Optimization of Saponin Extract from Red Sage (Salvia miltiorrhiza) Roots Using Response Surface Methods and Its Antioxidant and Anticancer Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Samples
2.3. Effect of Solvent Extraction on Saponin Concentration
2.4. Single-Factor Effectes on Saponin Concentration
2.5. Experiment Design and Optimization
2.6. Total Saponin Content Determination
2.7. Antioxidant Activity
2.8. Anticancer Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Solvent Screening
3.2. Single Factor Experiments
3.2.1. Effect of Solvent Concentration
3.2.2. Effect of Material-to-Ethanol
3.2.3. Effect of Temperature
3.2.4. Effect of Time
3.2.5. Optimization of Extract Conditions Using RSM
3.2.6. Combined Influence of Extraction Factors on the Extraction of Saponins
3.2.7. Model Prediction and Validation
3.2.8. DPPH Scavenging Activity
3.2.9. Cytotoxicity of Red Sage Extract on HepG2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Ito, N.; Fukushima, S.; Hagiwara, A.; Shibata, M.; Ogiso, T. Carcinogenicity of butylated hydroxyanisole in F344 rats. J. Natl. Cancer Inst. 1983, 70, 343–352. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on Saponins: Food Functionality and Applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef] [PubMed]
- Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef]
- Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef]
- Zhou, L.; Zuo, Z.; Chow, M.S. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 2005, 45, 1345–1359. [Google Scholar] [CrossRef]
- Petitjean, S.J.L.; Lecocq, M.; Lelong, C.; Denis, R.; Defrère, S.; Mariage, P.-A.; Alsteens, D.; Pilette, C. Salvia miltiorrhiza Bunge as a Potential Natural Compound against COVID-19. Cells 2022, 11, 1311. [Google Scholar] [CrossRef]
- Jung, I.; Kim, H.; Moon, S.; Lee, H.; Kim, B. Overview of Salvia miltiorrhiza as a Potential Therapeutic Agent for Various Diseases: An Update on Efficacy and Mechanisms of Action. Antioxidants 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Ryu, H.G.; Lee, J.; Shin, J.; Harikishore, A.; Jung, H.-Y.; Kim, Y.S.; Lyu, H.-N.; Oh, E.; Baek, N.-I. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells. Sci. Rep. 2015, 5, 14570. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, F.; Tang, Z.; Yang, X.; Liu, Y.; Wang, F.; Chen, B. Anti-inflammatory and antioxidant activity of ursolic acid: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1256946. [Google Scholar] [CrossRef]
- Han, D.; Chen, Y.-B.; Zhao, K.; Li, H.-Z.; Chen, X.-Y.; Zhu, G.-Z.; Tu, C.; Gao, J.-W.; Zhuang, J.-S.; Wu, Z.-Y. Tanshinone IIA alleviates inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction. Arch. Biochem. Biophys. 2024, 762, 110215. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Rupasinghe, H.P. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed. Pharmacother. 2017, 85, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Liang, Z.-W.; Guan, Y.-H.; Lv, Z.; Yang, S.-C.; Zhang, G.-H.; Zhao, Y.-H.; Zhao, M.; Chen, J.-W. Optimization of saponin extraction from the leaves of Panax notoginseng and Panax quinquefolium and evaluation of their antioxidant, antihypertensive, hypoglycemic and anti-inflammatory activities. Food Chem. X 2024, 23, 101642. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Huang, Y.; Ji, A.; Peng, W.; Liu, C.; Zeng, Y.; Yang, R.; Yan, L.; Wang, X.; Sheng, J. Optimisation of saponin extraction conditions with Camellia sinensis var. assamica seed and its application for a natural detergent. J. Sci. Food Agric. 2018, 98, 2312–2319. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.C.V.; Trinh, L.T.T.; Nguyen, K.L.; Nguyen, H.C.; Tran, T.D. Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and their Antioxidant Activity. Pharm. Chem. J. 2022, 56, 374–380. [Google Scholar] [CrossRef]
- Khoang, L.T.; Huyen, H.T.T.; Chung, H.V.; Duy, L.X.; Toan, T.Q.; Bich, H.T.; Minh, P.T.H.; Pham, D.T.N.; Hien, T.T. Optimization of Total Saponin Extraction from Polyscias fruticosa Roots Using the Ultrasonic-Assisted Method and Response Surface Methodology. Processes 2022, 10, 2034. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Y.Y.; Zhou, Q.F.; Zhong, X.K.; Zhu, L.; Piao, J.H.; Chen, J.; Jiang, J.G. Optimization of ultrasonic-assisted extraction of total saponins from Eclipta prostrasta L. using response surface methodology. J. Food Sci. 2012, 77, C975–C982. [Google Scholar] [CrossRef]
- Nguyen, M.-N.T.; Ho-Huynh, T.-D. Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects. BMC Complement. Altern. Med. 2016, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, D.; Christoforou, M.; Kitiri, E.N.; Andreou, M.; Partassides, D.; Papachrysostomou, C.; Frantzi, M.; Karikas, G.A.; Pantelidou, M. Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds. Molecules 2022, 27, 5812. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, Y.; Pan, J.; Qu, H. Optimization of the ethanol recycling reflux extraction process for saponins using a design space approach. PLoS ONE 2014, 9, e114300. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Tai, N.; Linh, N.; Thao, L.; Thi Kim Ngan, N.; Nguyen, T.V.A.; Vuong Hoai, T.; Viet, N.; Nam, H.; Mai, P.; et al. Response surface optimized extraction of triterpenoids from red Vietnamese Ganoderma lucidum and anticancer evaluation of the extract. Vietnam J. Sci. Technol. 2021, 59, 158–168. [Google Scholar] [CrossRef]
- Zhang, N.; Ebrahim, Z.M.S.; Tao, L.; Shi, W.; Li, W.; Lu, W. Optimized Extraction of Saponins from Camelia Oleifera Using Ultrasonic-Assisted Enzymes and Their Surface Performance Evaluation. Processes 2025, 13, 1063. [Google Scholar] [CrossRef]
- Lin, X.-t.; Zhou, S.-x.; Sun, Z.-p.; Cao, M.-y.; Zhou, T.; Zhao, L.-y.; Chen, G.-t. Deep eutectic solvent-based ultrasonic-assisted extraction of polyphenol from Chenopodium quinoa Willd.: Optimization and lipid-lowering activity. Food Chem. 2025, 464, 141733. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Santos, K.; Ruiz-López, I.I.; Rodríguez-Jimenes, G.C.; Carrillo-Ahumada, J.; García-Alvarado, M.A. Analysis of mass transfer equations during solid-liquid extraction and its application for vanilla extraction kinetics modeling. J. Food Eng. 2017, 192, 36–44. [Google Scholar] [CrossRef]
- Geankoplis, C. Transport Processes and Separation Process Principles (Includes Unit Operations); Prentice Hall Press: Saddle River, NJ, USA, 2003. [Google Scholar]
- Zhao, G.-R.; Xiang, Z.-J.; Ye, T.-X.; Yuan, Y.-J.; Guo, Z.-X. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 2006, 99, 767–774. [Google Scholar] [CrossRef]
- Wirman, A.P.; Kristiana, H.; Sunaryo, H. Determination of Total Saponin Content and Antioxidant Activity Using DPPH (2,2-diphenyl-1-picrylhydrazyl) Method of 70% Ethanol Extract of Sidaguri Leaves (Sida rhombifolia L.). Int. J. Eng. Sci. Inf. Technol. 2024, 4, 81–85. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Abd Aziz, M.; Stanslas, J.; Ismail, I.; Abdul Kadir, M. Assessment of Antioxidant and Cytotoxicity Activities of Saponin and Crude Extracts of Chlorophytum borivilianum. Sci. World J. 2013, 2013, 216894. [Google Scholar] [CrossRef] [PubMed]
- Ly, H.T.; Truong, T.M.; Nguyen, T.T.H.; Nguyen, H.D.; Zhao, Y.; Le, V.M. Phytochemical screening and anticancer activity of the aerial parts extract of Xanthium strumarium L. on HepG2 cancer cell line. Clin. Phytosci. 2021, 7, 14. [Google Scholar] [CrossRef]
- Liu, J.; Shen, H.-M.; Ong, C.-N. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells. Cancer Lett. 2000, 153, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Y.; Zhang, X.; Xu, S.; He, S.; Huang, W.; Roberts, M.S. Compound Astragalus and Salvia miltiorrhiza extract inhibits cell invasion by modulating transforming growth factor-β/Smad in HepG2 cell. J. Gastroenterol. Hepatol. 2010, 25, 420–426. [Google Scholar] [CrossRef]
- Lee, W.; Chiu, L.; Yeung, J. Cytotoxicity of major tanshinones isolated from Danshen (Salvia miltiorrhiza) on HepG2 cells in relation to glutathione perturbation. Food Chem. Toxicol. 2008, 46, 328–338. [Google Scholar] [CrossRef]
Variable | Symbol | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Ethanol-to-material ratio (mL/g) | A | 30 | 40 | 50 |
Temperature (°C) | B | 50 | 60 | 70 |
Time (h) | C | 2.5 | 3 | 3.5 |
Standard | Runs | Ethanol-to-Material Ratio | Temperature | Time | TSC Yield (mg/g) |
---|---|---|---|---|---|
11 | 1 | 0 | −1 | 1 | 45.23 ± 1.14 * |
3 | 2 | −1 | 1 | 0 | 42.51 ± 0.67 |
12 | 3 | 0 | 1 | 1 | 43.05 ± 0.65 |
1 | 4 | −1 | −1 | 0 | 43.28 ± 0.81 |
6 | 5 | 1 | 0 | −1 | 43.26 ± 0.96 |
5 | 6 | −1 | 0 | −1 | 42.45 ± 1.12 |
14 | 7 | 0 | 0 | 0 | 46.47 ± 0.93 |
4 | 8 | 1 | 1 | 0 | 43.36 ± 0.81 |
8 | 9 | 1 | 0 | 1 | 44.86 ± 0.75 |
13 | 10 | 0 | 0 | 0 | 45.75 ± 0.97 |
2 | 11 | 1 | −1 | 0 | 43.67 ± 0.88 |
15 | 12 | 0 | 0 | 0 | 46.26 ± 0.97 |
9 | 13 | 0 | −1 | −1 | 43.01 ± 1.33 |
7 | 14 | −1 | 0 | 1 | 43.68 ± 0.80 |
10 | 15 | 0 | 1 | −1 | 43.46 ± 1.16 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 24.47 | 9 | 2.72 | 25.78 | 0.0011 * |
A-A | 1.30 | 1 | 1.30 | 12.36 | 0.0170 * |
B-B | 0.9870 | 1 | 0.9870 | 9.36 | 0.0281 * |
C-C | 2.69 | 1 | 2.69 | 25.52 | 0.0039 * |
AB | 0.0529 | 1 | 0.0529 | 0.5015 | 0.5105 ns |
AC | 0.0342 | 1 | 0.0342 | 0.3245 | 0.5936 ns |
BC | 1.73 | 1 | 1.73 | 16.39 | 0.0098 * |
A2 | 8.76 | 1 | 8.76 | 83.02 | 0.0003 * |
B2 | 7.39 | 1 | 7.39 | 70.09 | 0.0004 * |
C2 | 4.13 | 1 | 4.13 | 39.15 | 0.0015 * |
Residual | 0.5274 | 5 | 0.1055 | ||
Lack of Fit | 0.2532 | 3 | 0.0844 | 0.6155 | 0.6674 ns |
Pure Error | 0.2742 | 2 | 0.1371 | ||
Cor Total | 25.00 | 14 | |||
R2 | 0.9789 | ||||
Adj-R2 | 0.9409 |
Samples | Concentration (μg/mL) | Inhibition Rate |
---|---|---|
Salvia miltiorrhiza extract | 100 | 61.79 ± 3.57 |
Camptothecin | 0.01 | 56.82 ± 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.C.; Le, H.D.; Tran, T.D.; Nguyen, L.T.T.; Nguyen, H.T.T. Optimization of Saponin Extract from Red Sage (Salvia miltiorrhiza) Roots Using Response Surface Methods and Its Antioxidant and Anticancer Activities. Processes 2025, 13, 2225. https://doi.org/10.3390/pr13072225
Le HC, Le HD, Tran TD, Nguyen LTT, Nguyen HTT. Optimization of Saponin Extract from Red Sage (Salvia miltiorrhiza) Roots Using Response Surface Methods and Its Antioxidant and Anticancer Activities. Processes. 2025; 13(7):2225. https://doi.org/10.3390/pr13072225
Chicago/Turabian StyleLe, Hoang Chau, Hai Dang Le, Thi Dung Tran, Loan Thi Thanh Nguyen, and Hang T. T. Nguyen. 2025. "Optimization of Saponin Extract from Red Sage (Salvia miltiorrhiza) Roots Using Response Surface Methods and Its Antioxidant and Anticancer Activities" Processes 13, no. 7: 2225. https://doi.org/10.3390/pr13072225
APA StyleLe, H. C., Le, H. D., Tran, T. D., Nguyen, L. T. T., & Nguyen, H. T. T. (2025). Optimization of Saponin Extract from Red Sage (Salvia miltiorrhiza) Roots Using Response Surface Methods and Its Antioxidant and Anticancer Activities. Processes, 13(7), 2225. https://doi.org/10.3390/pr13072225