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Abstract: Our recent report illustrated the unitedly advantageous effects of postbiotic butyrate
on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis. There is growing
awareness that aryl hydrocarbon receptor (AhR) can regulate intestinal immunity and barrier function,
through modulating cecal inflammation and junction proteins expression. Hence, we researched the
participation of AhR-regulated tight junction functions on the united effects of butyrate and VD3
on intestinal defense to Salmonella infection. Salmonella colitis model were elicited by oral gavage
with 1 × 108 CFU of a S. typhimurium wild-type strain SL1344 in C57BL/6 mice. Before and after
the colitis generation, mice were fed with butyrate and/or VD3 by oral gavage in the absence or
presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed
that butyrate and VD3 could concert together to reduce the invasion of Salmonella in colitis mice by
enhancing cecal cytokines and antimicrobial peptides expression and reducing zonulin and claudin-2
protein expressions in mucosal stain, compared to single treatment, which were counteracted by AhR
inhibitor. It implies that AhR is involved in the united effects of butyrate and VD3 on the intestinal
defense to Salmonella infection in colitis mice. This study discloses the promising alternative therapy
of combining postbiotic and VD3 for invasive Salmonellosis and the pivotal role of AhR pathway.

Keywords: acyl hydrocarbon receptor; postbiotics; active vitamin D3; tight junction; innate immunity;
Salmonella colitis

1. Introduction

Salmonella spp. are influential Gram-negative food-borne pathogens of humans and
animals. If treatment is delayed or inadequate, severe systemic infections may lead to high-
mortality complications including meningitis, osteomyelitis, sepsis, and toxic megacolon.
A globally rising occurrence of food-borne multi-drug-resistant strains of S. typhimurium in
human infections has been noted [1,2], which may be associated with increased hospitaliza-
tion, development of sepsis, treatment failure and additional mortality [3].

Medical nutrition therapy (MNT) is an evidence-based, customized nutrition process
intended to help treat certain medical conditions. MNT is based on decades of medical
research on the relationship between diet, nutrition, and health outcomes. As chronic
diseases become more prevalent, with prolonged and changing lifespans, MNT is a key
scientific platform to improve clinical symptoms and reduce inflammation, leading to
induction and/or maintenance of disease remission, and finally promote health and prevent
diseases. Inventor Thomas Edison said that “the doctor of the future will give no medicine
but will interest his patients in the care of the human frame, in diet and in the cause and
prevention of disease”.
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Accruing evidence shows that nutrition can curb the immune system through metabo-
lites, either produced by microbiota metabolism or by host digestion. Food is not merely a
source of nutrients for preserving vital biological functions, it is composed of nutritive con-
stituents that orchestrate immune cell interaction as well. Aryl hydrocarbon receptor (AhR)
is a ligand-activated transcription factor that integrates environmental, dietary, microbial,
and metabolic cues to control complex transcriptional programs. An important resource
of nutritional AhR ligands is microbiota metabolism, that is, postbiotics. Representative
examples of postbiotics, short-chain fatty acids (SCFAs) including acetate, butyrate and
propionate, derived from the fermentation of dietary fibers by the microbiota, are able to
activate AhR signaling.

The role of AhR on colitis and bacterial infection is increasingly brought on stage.
The AhR takes part in innate immune responses to microbial invasion of barrier tissues.
The AhR can regulate intestinal barrier function, via modifying tight junction integrity
and adjustment of junction proteins expression [4–7]. Explicit deletion of the AhR from
intestinal epithelium brings about a weakened response to C. rodentium infection [8] and
inflammatory damage; therefore, the importance of epithelial AhR expression in intestinal
homeostasis and protection cannot be overemphasized. If AhR is deficient in mice, the
mice are vulnerable to Citrobacter rodentium [9–11], which is a natural mouse pathogen
widely used to simulating enteropathogenic and enterohemorrhagic Escherichia coli (E. coli)
infections in human [12].

Dietary intervention on maintaining barrier function can contain bacteria invasion.
SCFAs facilitate the establishment of intestinal barrier, and shield the intestinal barrier
from the disruption of LPS by inhibition of NLRP3 inflammasome and autophagy [13].
They could be used for the recovery of the intestinal epithelial barrier disrupted by several
enteric pathogen toxins [14]. Accumulating in vitro and in vivo evidences demonstrate
advantageous effects of vitamin D on intestinal permeability [15]; however, study regarding
the influence of this vitamin on the tight junction proteins expression in Salmonella colitis
mice are still lacking.

Previously, we demonstrated the advantageous effects of combining postbiotic bu-
tyrate on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis by
enhancing antimicrobial peptides (AMPs) but suppressing inflammatory cytokines re-
sponses via vitamin D receptor (VDR). However, the role of AhR-mediated tight junction
(TJ) protein expression on the benefits of combined butyrate and VD3 on Salmonella in-
vasiveness are not yet reported. Therefore, we investigate if AhR orchestrates the effects
of combined butyrate and VD3 on cytokines response (IL-17A and IL-22), antimicrobial
peptides (LL-37), and tight junction proteins expression to block the invasion of Salmonella
in colitis mice.

2. Materials and Methods
2.1. Bacterial Strains

The Salmonella wild-type strain S. enterica serovar Typhimurium SL1344 (S. Tm) was
grown for 2 h at 37 ◦C in the Lysogeny broth supplemented with 50 ug/mL streptomycin,
diluted 1:100 in fresh broth, and sub-cultured for 16 h at 37 ◦C under mild aeration. Then,
bacteria were washed twice in PBS and suspend in PBS to 109 CFU/ mL.

2.2. Reagents

The butyrate and standard laboratory reagents were obtained from Sigma (St. Louis,
MO, USA) or Fisher Scientific (Pittsburgh, PA, USA). The stock solution of 1, 25-
dihydroxyvitamin D3 (VD3) (IsoSciences, Ambler, PA, USA) was stored at 22 ◦C in the
dark.

2.3. Postbiotics Preparation

Sodium butyrate powder was bought from Sigma-Aldrich (Merck KGaA, Darmstadt,
Germany) and stored at room temperature. The dose used for animal experiments was
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sodium butyrate (100 mg/kg mice). Weight the powder of butyrate and dissolve it in sterile
ddH2O. After filtered in the solution by 0.45 µm filter, the stock was dispensed in vial and
stored at −20 ◦C for further use.

2.4. AHR Inhibitor Solution Preparation

The aryl hydrocarbon receptor inhibitor (CH-223191) powder was purchased from
Sigma-Aldrich (Merck KGaA, Darmstadt, Germany) and stored at −20 ◦C. The powder
of AhR inhibitor was weighted, dissolved in DMSO as the stock solution and stored at
−20 ◦C. For preparing the injection solution, dilute the stock in 1× PBS buffer. Moreover,
DMSO in 1× PBS buffer was used as vehicle.

2.5. Animal Experiments

All mice were obtained from the National Laboratory Animal Center. Animal exper-
iments were approved by the Kaohsiung Chang Gung Memorial Hospital Institutional
Animal Care and Use Committee adhering to the legal requirements.

Six- to eight-week-old female C57BL/6 mice were bred in a specific pathogen-free
room in the Kaohsiung Chang Gung Memorial Hospital animal center. Mice were divided
into the following groups: Control (Open control), ST (S.Tm infected), VD (VD3 treated and
S.Tm infected), BU (butyrate treated and S.Tm infected), VD+BU (VD3 plus butyrate treated
and S.Tm infected), and VD+BU+AHRi (VD3 plus butyrate treated and AhR inhibitor and
S.Tm infected).

Before and after the colitis induction, mice were oral gavage given VD3 0.2 µg/25 g
mice or postbiotics BU or combination of both in the absence or presence of intraperitoneal
injection of AhR inhibitor (AHRi) for 4 and 7 days, respectively. Other groups were given
100 µL sterile water (Open control) or 100 µL PBS (S.Tm group) and intraperitoneal injection
of DMSO solution. Salmonella colitis model were achieved as previously reported [16,17].
On day 14, mice were sacrificed by CO2 asphyxiation and the tissue samples from the
intestinal tracts, spleens, and livers were collected for analysis. The detail of the protocol
was presented in supplementary Figure S1.

Animal and diarrhea situation score and loss of body weight were recorded during
the experimental process. The diarrhea situation was scored as follows: 5 = Mice live
energetically; 4 = Mice experience diarrhea and pasty stools; 3 = Mice experience loose
stools and reduced mobility; 2 = Mice are weak and demonstrate abnormal behavior;
1 = Mice lose their lives. We also calculate the spleen index as the assessment of the
immunity.

H&E-stained slides were scored according to the scoring scheme for quantitative
pathological analysis of cecal inflammation [18]. Two researchers evaluated the slides sepa-
rately. Moreover, the combined pathological scores for each tissue sample were determined
as the sum of the averaged scores.

2.6. Analysis of Salmonella Loads in Spleen and Liver

All aseptically removed tissues from mice were weighing and recorded. Then, the spleen
and liver were immersed into room temperature PBS with 1% triton X-100. The spleen and liver
were homogenized as in manufacturer’s protocol and previous reports [16,17]. To determine
the numbers of Salmonella colonized, plating appropriate dilutions on MacConkey agar
plates mixed with 50 µg/mL streptomycin for culture under mild aeration at 37 ◦C for
16 h. The minimal detectable values were 20 CFU/organ in the spleen and 100 CFU/g in
the liver.

2.7. Immunohistochemistry (IHC) Staining Procedures

Paraffin sections of paraffin-embedded tissue samples from the cecum of each animal
were mounted on glass slides. After deparaffinized and rehydrated, the slides were mi-
crowaved in a retrieval buffer for the purpose of antigen retrieval. The slides were then
blocked in 10% normal serum with 1% BSA in TBS for 2 h at room temperature. After drain-



Nutrients 2023, 15, 305 4 of 15

ing for a few seconds, the slides were then incubated with the primary antibody at 4 ◦C
overnight. Then, the slides were rinsed with TBS buffer for few times. Subsequently, slides
were incubated for 1 h at room temperature with secondary antibody (HRP-conjugated anti-
body). Next, slides were rinsed and incubated with the chromogen (3,3′-diaminobenzidine)
to visualize the target protein and counterstained with hematoxylin. Finally, they were
dehydrated, cleared, and mounted for further analysis.

2.8. Immunohistochemistry Staining Analysis

An automated whole-slide scanning device (3DHISTECH, Sysmex, Switzerland) and
software (Pannoramic viewer, Sysmex, Switzerland) were implemented. The scanned
images were analyzed by using free software ImageJ Fiji. Semi-quantitative IHC is a
powerful method for investigating protein expression within tissues [19]. By using software
ImageJ Fiji, we conducted deconvolution and downstream analysis. The area of scanning
images which are interested were circled and measured by a trained pathologist. Ten
regions of interest were chosen from every slide image and at least three experiments were
done to collect the values of images for further statistical analysis.

2.9. Quantitative Real-Time PCR Analysis of Cecum or Cultured Cells RNA

Samples of the cecum were immediately snap-frozen in liquid nitrogen after procure-
ment, and stored at −80 ◦C. Total RNA was extracted from the cecal tissue, using TRI
Reagent (Ambio #15596018) and Directzol RNA MiniPrep kit, in line with the manufac-
turer’s instructions. The RNA was reverse transcribed into cDNA. Then, the quantita-
tive real time PCR and analysis of mRNA levels were performed. The primers for the
mouse genes of interest and reaction protocol was set as in previous reports [16,20] except
mouse IL-17A, forward, 5′-ATCCCTCAAAGCTCAGCGTGTC-3′, reverse, 5′-GGGTCTTC
ATTGCGGTGGAGAG-3′; mouse IL-22, forward, 5′-GTCAACCGCACCTTTATGCT-3′, re-
verse, 5′-CATGTAGGGCTGGAACCTGT-3′; mouse CRAMP, forward, 5′-GCCGCTGATTC
TTTTGACAT-3′, reverse, 5′-GCCAAGGCAGGCCTACTACT-3′; and mouse AhR, forward,
5′-ACATCACCTATGCCAGCCG-3′, reverse, GACTTAATTCCTTCAGCGGGGA-3′. The
MIQE guidelines were taken into account for the methods and analysis [21].

2.10. Statistical Analysis

The statistical analysis was achieved by employing GraphPad Prism 8 software (Graph-
Pad Software, San Diego, CA, USA). For three or more nonparametric variables, we used a
Kruskal–Wallis one-way ANOVA to decide the variance. A p-value of <0.05 was considered
statistically significant.

3. Results
3.1. The Involvement of AhR in the Synergistic Effects of Admixture of VD3 and Butyrate on the
Severity of Salmonella Colitis

To assess the involvement of AhR in the synergistic effects of admixture of VD3
and butyrate on the severity of Salmonella colitis, we examined the cecal pathology of
SL1344-infected WT mice treated by VD3 or butyrate treatment along with intraperitoneal
injection of AhR inhibitor. Consistent with our previous research [18] in the histopatho-
logical analysis of H&E-stained cecal sections, we observed obvious pathological colitis in
the Salmonella infected WT mice group in Figure 1a. In contrast, we demonstrated that
combining BU and VD3 significantly reduce the severity of Salmonella colitis in C57BL/6
mice, including diarrhea, loss of body weight, and pathologic scores. Using the histological
scoring system, we found the severity of Salmonella colitis was ameliorated significantly in
the combination-treated groups than in the infection-only WT mice (Figure 1b). Further-
more, inhibition of AhR counteracted the benefit of treatment, either alone with VD3 or
butyrate or in combination. This suggests that AhR is involved in the synergistic effects of
BU on the VD3-mediated reduced severity of Salmonella colitis.
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Figure 1. The involvement of AhR in the synergistic effects of admixture of VD3 and butyrate
attenuates the severity of Salmonella colitis in mice. Mice were bred and housed under the technical
regulation of the animal facility of the Center for Cellular and Biomolecular Research, Kaohsiung,
Taiwan. The 6–8-week-old female C57BL/6 mice (Charles River, Wilmington, MA, USA) were treated
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or infected as described in the material and methods and divided into the following groups: Control
(Open control), ST (S.Tm infected), VD (VD3 and S.Tm infected), BU (butyrate 100 mg/kg mice and
S.Tm infected), VD+BU (combination of VD3 and butyrate plus S.Tm infected), and VD+BU+AHRi
(combination of VD3 and butyrate plus S.Tm infected and AhR inhibitor). Diarrhea situation scores
(a) and loss of body weight (b) of mice were recoded daily. Segments of cecum were harvested, fixed
in formaldehyde, and stained with hematoxylin and eosin. Representative histological images (×20
and ×50 magnification) of cecum from the different experimental groups were shown in (c) and the
analyzed pathological scores for colitis in (d) The data shown are means ± SEM (n = 7 mice/group).
*, p < 0.05.

3.2. The Involvement of AhR in the Synergistic Effects of Admixture of VD3 and Butyrate on the
Cecal Cytokines and Antimicrobial Peptides in Salmonella Colitis Mice

Higher IL-6, IL-1β, and TNF-α levels in response to LPS was observed in macrophages
from AhR–/– mice than WT mice [22]. Moreover, upon AhR activation, there are increased
production of antimicrobial peptides, IL-10, IL-22, prostaglandin E2, and Foxp3 [23]. It
suggests the role of AhR in the suppressive effects of combined butyrate and VD3 on the
inflammatory responses and enhancing effect on AMPs in Salmonella colitis. To investigate
the effects of admixture of VD3 and butyrate on the immune responses in Salmonella-
infected mice, the gene expression of cytokines and antimicrobial peptide was quantified
using real-time PCR in the cecal tissue of infected WT mice in the absence or presence of
VD3 or butyrate, along with intraperitoneal injection of AhR inhibitor. Local, cecal gene
expression of cytokines and antimicrobial peptide (Figure 2) was induced in Salmonella-
infected mice. By contrast, inflammatory cytokines were synergistically suppressed (e.g.,
mIl6, mIl-1β, mTNF-α) in the cecal tissue of Salmonella-infected mice treated with admixture
of VD3 and butyrate, whereas mIl-17A, mIl-22, and antimicrobial peptides (e.g., mBD-3
and CRAMP) were synergistically enhanced. Furthermore, inhibition of AhR counteracted
the effects on mRNA expressions by treatment, either alone with VD3 or butyrate or in
combination. This suggests that AhR is involved in the synergistic effects of combined VD3
and butyrate on the local inflammatory responses and antimicrobial peptide in the cecum
of Salmonella-infected mice.

Altogether, the results suggest that AhR is involved in the synergistic effects of com-
bined butyrate and VD3 on the severity of Salmonella colitis, augmenting antibacterial and
antiinflammatory responses.
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Figure 2. The involvement of AhR in the synergistic effects of BU on the VD3-regulated cecal
proinflammatory cytokines and AMPs in Salmonella colitis mice. Mice were treated or infected as
described in the material and methods. Before and after the colitis induction, mice were oral gavaged
with BU or VD3 or combination of both in the absence or presence of intraperitoneal injection of AhR
inhibitor (AHRi) for 4 and 7 days, respectively. Total RNA was extracted from the cecal tissues. IL-17A
(a), IL-22 (b), LL-37 (CRAMP) (c), mIL-6 (d), mTNF-α, (e), mIL-1β (f), and mBD-3 (g) expressions
were analyzed using quantitative RT-PCR. Values are measured as fold increase compared to the
level of control mice. The data shown are means ± the SEM (n = 7 mice/group). * p < 0.05, ** p < 0.01.

3.3. Admixture of VD3 and Butyrate Exerted Reduction of Bacterial Translocation in
Salmonella-Infected Mice

Previous reports by Khailova et al. [24] and our group [18] revealed that VD3 can
reduce systemic bacterial translocation and mortality in experimental sepsis in mice during
weanling or Salmonella colitis. To explore the impact of combining treatment of butyrate and
VD3 on bacterial invasion, tissues of liver and spleen were acquired from Salmonella colitis
mice untreated or treated with VD3, butyrate or combination of both homogenized and
plated on LB plates. The CFU values were estimated. Results demonstrated that combined
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treatment of butyrate and VD3 exerted reduction of bacterial loads in liver or spleen of
Salmonella colitis mice (Figure 3).
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Figure 3. The involvement of AhR in the combined effects of VD3 and butyrate on attenuating
systemic bacterial translocation of Salmonella colitis mice. Mice were bred and housed under the
technical regulation of the animal facility of the Center for Cellular and Biomolecular Research,
Kaohsiung, Taiwan. The 6–8-week-old female C57BL/6 mice (Charles River, USA) were treated or
infected as described in the material and methods. Before and after the colitis induction, mice were
oral gavage with BU or VD3 or combination of both in the absence or presence of intraperitoneal
injection of AhR inhibitor (AHRi) for 4 and 7 days, respectively. The number of bacteria was counted
from liver (a) and spleen (b) homogenates of different groups, as shown in the material and methods.
The data shown are represented as the means ± the SEM of the bacterial load in the liver and spleen
(n = 7). * p < 0.05.

We observed that the combination of BU and VD3 reduced bacterial colonization in
liver and spleen, compared to SL1344 infection only, while AhR inhibitor counteracted the
combined effects.

3.4. Admixture of VD3 and Butyrate Exerted Synergistic Effect on Tight Junction Proteins
Expression in Cecal Mucosa of Mice with Salmonella Colitis

Enteric infections have been implicated in the pathogenesis of several pathological
conditions, including allergic, autoimmune, and inflammatory diseases, by causing impair-
ment of the intestinal barrier and alterations in intestinal permeability. The zonulin-driven
opening of the paracellular pathway may represent a defensive mechanism, which flushes out
microorganisms, thus contributing to the innate immune response of the host against bacterial
colonization of the intestine [25]. Salmonella infection induced significantly enhanced claudin-2,
resulting in an increased bacterial invasion and translocation. Therefore, we investigated the
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zonulin and claudin-2 protein expression at colon mucosal in Salmonella colitis mice model
under the treatment of VD3 and butyrate as well as the role of AhR. The proteins expression of
zonulin or claudin-2 was analyzed using immunohistochemistry staining on the cecal tissue
of Salmonella colitis mice in the absence or presence of butyrate or VD3.

As shown in Figure 4, our results revealed that zonulin and claudin-2 were present at
significantly reduced levels in cecal mucosa in Salmonella colitis via the treatment of butyrate
and VD3, compared with the sham group, whereas inhibition of AhR counteracted the
combined effect by both treatments. This suggests that AhR is involved in the synergistic
effects of combined VD3 and butyrate on the mucosal zonulin and claudin-2 proteins
expression in the cecum of Salmonella-infected mice.
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Figure 4. The involvement of AhR in the combined effect of VD3 and butyrate on reducing the
colon epithelial zonulin and claudin-2 proteins expression following Salmonella colitis in mice. Mice
were treated or infected as described in the material and methods and divided into the following
groups: Control (Open control), ST (S.Tm infected), VD (VD3 and S.Tm infected), BU (butyrate
100 mg/kg mice and S.Tm infected), VD+BU (combination of VD3 and butyrate plus S.Tm infected),
and VD+BU+AHRi (combination of VD3 and butyrate plus S.Tm infected and AhR inhibitor). (a)
Zonulin and claudin-2 proteins expression in these groups were detected by immunohistochemistry
staining (original magnification, ×400; scale bar, 25 µm; n = 3). The levels of zonulin (b) and claudin-2
(c) immunohistochemistry staining were analyzed and calculated by image J. * p < 0.05, *** p < 0.001.
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4. Discussion

We observed that the combination of butyrate and VD3 synergistically reduced the
translocation of Salmonella to liver and spleen by increasing cecal production of mIL-22,
mIL-17a, and mLL-37 mRNA expressions as well as decreasing zonulin and chaudin-2
proteins expression in cecal histologic stain, compared to single treatment. In contrast, AhR
inhibitor i.p. counteracted the synergistic effects of butyrate and VD3. This suggests a
critical role of AhR on the synergistic effects of butyrate and VD3 on enhancing antibacterial
and mucosal barrier in Salmonella colitis.

Following ligand binding, AhR is translocated to the nucleus, where it forms a het-
erodimer with AhR nuclear translocator, thereby inducing AhR-dependent gene expression.
Immune cells produce IL-22 in an AhR-dependent way. The IL-22 will then induce IEC
to proliferate and produce antimicrobial peptides [26]. IL-22 enhances the innate immu-
nity of tissues by inducing β-defensin 2, β-defensin 3 and S100A7 in epithelial cells [27].
Although AhR is a novel negative regulator of IL-17-mediated signaling and inflamma-
tion in vitro [28] and reciprocal regulation of interleukin-17A and interleukin-22 secretion
through AhR activation in CD4+ T cells [29], we demonstrated that IL-17A and IL-22
mRNA expression were synergistically enhanced by both treatment in Salmonella colitis and
inhibition of AhR restored the enhancement of both mRNA expression. Accordingly, IL-17
induces an inflammatory tissue response and is elevated in patients with Salmonellosis [30]
to suppress invasion of the organism to enteric mucosa by inducing AMPs (e.g., mBD3) [31],
whereas IL-22 ameliorates intestinal inflammation [32] and mediates innate immunity to
protection against Salmonella infection [33]. SCFAs may regulate intestinal inflammation
through AhR-mediated decreased IFN-γ, IL-6, IL-12, TNF-α, IL-7, and IL-17, along with
reduced microbial translocation in the gut [23]. Moreover, activation of AhR increases
the production of IL-10, IL-22, and AMPs. Furthermore, IL-17A plays a critical role in
maintaining mucosal barrier integrity by increasing tight junctions [34].

Upon AhR activation in the gut, there is improvement of epithelial barrier [23]. AhR
maintain intestinal permeability and ameliorating DSS-induced colitis [35]. The epithelial
barrier function is regulated by direct and indirect mechanisms of AhR activation. When
AhR is activated, there are inhibition of TNF-α/IFN-γ-induced decrease in TJ disruption [5]
or increased TJ protein expression in response to IL-22 [36]. Therefore, AhR constrains pro-
inflammatory pathways in intestinal epithelial cells (IECs), and thus, preserves intestinal
permeability.

Altered intestinal permeability, a component of the intestinal barrier, plays a role in
many pathological conditions [37]. Butyrate makes a contribution in activating hypoxia-
inducible factor (HIF) in the hypoxic region of the colon, consequently promoting intestinal
epithelial barrier function, antimicrobial defense, and mucus production [38]. Vitamin
D-treated IECs showed increased TEER, with upregulation of ZO-1, occludin, and several
claudins [39], while VDR-deleted mice showed increased colonic permeability and sus-
ceptibility to DSS-induced colitis [39]. The protective role of VD3 and VDR was shown
in the mucosal injury and epithelial TJs disruption with reduced intestinal permeability
and severity in DSS-induced acute colitis [40]. Administration of vitamin D to mice in
DSS-colitis model [41] shored the expression of TJ proteins, enhanced barrier function, and
decreased intestinal permeability and circulating levels of LPS, leading to improved colitis
symptoms.

Additionally, the production of antimicrobial cathelicidin, such as LL-37, is modulated
by butyrate or propionate in colonocytes [42]. Butyrate was shown to augment levels of LL-
37 in Caco-2 and HT-29 cells [43]. The probable associations of LL-37 in host protection were
disclosed by Raqib et al. [44], who showed that butyrate upregulated the expression of CAP-
18, the rabbit homologue to LL-37, which is critical for protection against shigella infection.
Aside from cathelicidin, acetate, propionate, butyrate, as well as phenyl derivatives of
butyrate, were able to enhance β-defensin 2 and β-defensin 3 expression in a porcine-
derived colon cell line [45]. This finding was further elucidated by the finding [46] that
butyrate was capable of arousing the expression of β-defensin 2 and β-defensin 3 in the
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colon and ileum of pigs, which eventually gave rise to protection against severe infection
with E. coli. LL-37 expression was relying on butyrate activation of MEK–ERK pathway
in the human colon cancer cell line SW620 [42], whereas p38/MAP kinase displays little
effect on AMP production [42]. C-Jun N-terminal kinase (JNK) also positively regulates
phenylbutyrate-induced cathelicidin production in tissue epithelial cells [47]. Moreover,
GPR43 mediated the SCFAs-induced expression of AMPs via activation of STAT3 and
mTOR [48].

AhR is a ligand-activated transcription factor that is vital for intestinal homeostasis by
suppressing inflammation and by sustaining the epithelial barrier in the gastrointestinal
tract [49], a rich source of AhR ligands, and to protect the gut upon infection or induced
colitis. AhR activation lightens E. coli-induced mastitis by strengthening tight junction pro-
tein expression and limiting NF-κB pathway activation [50]. Intestinal barrier dysfunction
has been associated in the pathogenesis and progression of septicemia. The tight junction
proteins expression is changed in an experimental model of sepsis [51]. Zonulin-dependent
intestinal barrier impairment is an early step leading to altered gut permeability and in-
creased morbidity/mortality in the DSS colitis model [52]. Zonulin is the only known
physiological modulator of intercellular tight junctions described so far that is involved
in immune/tolerance response balance. Loss of barrier function caused by upregulation
of zonulin brings about an uncontrolled influx of dietary and microbial antigens. The
two key ignitions of zonulin release are bacteria and gliadin. Several enteric pathogens,
including Salmonella typhi and E. coli, have been made known to cause zonulin release from
the intestine [25]. In patients with septicemia, an increase in their serum zonulin levels
was observed [53]. When patients were critically ill, their low vitamin D serum level (less
than 20 ng/dL) correlated with increased plasma zonulin and endotoxin concentration [54].
Treatment with the zonulin inhibitor AT-1001 markedly diminished the severity of IL-10
knockout colitis [55]. We observed inhibition of AhR increase zonulin expression, suggest-
ing that AhR exerts suppressive effect on zonulin expression of colon and AhR-mediated
decreased zonulin expression in colon tissue may explain the reduced severity of Salmonella
colitis and invasiveness in liver and spleen.

During intestinal inflammation, Claudin-2 acts as a mediator of leaky gut barrier [56].
AhR activation by FICZ relieved colonic inflammation, reduced IL-6 and claudin-2 expres-
sion, and kept intestinal barrier function in a mouse model of DSS-induced colitis [6]. An
in vitro study also demonstrated that AhR ligand plays a protective effect on IL-6 induced
disruption of intestinal epithelial barrier function through repressing the expression of
claudin-2. In the same colitis mouse model, AHR ablation leads to susceptibility to bac-
terial infection due to disruption of tight junction [5]. Salmonella infection considerably
boosted Claudin-2 expression, leading to a beneficial environment for bacterial invasion
and translocation [57]. A lack of VDR regulation results in a stout increase of Claudin-2 at
the mRNA and protein levels post-infection [57]. In DSS-treated VDR-/- mice, Claudin-2
was significantly increased. Furthermore, in ulcerative colitis patients, the inflamed intes-
tine had low VDR and increased Claudin-2. Claudin-2 and autophagy regulator ATG16L1
are VDR target genes [58]. The ability of VD3 on inhibiting inflammatory cytokine levels
and downregulating claudin-2 protein which was upregulated in active UC patients [59],
suggests that vitamin D may signify a potential therapeutic agent for the treatment of
active UC. Butyrate also impedes permeability-promoted claudin-2 tight junction protein
expression through an IL-10RA-dependent mechanism [60] to promote epithelial barrier
function.

From multiple in vitro and in vivo studies, several cytokines have been shown to me-
diate claudin-2 transcriptional regulation, including IL-6, TNF-α, IL-17A, and IL-22 [61–63].
IL17A promotes antimicrobial or epithelial barrier genes such as β-defensins, claudin [64],
and zona occludens 1. Enterohemorrhagic E. coli (EHEC) infection of C57Bl/6J mice
showed markedly augmented claudin-2 expression that correlated with increased intestinal
permeability [65]. TNFα has well characterized roles in modulating TJ permeability [66].
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Limitations

The concept and study are novel and deserve to do further mechanistic investigations,
such as the following: (1) how vitamin D and butyrate influence each other in upregulating
AhR; (2) how molecules/cytokines (such as VD3, BU, AhR, IL-22, and IL-17a) can amelio-
rate Salmonella-induced colitis by modulating mucosal immunocytes (T cells, B cells, and
monocytes/macrophages); (3) the role of AhR-mediated autophagy on cross talk between
IECs and macrophage to promote intestinal barrier function. These are all important issues
to clarify the pivotal role of AhR in the mechanism of the Salmonella colitis and find out
the better solution to defense the disease. Furthermore, mechanistic experiments using
VDR-knockout (KO) and AhR-KO mice will make the story clearer than inhibitors; however,
literature on this topic is currently not available in Taiwan.

5. Conclusions

We observed that the combination of butyrate and VD3 synergistically upregulated
cecal cytokines mIL-17A and mIL-22, and the antimicrobial peptides mLL-37 (CRAMP)
and mBD-3 mRNA expressions in Salmonella colitis mice, compared to single treatment,
while reducing inflammatory cytokines, including Il-1β, IL-6, and TNF-α. Moreover, the
combination synergistically reduced the tight junction proteins zonulin and claudin-2
expression in cecal tissue and bacterial colonization in liver and spleen. Inhibition of AhR
abrogated the synergistic effects by the combined treatment, either on cecal mRNA and
tight junction proteins expression, as well as bacterial colonization. This suggests that AhR
is involved in the synergistic effects of combined butyrate and VD3 on the invasiveness
of Salmonella infection in colitis mice by enhancing antibacterial responses to defense
against infection but reducing tight junction proteins expression to block invasiveness.
These findings will not only explore how butyrate and vitamin D can strengthen the
human body’s innate immunity against invasion of Salmonella infection, but also the
critical role of AhR on the combined effects of postbiotics and VD3. Therapies aimed at
enhancing AhR activity, reversing the pathological effects of zonulin, restoring gut integrity,
optimizing an effective immune response represent exciting avenues of discovery, and
potential therapeutics for critically ill patients in the future. Globally, it will certainly
contribute to Salmonella infection control, and the same theory could be applied to various
pathogens; additionally, an extension of the therapeutic strategy may well be applied to the
research of other infections.
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