Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Salmonella colitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 15485 KiB  
Article
Probiotic Potential of Pediococcus pentosaceus M6 Isolated from Equines and Its Alleviating Effect on DSS-Induced Colitis in Mice
by Jialong Cao, Jianqiang Zhang, Hui Wu, Yanan Lin, Xinlan Fang, Siqin Yun, Ming Du, Shaofeng Su, Yuanyi Liu, Na Wang, Tugeqin Bao, Dongyi Bai and Yiping Zhao
Microorganisms 2025, 13(5), 957; https://doi.org/10.3390/microorganisms13050957 - 22 Apr 2025
Cited by 1 | Viewed by 824
Abstract
Colitis in equines has high morbidity and mortality rates, which severely affects the development of the equine-breeding industry. With the issuance of antibiotic bans, there is an urgent need for healthier and more effective alternatives. In recent years, probiotics have been widely used [...] Read more.
Colitis in equines has high morbidity and mortality rates, which severely affects the development of the equine-breeding industry. With the issuance of antibiotic bans, there is an urgent need for healthier and more effective alternatives. In recent years, probiotics have been widely used as microbial feed additives in animal husbandry, playing a crucial role in preventing and treating diarrhea and regulating host immune function. In this study, we isolated and screened a strain with rapid and stable acid production using bromocresol purple, litmus milk coloration tests, and acid production performance assessments. Based on morphological characteristics, physiological and biochemical properties, and 16S rDNA identification, the strain was identified as Pediococcus pentosaceus and named M6. The Pediococcus pentosaceus M6 exhibited stable growth and tolerance to high temperatures, acid and bile salt concentrations, and simulated gastrointestinal fluid environments. The M6 strain demonstrated good antibacterial effects against Escherichia coli, Staphylococcus aureus, and Salmonella. The M6 strain did not produce hemolysis zones on Columbia blood agar plates, indicating its high safety, and was found to be insensitive to 12 antibiotics, including cephalexin and neomycin. Additionally, intervention in mice with dextran sulfate sodium (DSS)-induced colitis alleviated weight loss and shortened colon length. To a certain extent, it regulated the expression of inflammatory cytokines and the gut microbiota within the body and reduced inflammatory cell infiltration and intestinal barrier damage. In summary, the isolated Pediococcus pentosaceus M6 strain exhibited excellent probiotic properties and could alleviate DSS-induced colitis in mice, suggesting its potential application value as a probiotic in animal husbandry. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

21 pages, 5036 KiB  
Article
Vanillin Has Potent Antibacterial, Antioxidant, and Anti-Inflammatory Activities In Vitro and in Mouse Colitis Induced by Multidrug-Resistant Escherichia coli
by Jiaxue Wang, Wei An, Zhenlong Wang, Ya Zhao, Bing Han, Hui Tao, Jinquan Wang and Xiumin Wang
Antioxidants 2024, 13(12), 1544; https://doi.org/10.3390/antiox13121544 - 17 Dec 2024
Cited by 4 | Viewed by 2219
Abstract
A large number of cases of infectious colitis caused by multidrug-resistant (MDR) bacteria, such as Escherichia coli, can result in colon damage and severe inflammation. Vanilla, a widely utilized flavor and fragrance compound, is extensively used in various food. However, the effect [...] Read more.
A large number of cases of infectious colitis caused by multidrug-resistant (MDR) bacteria, such as Escherichia coli, can result in colon damage and severe inflammation. Vanilla, a widely utilized flavor and fragrance compound, is extensively used in various food. However, the effect of vanilla on MDR E. coli-induced infectious colitis has received less attention. In this study, the antibacterial activity of vanillin against MDR E. coli and other bacteria was determined by the microtiter broth dilution method. The antioxidant and anti-inflammatory capacity of vanillin was assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and MDR E. coli-induced mouse colitis. The results demonstrated that vanillin exhibited potent antibacterial activity against various strains of MDR E. coli, Salmonella, and Staphylococcus aureus, with a minimal inhibitory concentration (MIC) of 1.25–2.5 mg/mL and a minimum bactericidal concentration (MBC) of 5–10 mg/mL; it effectively inhibited cell division in E. coli. Vanillin also displayed remarkable antioxidant activity by suppressing the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) in LPS-stimulated RAW 264.7 cell; it significantly reduced the production of inflammatory mediators including nitroxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β), while increasing interleukin 10 (IL-10). In an MDR E. coli-induced mouse colitis model, vanillin effectively inhibited inflammation by suppressing inflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor κ-B (NF-κB) cell signaling pathway activation; it ameliorated changes in intestinal microflora characterized by decreased Firmicutes richness alongside increased Bacteroides richness, rebalancing the dysbiosis caused by E. coli. These findings highlight the potential pharmacological applicability of vanillin as a promising bioactive molecule for treating infectious colitis. Full article
Show Figures

Figure 1

26 pages, 1291 KiB  
Review
A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis
by Lillian M. B. Haywood and Breanna J. Sheahan
Vet. Sci. 2024, 11(10), 480; https://doi.org/10.3390/vetsci11100480 - 7 Oct 2024
Viewed by 2777
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with [...] Read more.
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens. Full article
Show Figures

Figure 1

18 pages, 2585 KiB  
Article
Unveiling the Novel Benefits of Co-Administering Butyrate and Active Vitamin D3 in Mice Subjected to Chemotherapy-Induced Gut-Derived Pseudomonas aeruginosa Sepsis
by Fu-Chen Huang and Shun-Chen Huang
Biomedicines 2024, 12(5), 1026; https://doi.org/10.3390/biomedicines12051026 - 7 May 2024
Cited by 2 | Viewed by 1881
Abstract
Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to [...] Read more.
Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis. Full article
(This article belongs to the Special Issue Aryl Hydrocarbon Receptor in Human Diseases)
Show Figures

Graphical abstract

12 pages, 384 KiB  
Article
Presentations of Children with Suspected Sepsis Caused by Acute Infectious Diarrhea in the Pediatric Emergency Department
by Tai-An Lee, Chun-Yu Chen, Yu-Jun Chang, Bei-Cyuan Guo, Wen-Ya Lin, Chao-Hsin Wu and Han-Ping Wu
Children 2024, 11(2), 171; https://doi.org/10.3390/children11020171 - 29 Jan 2024
Cited by 1 | Viewed by 3003
Abstract
Background: Acute infectious diarrhea is a common cause of hospitalization in children. Hence, early identification of acute bacterial gastroenteritis with suspected sepsis in pediatric emergency departments (EDs) is important. This study aimed to describe the clinical spectrum and initial characteristics of children who [...] Read more.
Background: Acute infectious diarrhea is a common cause of hospitalization in children. Hence, early identification of acute bacterial gastroenteritis with suspected sepsis in pediatric emergency departments (EDs) is important. This study aimed to describe the clinical spectrum and initial characteristics of children who were presented to a pediatric ED with acute infectious diarrhea and suspected sepsis. Methods: Between April 2020 to March 2021, children with clinical diagnoses of acute bacterial colitis and suspected sepsis who were admitted to the pediatric ED were prospectively enrolled. The following data were obtained and compared between different age groups of children: including demographics, presentation, laboratory tests, culture results, treatment modalities, complications, and short-term outcomes. Results: A total of 105 patients (70 males and 35 females; mean age: 3.75 ± 3.52 years) were enrolled in this study. Of them, 89 (84.8%) patients were <6 years of age, and 80 (76.2%) patients required hospitalization for a duration of 4.7 ± 2.08 days. C-reactive protein (CRP) and procalcitonin (PCT) levels were significantly higher in the admission (both p < 0.001) and anti-biotic treatment groups (both p < 0.001). Salmonella enteritidis was the most common organism cultured from the stool and blood samples (39 of 91 (38.5%) and 2 of 105 (1.9%), respectively). Conclusions: The primary causative organism of acute infectious diarrhea identified in this study was S. enteritidis. Age and elevated serum CRP or PCT levels could be important factors in the decisions of emergency physicians regarding hospitalization and antibiotic therapies for pediatric acute infectious diarrhea. Full article
(This article belongs to the Section Pediatric Emergency Medicine & Intensive Care Medicine)
Show Figures

Figure 1

14 pages, 7972 KiB  
Article
The Hazards of Probiotics on Gut-Derived Pseudomonas aeruginosa Sepsis in Mice Undergoing Chemotherapy
by Fu-Chen Huang and Shun-Chen Huang
Biomedicines 2024, 12(2), 253; https://doi.org/10.3390/biomedicines12020253 - 23 Jan 2024
Cited by 4 | Viewed by 3374
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due [...] Read more.
Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6–8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

5 pages, 817 KiB  
Proceeding Paper
Effects of N-(Alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides on Intestinal Microbial Communities
by Vanina Nikolaeva, Tomas Gonec, Ivan Kushkevych and Josef Jampilek
Chem. Proc. 2023, 14(1), 45; https://doi.org/10.3390/ecsoc-27-16142 - 15 Nov 2023
Viewed by 1009
Abstract
The phylum Proteobacteria, more precisely, the family Enterobacteriaceae, has been shown to be a major cause of inflammation in the human microbiome. Their standard level in the human intestine is usually kept below 1% in a healthy person, and their overgrowth above [...] Read more.
The phylum Proteobacteria, more precisely, the family Enterobacteriaceae, has been shown to be a major cause of inflammation in the human microbiome. Their standard level in the human intestine is usually kept below 1% in a healthy person, and their overgrowth above this number leads to intestinal inflammation, which can cause the development of inflammatory bowel diseases, most often, Crohn’s disease or ulcerative colitis. The minimum inhibitory concentrations (MICs) of a series of eighteen recently synthesized N-(alkoxyphenyl)-2-hydroxynaphthalene-1-carboxamides were determined against two representatives of the Enterobacteriaceae family–Escherichia coli CCM 3954 and Salmonella typhimurium LT 2-18. Although the tested compounds are cyclic analogues of salicylanilides known to have strong antimicrobial properties, the found MICs ranged between 50 µM and 1000 µM. However, it can be concluded that S. typhimurium was generally more sensitive to the tested antimicrobial agents than E. coli. N-[2-(But-2-yloxy)phenyl]-1-hydroxynaphthalene-2-carboxamide was the most active agent among the investigated compounds with an MIC of 100 µM against E. coli and an MIC of 50 µM against S. typhimurium. Full article
Show Figures

Scheme 1

15 pages, 4989 KiB  
Article
Amelioration of Murine Colitis by Attenuated Salmonella choleraesuis Encoding Interleukin-19
by Shih-Yao Chen, Chun-Ting Chu, Mei-Lin Yang, Jian-Da Lin, Chung-Teng Wang, Che-Hsin Lee, I-Chen Lin, Ai-Li Shiau, Pin Ling and Chao-Liang Wu
Microorganisms 2023, 11(6), 1530; https://doi.org/10.3390/microorganisms11061530 - 8 Jun 2023
Cited by 3 | Viewed by 2304
Abstract
The imbalance of mucosal immunity in the lower gastrointestinal tract can lead to chronic inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis. IBD is a chronic inflammatory disorder that causes small and/or large intestines ulceration. According to previous studies, recombinant interleukin [...] Read more.
The imbalance of mucosal immunity in the lower gastrointestinal tract can lead to chronic inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis. IBD is a chronic inflammatory disorder that causes small and/or large intestines ulceration. According to previous studies, recombinant interleukin (IL)-10 protein and genetically modified bacteria secreting IL-10 ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. IL-19 is a transcriptional activator of IL-10 and can alter the balance of T helper 1 (Th)1/Th2 cells in favor of Th2. In this study, we aimed to investigate whether the expression of the murine IL-19 gene carried by Salmonella choleraesuis (S. choleraesuis) could ameliorate murine IBD. Our results showed that the attenuated S. choleraesuis could carry and express the IL-19 gene-containing plasmid for IBD gene therapy by reducing the mortality and clinical signs in DSS-induced acute colitis mice as compared to the untreated ones. We also found that IL-10 expression was induced in IL-19-treated colitis mice and prevented inflammatory infiltrates and proinflammatory cytokine expression in these mice. We suggest that S. choleraesuis encoding IL-19 provides a new strategy for treating IBD in the future. Full article
(This article belongs to the Special Issue Anti-inflammatory Property of Probiotics)
Show Figures

Figure 1

15 pages, 2728 KiB  
Article
The Critical Role of Acyl Hydrocarbon Receptor on the Combined Benefits of Postbiotic Propionate on Active Vitamin D3-Orchestrated Innate Immunity in Salmonella Colitis
by Fu-Chen Huang and Shun-Chen Huang
Biomedicines 2023, 11(1), 195; https://doi.org/10.3390/biomedicines11010195 - 12 Jan 2023
Cited by 3 | Viewed by 2032
Abstract
Our recent study observed the combined beneficial effects of postbiotic butyrate on active vitamin D3-orchestrated innate immunity to Salmonella Colitis. There is increasing interest in the role of acyl hydrocarbon receptor (AhR) on colitis and innate immunity. Therefore, we investigated the involvement of [...] Read more.
Our recent study observed the combined beneficial effects of postbiotic butyrate on active vitamin D3-orchestrated innate immunity to Salmonella Colitis. There is increasing interest in the role of acyl hydrocarbon receptor (AhR) on colitis and innate immunity. Therefore, we investigated the involvement of AhR in the effects. Salmonella colitis model is conducted with 6–8 w/o male C57BL/6 mice: Streptomycin (20 mg/mouse p.o.)-pretreated C57BL/6 mice were mock infected with sterile PBS or infected orally with 1 × 108 CFU of an S. typhimurium wild-type strain SL1344 for 48 h. Before and after the colitis induction, mice were oral gavage with active vitamin D3 0.2 μg/25 g mice (VD3) and/or postbiotics propionate (PP), in the absence of the presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed AhR inhibitor counteracted the synergistic effects of PP and VD3 on reducing the severity of Salmonella colitis and body weight loss in C57BL/6 mice, reducing the cecal inflammatory but enhancing antimicrobial peptide mRNAs expression, and reducing the bacterial translocation in liver/spleen, compared to single treatment. It suggests the involvement of AhR on the synergistic effects of postbiotics PP and VD3 on the antibacterial and anti-inflammatory responses in Salmonella colitis and the potential biological treatment of Salmonella colitis. Full article
(This article belongs to the Special Issue Molecular Research on Colitis)
Show Figures

Figure 1

15 pages, 1694 KiB  
Article
The Pivotal Role of Aryl Hydrocarbon Receptor-Regulated Tight Junction Proteins and Innate Immunity on the Synergistic Effects of Postbiotic Butyrate and Active Vitamin D3 to Defense against Microbial Invasion in Salmonella Colitis
by Fu-Chen Huang and Shun-Chen Huang
Nutrients 2023, 15(2), 305; https://doi.org/10.3390/nu15020305 - 7 Jan 2023
Cited by 16 | Viewed by 3436
Abstract
Our recent report illustrated the unitedly advantageous effects of postbiotic butyrate on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis. There is growing awareness that aryl hydrocarbon receptor (AhR) can regulate intestinal immunity and barrier function, through modulating cecal inflammation and junction [...] Read more.
Our recent report illustrated the unitedly advantageous effects of postbiotic butyrate on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis. There is growing awareness that aryl hydrocarbon receptor (AhR) can regulate intestinal immunity and barrier function, through modulating cecal inflammation and junction proteins expression. Hence, we researched the participation of AhR-regulated tight junction functions on the united effects of butyrate and VD3 on intestinal defense to Salmonella infection. Salmonella colitis model were elicited by oral gavage with 1 × 108 CFU of a S. typhimurium wild-type strain SL1344 in C57BL/6 mice. Before and after the colitis generation, mice were fed with butyrate and/or VD3 by oral gavage in the absence or presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed that butyrate and VD3 could concert together to reduce the invasion of Salmonella in colitis mice by enhancing cecal cytokines and antimicrobial peptides expression and reducing zonulin and claudin-2 protein expressions in mucosal stain, compared to single treatment, which were counteracted by AhR inhibitor. It implies that AhR is involved in the united effects of butyrate and VD3 on the intestinal defense to Salmonella infection in colitis mice. This study discloses the promising alternative therapy of combining postbiotic and VD3 for invasive Salmonellosis and the pivotal role of AhR pathway. Full article
(This article belongs to the Special Issue Vitamin D Receptor in Human Health and Disease)
Show Figures

Figure 1

24 pages, 2560 KiB  
Review
Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin
by Kartik T. Nakhate, Hemant Badwaik, Rajesh Choudhary, Kalyani Sakure, Yogeeta O. Agrawal, Charu Sharma, Shreesh Ojha and Sameer N. Goyal
Nutrients 2022, 14(17), 3638; https://doi.org/10.3390/nu14173638 - 2 Sep 2022
Cited by 52 | Viewed by 6255
Abstract
Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases [...] Read more.
Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases including cancers, diabetes, liver injury, kidney injury, encephalomyelitis, ulcerative colitis, asthma, arthritis, and cognitive impairment. It ameliorates the complications associated with diabetes such as cardiomyopathy, hypertension, depression, memory impairment, delayed wound healing, and peripheral neuropathy. It is effective against various microbial infections including Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Escherichia coli, Candida albicans and methicillin-resistant Staphylococcus aureus. Considering the therapeutic benefits, it generated interest for the pharmaceutical development. However, poor oral bioavailability is the major drawback. Therefore, efforts have been undertaken to enhance its bioavailability by modifying physicochemical properties and molecular structure, and developing nanoformulations. In the present review, we discussed the pharmacological actions, underlying mechanisms and molecular targets of phloretin. Moreover, the review provides insights into physicochemical and pharmacokinetic characteristics, and approaches to promote the pharmaceutical development of phloretin for its therapeutic applications in the future. Although convincing experimental data are reported, human studies are not available. In order to ascertain its safety, further preclinical studies are needed to encourage its pharmaceutical and clinical development. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

29 pages, 1849 KiB  
Review
AB5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins
by Erika N. Biernbaum and Indira T. Kudva
Toxins 2022, 14(1), 62; https://doi.org/10.3390/toxins14010062 - 16 Jan 2022
Cited by 19 | Viewed by 7620
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence [...] Read more.
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed. Full article
(This article belongs to the Special Issue Shiga Toxin: Occurrence, Pathogenicity, Detection and Therapies)
Show Figures

Figure 1

12 pages, 8296 KiB  
Article
MyD88 Mediates Colitis- and RANKL-Induced Microfold Cell Differentiation
by Yang Li, Shanshan Yang, Xin Huang, Ning Yang, Caiying Wang, Jing Zhao, Zhizhong Jing, Luc Willems and Guangliang Liu
Vet. Sci. 2022, 9(1), 6; https://doi.org/10.3390/vetsci9010006 - 24 Dec 2021
Cited by 5 | Viewed by 3796
Abstract
Intestinal microfold (M) cells are critical for sampling antigens in the gut and initiating the intestinal mucosal immune response. In this study, we found that the oral administration of dextran sulfate sodium (DSS) and Salmonella infection induced colitis. In the process, the expression [...] Read more.
Intestinal microfold (M) cells are critical for sampling antigens in the gut and initiating the intestinal mucosal immune response. In this study, we found that the oral administration of dextran sulfate sodium (DSS) and Salmonella infection induced colitis. In the process, the expression levels of M cell differentiation-related genes were synchronized with the kinetics of pro-inflammatory cytokines. Compared to wild-type (WT) mice, MyD88−/− mice exhibited significantly lower expression levels of M cell differentiation-related genes. However, DSS induced colitis in MyD88−/− mice but failed to promote the transcription of M cell differentiation related genes. Furthermore, the receptor activator of the Nuclear Factor-κB ligand (RANKL) upregulated the transcription of M cell differentiation related genes in murine intestinal organoids prepared from both WT and MyD88−/− mice. Meanwhile, fewer changes in M cell differentiation related genes were found in MyD88−/− mice as compared to WT mice. Hence, we concluded that myeloid differentiation factor 88 (MyD88) is an essential molecule for colitis- and RANKL-related differentiation of M cells. Full article
Show Figures

Figure 1

14 pages, 310 KiB  
Review
The Interleukins Orchestrate Mucosal Immune Responses to Salmonella Infection in the Intestine
by Fu-Chen Huang
Cells 2021, 10(12), 3492; https://doi.org/10.3390/cells10123492 - 10 Dec 2021
Cited by 29 | Viewed by 5832
Abstract
Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate [...] Read more.
Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2, respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages, dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines, such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1β, IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins involved in Salmonella infection in the literature. Full article
(This article belongs to the Collection The Increasingly Fascinating World of Interleukins)
15 pages, 10473 KiB  
Article
The Combined Beneficial Effects of Postbiotic Butyrate on Active Vitamin D3-Orchestrated Innate Immunity to Salmonella Colitis
by Fu-Chen Huang and Shun-Chen Huang
Biomedicines 2021, 9(10), 1296; https://doi.org/10.3390/biomedicines9101296 - 22 Sep 2021
Cited by 18 | Viewed by 4075
Abstract
Salmonella spp. Remains a major public health problem globally. Biomedicine is the cornerstone of modern health care and could be a solution for antibiotic-resistant Salmonellosis. Although postbiotics seem to be an effective treatment in various clinical conditions, their clinical effects on Salmonella [...] Read more.
Salmonella spp. Remains a major public health problem globally. Biomedicine is the cornerstone of modern health care and could be a solution for antibiotic-resistant Salmonellosis. Although postbiotics seem to be an effective treatment in various clinical conditions, their clinical effects on Salmonella colitis have not been reported. Our previous report revealed that active vitamin D attenuates the severity of Salmonella colitis and invasiveness by reducing inflammation and enhancing the production of antimicrobial peptides. Therefore, we investigated the synergistic effects of butyrate, the most studied postbiotic, and active vitamin D on the severity of Salmonella colitis, invasiveness of Salmonella, and host immune responses, as well as its novel mechanisms, using in vitro and in vivo studies. We demonstrated that a combination of butyrate and active vitamin D (1 alpha, 25-dihydroxyvitamin D3) synergically reduced the severity of Salmonella colitis in C57BL/6 mice and reduced cecal inflammatory mIL-6, mIL-8, mTNF-α, and mIL-1β mRNA expression, but enhanced the antimicrobial peptide mhBD-3 mRNA, compared to a single treatment. Additionally, upregulated vitamin D receptor (VDR) plays a critical role in the synergistic effects. This suggests combined benefits of butyrate and active vitamin D on Salmonella colitis through VDR-mediated antibacterial and anti-inflammatory responses. The combined use of both supplements could be a potential biomedicine for infectious and autoimmune colitis. Full article
(This article belongs to the Topic Novel Therapeutic Nutrient Molecules)
Show Figures

Figure 1

Back to TopTop