olga Yu. Yurkevich, Ekaterina D. Badaeva, Alexey R. Semenov, Svyatoslav A. Zoshchuk, Alexandra V. Amosova and Olga V. Muravenko
Int. J. Mol. Sci. 2025, 26(13), 6436; https://doi.org/10.3390/ijms26136436 - 4 Jul 2025
Viewed by 378
Abstract
The genus Salvia L. (Lamiaceae) is characterized by complex taxonomy and controversial phylogeny. This genus includes about a thousand species with worldwide distribution and high ecological, structural, functional and morphological diversity. Because of their high content of essential oils, various Salvia plants are [...] Read more.
The genus Salvia L. (Lamiaceae) is characterized by complex taxonomy and controversial phylogeny. This genus includes about a thousand species with worldwide distribution and high ecological, structural, functional and morphological diversity. Because of their high content of essential oils, various Salvia plants are widely used in medicine, as well as in the food, perfume, cosmetic, and paint industries; they also are valuable melliferous resources. The present study reviews the taxonomic history of the genus Salvia and the phylogenetic relationships between the taxa within the subgenera Salvia, Sclarea, and Glutinaria. Among the Salvia species, three basic chromosome numbers, x = 7, x = 8, and x = 11, were most common, although other basic chromosome numbers (x = 6–19) were determined, which was probably due to events of dysploidy, aneupoidy, and/or polyploidy occurring during speciation. Recent molecular cytogenetic studies based on Next Generation Sequencing technologies have clarified the chromosomal organization of several Salvia species. The patterns of chromosome distribution of 45S rDNA, 5S rDNA, and satellite DNAs made it possible to assess their intra- and interspecific chromosome diversity. However, further cytogenetic studies are needed to characterize the chromosomes in the genomes of other Salvia species and specify the genomic relationships among them. Full article
(This article belongs to the Special Issue Repetitive DNA)
Show Figures

Figure 1

16 pages, 1584 KiB  
Article
Cytotoxic Activity of Essential Oils from Middle Eastern Medicinal Plants on Malignant Keratinocytes
by Rima Othman, Vanessa Moarbes, Muriel Tahtouh Zaatar, Diane Antonios, Rabih Roufayel, Marc Beyrouthy, Ziad Fajloun, Jean-Marc Sabatier and Marc Karam
Molecules 2025, 30(13), 2844; https://doi.org/10.3390/molecules30132844 - 3 Jul 2025
Viewed by 1011
Abstract
Skin cancer, including melanoma and non-melanoma cancers (basal and squamous cell carcinomas), is the most common type of cancer. UV radiation, family history, and genetic predisposition are the main risk factors. Although surgical excision is the standard treatment, essential oils are attracting growing [...] Read more.
Skin cancer, including melanoma and non-melanoma cancers (basal and squamous cell carcinomas), is the most common type of cancer. UV radiation, family history, and genetic predisposition are the main risk factors. Although surgical excision is the standard treatment, essential oils are attracting growing interest for their anti-cancer effects. This study tested the effects of Juniperus excelsa M. Bieb. (Cupressaceae), Lavandula vera DC. (Lamiaceae), and Salvia fruticosa (Mill). (Lamiaceae) essential oils extracted from Middle Eastern medicinal plants on HaCaT (normal), A5 (benign), and II4 (low-grade malignant) keratinocytes. Essential oils were extracted from Juniperus excelsa, Lavandula vera, and Salvia libanotica using steam distillation and then were chemically analyzed. The oils were sterilized, dissolved in DMSO, and prepared at concentrations of 0.75, 0.5, and 0.25 mg/mL. Human keratinocyte (HaCaT), benign (A5), and malignant (II4) cell lines were cultured in DMEM and treated with the essential oils for 24 or 48 h. Cell viability was assessed using the Trypan Blue Exclusion Test, while cell proliferation was evaluated using the MTT assay. Statistical analysis was performed using ANOVA with appropriate post hoc tests, considering p < 0.05 as significant. The results show that J. excelsa is cytotoxic but lacks selectivity, limiting its efficacy. In contrast, L. vera and S. fruticosa preferentially target malignant cells, particularly at low concentrations, while sparing normal cells. These oils have dose-dependent anticancer effects, with L. vera efficacy increasing as the concentration increases. In conclusion, L. vera and S. fruticosa are promising candidates for the treatment of skin cancer, although further in vivo studies are required. Full article
(This article belongs to the Special Issue Advances in Plant-Sourced Natural Compounds as Anticancer Agents)
Show Figures

Figure 1

21 pages, 30238 KiB  
Article
Transcriptome- and Metabolome-Based Regulation of Growth, Development, and Bioactive Compounds in Salvia miltiorrhiza (Lamiaceae) Seedlings by Different Phosphorus Levels
by Kewei Zuo, Lingxing Chen, Tian Li, Shuang Liu and Chenlu Zhang
Int. J. Mol. Sci. 2025, 26(13), 6253; https://doi.org/10.3390/ijms26136253 - 28 Jun 2025
Cited by 1 | Viewed by 359
Abstract
Phosphorus (P), as one of the essential bulk elements for plant growth and development, plays an important role in root growth, accumulation of secondary metabolites, and regulation of gene expression. In Salvia miltiorrhiza Bunge (S. miltiorrhiza), an important medicinal plant, the [...] Read more.
Phosphorus (P), as one of the essential bulk elements for plant growth and development, plays an important role in root growth, accumulation of secondary metabolites, and regulation of gene expression. In Salvia miltiorrhiza Bunge (S. miltiorrhiza), an important medicinal plant, the accumulation of its active components is closely related to the level of phosphorus supply, but the molecular regulatory mechanism of phosphorus treatment in the growth and secondary metabolism of S. miltiorrhiza is not clear. In this study, we investigated the effects of low phosphorus (P2), moderate phosphorus (P4), and high phosphorus (P6) treatment on the growth and development of S. miltiorrhiza. seedlings, the accumulation of bioactive compounds, and their transcriptional regulation using transcriptomic and metabolomic analyses, and identified the key regulatory genes in the biosynthesis pathways of tanshinone and salvianolic acid. The findings revealed that S. miltiorrhiza biomass exhibited a “peaked” response to phosphorus concentration, peaking at 0.625 mmol·L−1. At this optimal concentration, all four batches achieved maximum root length, root weight, and leaf weight: Batch I (11.3 cm, 2.34 g, 1.62 g), Batch II (12.7 cm, 2.67 g, 1.89 g), Batch III (13.8 cm, 2.85 g, 2.04 g), and Batch IV (15.6 cm, 3.51 g, 2.44 g). Both lower and higher concentrations resulted in growth inhibition and reduced bioactive compound accumulation. Transcription factors associated with root growth and development included bHLH, MYB, and WRKY; in particular, the bZIP23 transcription factor was highly expressed under abnormal phosphorus supply conditions. In addition, the biosynthetic pathways of tanshinone and salvianolic acid were elucidated, and key genes related to the synthesis pathways (CPS, KSL, CYP, PAL, HPPR, and RAS) were identified. The expression of several TFs (such as SmCPS1, SmCYP76AH3, SmCYP76AH1, SmGGPPS1, and SmRAS1) was found to be correlated with tanshinone and salvianolic acid synthesis. The present study provides a theoretical basis for further revealing the molecular mechanism of phosphorus regulation of growth, development, and secondary metabolism of S. miltiorrhiza and provides potential targets for efficient cultivation and molecular breeding of S. miltiorrhiza. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 6590 KiB  
Article
Comparative Analysis of the Complete Chloroplast Genomes of Eight Salvia Medicinal Species: Insights into the Deep Phylogeny of Salvia in East Asia
by Yan Du, Yang Luo, Yuanyuan Wang, Jiaxin Li, Chunlei Xiang and Meiqing Yang
Curr. Issues Mol. Biol. 2025, 47(7), 493; https://doi.org/10.3390/cimb47070493 - 27 Jun 2025
Viewed by 439
Abstract
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, [...] Read more.
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, annotated, and analyzed for gene content, codon usage, and repetitive sequences. Phylogenetic relationships were reconstructed using Maximum Likelihood, Maximum Parsimony and Bayesian inference. The genomes exhibited a conserved quadripartite structure (151,081–152,678 bp, GC content 37.9–38.1%), containing 114 unique genes with consistent arrangement. Codon usage favored A/T endings, with leucine (Leu) most frequent and cysteine (Cys) least. We identified 281 long sequence repeats (LSRs) and 345 simple sequence repeats (SSRs), mostly in non-coding regions. Comparative analysis revealed five hypervariable regions (trnH-psbA, rbcL-accD, petA-psbJ, rpl32-trnL, ycf1) as potential molecular markers. Phylogenetic analysis confirmed the monophyly of East Asian Salvia, dividing them into five clades, with Sect. Sonchifoliae basal. While G1, G3, and G8 were monophyletic, G5 and G6 were paraphyletic, and the G7-G8 relationship challenged traditional classifications. The genomic evidence provides crucial insights for resolving long-standing taxonomic uncertainties and refining the classification system of Salvia. These findings suggest a complex evolutionary history involving hybridization and incomplete lineage sorting, providing valuable genomic insights for Salvia phylogeny, taxonomy, and conservation. Full article
Show Figures

Figure 1

17 pages, 2566 KiB  
Article
Comparative Study: Biguanide-, Sulfonamide-, and Natural Agent-Based Interventions in an In Vivo Experimental Diabetes Model
by Iulian Tătaru, Ioannis Gardikiotis, Carmen Lidia Chiţescu, Oana-Maria Dragostin, Maria Dragan, Cerasela Gîrd, Alexandra-Simona Zamfir, Simona Iacob (Ciobotaru), Rodica Vatcu, Catalina Daniela Stan and Carmen Lăcrămioara Zamfir
Medicina 2025, 61(7), 1151; https://doi.org/10.3390/medicina61071151 - 26 Jun 2025
Viewed by 480
Abstract
Background/Objectives: In the context of diabetes, a multifactorial metabolic disorder with significant clinical implications, the present study investigates the hypoglycemic effects of a synthetic sulfonamide (S) administered individually and in combination with Salvia officinalis extract, compared to metformin as a standard therapeutic agent. [...] Read more.
Background/Objectives: In the context of diabetes, a multifactorial metabolic disorder with significant clinical implications, the present study investigates the hypoglycemic effects of a synthetic sulfonamide (S) administered individually and in combination with Salvia officinalis extract, compared to metformin as a standard therapeutic agent. Methods: An in vivo model of experimentally induced diabetes using alloxan was applied to Wistar female rats, divided into six experimental groups, including a healthy control group and a diabetes-induced, untreated group. Plasma concentrations of metformin and sulfonamide were quantified by high-performance liquid chromatography. The plasma steady-state concentrations of the pharmaceutical agents and their correlation with hypoglycemic effect were evaluated. Results: The combination of the synthetic sulfonamide (S) with Salvia officinalis extract resulted in the greatest reduction in blood glucose level (average value of 50.2%) compared to S (40.6%) or metformin (36.4%). All treatments demonstrated statistically significant differences in blood glucose levels compared to the diabetes-induced untreated group (p < 0.05). Pharmacokinetic analysis revealed a larger volume of distribution for the synthetic sulfonamide S (23.92 ± 8.40 L) compared to metformin (16.07 ± 5.60 L), consistent with its physicochemical properties. No significant correlation was found between plasma drug levels and glycemic response (p > 0.05). Conclusions: Our findings support the potential of combining standard therapeutic agents with natural alternatives such as Salvia officinalis to achieve improved glycemic control through complementary mechanisms. To the best of our knowledge, this is the first in vivo study to evaluate the combined effects of a sulfonylurea-type compound and Salvia officinalis extract in a diabetic animal model. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 1013 KiB  
Article
Phytochemical Composition and Evaluation of Antimicrobial Activities of Five Salvia Species
by Yavuz Bülent Köse, Gökalp İşcan, Fatih Göger and Betül Demirci
Processes 2025, 13(7), 2011; https://doi.org/10.3390/pr13072011 - 25 Jun 2025
Viewed by 528
Abstract
In this study, the phytochemical composition and antimicrobial efficacy of five Türkiye native Salvia species (S. albimaculata, S. blepharochlaena, S. palaestina, S. virgata, and S. absconditiflora (syn. S. cryptantha) were investigated. The essential oils isolated with yields [...] Read more.
In this study, the phytochemical composition and antimicrobial efficacy of five Türkiye native Salvia species (S. albimaculata, S. blepharochlaena, S. palaestina, S. virgata, and S. absconditiflora (syn. S. cryptantha) were investigated. The essential oils isolated with yields ranging from 0.2% to 0.66% were assessed using gas chromatography-mass spectrometry (GC-MS). The major constituents were found to be α-pinene (up to 12.0% in S. albimaculata), camphor (up to 28.5% in S. blepharochlaena), borneol (up to 19.5% in S. virgata), 1,8-cineole (30.2% in S. absconditiflora), and linalool (26.5% in S. palaestina). Methanol extracts were produced with yields ranging from 8.2% to 9.5% and examined via liquid chromatography-mass spectrometry (LC-MS/MS) and isolated phenolic acids (e.g., rosmarinic acid and caffeic acid) and flavonoids (luteolin and apigenin). Rosmarinic acid emerged as the dominant common compound in all the species. Antimicrobial testing against Gram-positive and Gram-negative bacteria and Candida microorganisms showed potent activity: S. blepharochlaena essential oil showed good antifungal activity against C. utilis, with a MIC value of 31.25 µg/mL, while S. palaestina and S. virgata extracts showed antibacterial activity against Bacillus and Staphylococcus strains. This detailed study broadened the chemotaxonomic profile of Turkish Salvia species and listed possible antimicrobial agents. Full article
(This article belongs to the Special Issue 2nd Edition of Natural Products for Drug Discovery and Development)
Show Figures

Figure 1

14 pages, 2464 KiB  
Article
Salvia miltiorrhiza Root Extract as a Potential Therapeutic Agent for IgE/Ag-Induced Allergic Reactions and Atopic Dermatitis via the Syk/MAPK Pathway
by Min-ah Kim, Jin-Ho Lee, Keunjung Woo, Eunwoo Jeong and Tack-Joong Kim
Biomedicines 2025, 13(7), 1547; https://doi.org/10.3390/biomedicines13071547 - 25 Jun 2025
Viewed by 536
Abstract
Background/Objectives: Allergens can trigger severe immune responses in hypersensitive individuals, with mast cells releasing inflammatory mediators via IgE-FcɛRI signaling. Spleen tyrosine kinase (Syk) is a key regulator in this pathway, making it a promising therapeutic target. Natural modulators of Syk-mediated mast cell [...] Read more.
Background/Objectives: Allergens can trigger severe immune responses in hypersensitive individuals, with mast cells releasing inflammatory mediators via IgE-FcɛRI signaling. Spleen tyrosine kinase (Syk) is a key regulator in this pathway, making it a promising therapeutic target. Natural modulators of Syk-mediated mast cell activation remain underexplored. This study investigated the anti-allergic effects of a 70% ethanol extract of Salvia miltiorrhiza (SME) using in vitro and in vivo models. Methods: SME was evaluated using IgE-sensitized RBL-2H3 cells, a passive cutaneous anaphylaxis model, and a DNCB-induced atopic dermatitis-like mouse model. Allergic responses were assessed via degranulation assays, histopathology, serum IgE levels, and the spleen index. Results: SME significantly inhibited mast cell degranulation by 44.4 ± 1.6% in RBL-2H3 cells at 100 µg/mL following 30 min of treatment compared to the untreated control. Western blot analysis demonstrated dose-dependent suppression of protein kinase B (PKB, also known as AKT), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and spleen tyrosine kinase (Syk) phosphorylation, indicating inhibition of key allergic signaling pathways. In an IgE/Ag-induced passive cutaneous anaphylaxis model in ICR mice, SME (100 mg/kg, orally) significantly attenuated vascular permeability, as evidenced by a 20.6 ± 9.7% reduction in Evans blue extravasation relative to the Ag-treated group. In a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD)-like model, six treatments of SME significantly improved the skin condition, reduced spleen enlargement associated with allergic inflammation, and decreased serum IgE levels by 43.3 ± 11.2% compared to the DNCB group. Conclusions: These findings suggest that SME may help to alleviate allergic responses and AD by modulating key immune signaling pathways. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

18 pages, 8398 KiB  
Article
Application of Predictive Modeling and Molecular Simulations to Elucidate the Mechanisms Underlying the Antimicrobial Activity of Sage (Salvia officinalis L.) Components in Fresh Cheese Production
by Dajana Vukić, Biljana Lončar, Lato Pezo and Vladimir Vukić
Foods 2025, 14(13), 2164; https://doi.org/10.3390/foods14132164 - 20 Jun 2025
Viewed by 538
Abstract
Plant-derived materials from Salvia officinalis L. (sage) have demonstrated significant antimicrobial potential when applied during fresh cheese production. In this study, the mechanism of action of sage components against Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus was investigated through the development of [...] Read more.
Plant-derived materials from Salvia officinalis L. (sage) have demonstrated significant antimicrobial potential when applied during fresh cheese production. In this study, the mechanism of action of sage components against Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus was investigated through the development of predictive models that describe the influence of key parameters on antimicrobial efficacy. Molecular modeling techniques were employed to identify the major constituents responsible for the observed inhibitory activity. Epirosmanol, carvacrol, limonene, and thymol were identified as the primary compounds contributing to the antimicrobial effects during cheese production. The highest weighted predicted binding energy was observed for thymol against the KdpD histidine kinase from Staphylococcus aureus, with a value of −33.93 kcal/mol. To predict the binding affinity per unit mass of these sage-derived compounds against the target pathogens, machine learning models—including Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Boosted Trees Regression (BTR)—were developed and evaluated. Among these, the ANN model demonstrated the highest predictive accuracy and robustness, showing minimal bias and a strong coefficient of determination (R2 = 0.934). These findings underscore the value of integrating molecular modeling and machine learning approaches for the identification of bioactive compounds in functional food systems. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Food Science)
Show Figures

Figure 1

Back to TopTop