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Abstract: Cancer patients face increased susceptibility to invasive infections, primarily due to ulcera-
tive lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas
aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing
a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neu-
tropenia. This bacterial infection contributes significantly to morbidity and mortality rates among
such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on
1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we
investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa
sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established
through oral administration of 1 x 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6
mice undergoing chemotherapy. Throughout the infection process, mice were orally administered
butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3
led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen
of the mice. This reduction was attributed to an enhancement in the expression of defensive cy-
tokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and
claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when com-
pared to treatments administered individually. This study unveils a promising alternative therapy
that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived
P. aeruginosa sepsis.
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1. Introduction

Cancer patients face heightened susceptibility to invasive infections, attributed to
ulcerative lesions on mucosal surfaces and chemotherapy-induced immune suppression [1].
Studies conducted in hematology-oncology units have uncovered a significant prevalence
of intestinal carriage of Pseudomonas aeruginosa (P. aeruginosa), ranging from 11.7% to
37% [2]. The extraluminal translocation of intestinal P. aeruginosa stands as a crucial
pathogenic phenomenon and a significant contributor to systemic infections, particularly
in neutropenic patients with hematological malignancies [3]. In immunocompromised
hosts, such as individuals experiencing chemotherapy-induced neutropenia, P. aeruginosa
infections can be linked to a high risk of morbidity and mortality [4].

P. aeruginosa bacteremia is notorious for rapidly progressing to fatal sepsis, leading to
a high mortality rate, even in previously healthy infants and children [5], or among patients
receiving appropriate initial antimicrobial therapy [6]. Given that antibiotic usage poses a
risk factor for antimicrobial resistance in P. aeruginosa, it is imperative to formulate effective
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strategies for preventing nosocomial P. aeruginosa infections and concurrently minimizing
the reliance on antibiotics. Because diet plays a crucial and lasting role in the environmental
impact on human health, creating an effective strategy for nutritional management has the
potential to address antibiotic overuse and counteract antimicrobial resistance. Moreover,
immunotherapy, when administered either alone or in conjunction with antibiotics, holds
promise as a viable alternative therapy, offering potential effectiveness in treatment.

Community-acquired P. aeruginosa is a reported cause of infectious diarrhea in im-
munocompromised adults [7] and even immunocompetent children [8,9], sometimes result-
ing in necrotizing bowel lesions, complicated by fulminant septicemia, and high mortality
rates. Remarkably, cytokine responses following intestinal colonization by P. aeruginosa
were not confined to the intestinal tract but were also observable systemically [10]. Hence,
intestinal mucosa, first making contact with the pathogen, have a central part in the innate
immune response against P. aeruginosa infection. An effective immune response against
microbial infection requires the activation of the innate immune response. Yet, the un-
derstanding of the innate immune reactions within the intestinal mucosa to P. aeruginosa
remains largely obscure.

Numerous studies have uncovered a notable occurrence of vitamin D insufficiency
among critically ill patients diagnosed with sepsis [11]. For instance, Jeng et al. [12] demon-
strated that vitamin D insufficiency was prevalent in 100% of critically ill patients with
sepsis, 92% of critically ill patients without sepsis, and 66.5% of healthy controls. A sig-
nificant association between low serum 25(OH)D concentrations and an increase in blood
culture positivity and mortality in the critically ill was found [13]. A systematic review
and meta-analysis in adults found an association between vitamin D deficiency and an in-
creased susceptibility to sepsis [14]. Another systematic review and meta-analysis revealed
25(0OH)D deficiency in acute and critically ill children is high and associated with increased
mortality [15]. Moreover, epidemiological studies have linked vitamin D insufficiency to an
increased risk of sepsis [16]. The potential of vitamin D treatment in sepsis syndrome has
been explored in animal models, where the administration of 1,25(OH),D3 was associated
with improvements in blood coagulation parameters in sepsis [17]. Given the affordability
and safety of vitamin D supplementation, further investigation is warranted. Even marginal
improvements in sepsis outcomes could have a substantial public health impact.

Probiotics are “Live microorganisms, that when administered in adequate amounts,
confer a health benefit on the host” [18]. In our recent findings, we showcased the in-
troduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing
chemotherapy [19]. Hence, caution has been advised in administering probiotics to patients
with acute inflammation. Administration of postbiotics, the soluble factors produced by
probiotics, is an evolving therapeutic strategy that would avoid risks associated with the
administration of probiotics. Postbiotics are defined as “a preparation of inanimate mi-
croorganisms and/or their components that confers a health benefit on the host” [20]. One
undeniable advantage of postbiotics is their ability to circumvent the issue of acquiring
antibiotic resistance genes and virulence factors, which can potentially occur in vivo with
the use of probiotics. The favorable safety profile associated with postbiotics positions
them as rational candidates for utilization in functional foods. The UN’s Sustainable
Development goals for 2020 included the use of compounds with bioactive properties
proposed as a therapeutic strategy due to their stimulating effect on the host’s immune
system. Examples of postbiotics include short-chain fatty acids (SCFAs) such as acetate,
butyrate, and propionate. They influence various mucosal processes, including absorptive
functions, blood flow, mucus release, and cellular differentiation and proliferation. These
effects may have clinical significance, particularly in terms of colitis prevention and the
restoration of mucosal integrity.

For decades, the gut has been regarded as the motor of sepsis and multiple organ
dysfunction syndrome [21]. Any relevant invasive perturbation of the gut likely plays a
role in promoting systemic inflammation and infection in the critically ill. The presence
of the gut barrier is crucial in preventing excessive immune activation and potentially the
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development of sepsis [22]. Gut injury can not only propagate local damage and induce
intestinal hyperpermeability but can also cause translocation of intact bacteria into the
systemic circulation, with subsequent sepsis and organ failure. Permeability, in turn, is
controlled by T] proteins between each cell that regulate the paracellular space [23]. A leaky
gut is one of the factors contributing to the development of sepsis [24]. Some individuals
have a leaky gut where mucosal integrity is invasion-prone [25], and excessive cytokine
production and immune cell adhesion contribute to the development of sepsis. In an
inflamed intestine, the ability to decrease inflammatory mediators and enhance epithelial
barrier function may be the most critical intervention [26]. Therapies aimed at restoring
gut integrity, reversing the pathological effects of barrier dysfunction and optimizing an
effective immune response represent exciting avenues of investigation for septic patients in
the future.

Preserving barrier integrity is essential for maintaining the gastrointestinal and overall
health of the host. Stool butyrate concentrations were significantly lower in the critically
ill patients with sepsis in the intensive care unit [27]. Colonization of the intestine with
Roseburia intestinalis, a bacterium known for producing substantial amounts of butyrate,
resulted in a notable decrease in endotoxemia [28], likely attributed to the reinforcement of
the intestinal barrier, thus reducing the presence of inflammatory markers like lipopolysac-
charide and TNF-« in the serum. The intestinal epithelial barrier, with its intercellular tight
junctions (TJs), controls the equilibrium between tolerance and immunity to pathogens. It
underscores protective role of postbiotics on sepsis via maintenance of gut barrier integrity.

Hence, in this study, we investigated the impact of postbiotic butyrate combined
with 1,25-dihydroxyvitamin D3 (1,25D3) on the innate immune response and barrier
integrity of the colon mucosa in mice undergoing chemotherapy-induced gut-derived
P. aeruginosa sepsis.

2. Materials and Methods
2.1. Reagents

Butyrate, propionate, and cyclophosphamide were procured from Sigma (St. Louis,
MO, USA). 1,25-dihydroxyvitamin D3 (1,25D3), acquired from Biomol Research Labora-
tories (Plymouth, PA, USA), was stored as a stock solution in pure ethanol at —80 °C in
the absence of light. We obtained standard laboratory reagents from Sigma (St. Louis, MO,
USA) or Fisher Scientific (Pittsburgh, PA, USA).

2.2. Bacterial Strains

The opportunistic pathogen P. aeruginosa PAO1-LAC was provided by the Food In-
dustry Research and Development Institute (FIRDI). PAO1-LAC was cultured for 2 h at
37 °C in lysogeny broth supplemented with 50 ug/mL tetracycline. Subsequently, it was
diluted at a ratio of 1:100 in fresh broth and sub-cultured for 16 h at 37 °C under gentle
aeration. Following this, the bacteria were washed twice and suspended in PBS to achieve
a concentration of 107 CFU/mL.

2.3. Quantitative Real-Time PCR Analysis of Cecum RNA

Cecal samples were procured and promptly preserved by flash freezing in liquid
nitrogen, followed by storage at a temperature of —80 °C. Total RNA was then extracted
from both cecal tissue using TRI Reagent (Ambio #15596018, Waltham, MA, USA) and a
Directzol RNA MiniPrep kit, following the manufacturer’s instructions. The RNA obtained
was converted into complementary DNA (cDNA) through reverse transcription, using a
PrimeScript™ RT Reagent Kit (TaKaRa, Cat #RR037A, Kusatsu, Japan). Reverse transcrip-
tion was conducted in a 20 pL reaction volume, with a final concentration of 1 ug of total
RNA. For the subsequent quantitative real-time PCR analysis, the cDNA samples were
subjected to the ABI 7500 Real-Time PCR System (Applied Biosystem, Waltham, MA, USA).
This analysis utilized the FAST SYBR GREEN MASTER MIX, following the manufacturer’s
instructions for optimal protocol execution.
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The primers for the mouse genes of interest and reaction protocol were set according
to previous reports [29-31]. Duplicate reactions were meticulously prepared, and a total
of forty amplification cycles were carried out on an ABI 7500 Real-Time PCR System from
Applied Biosystems. Each cycle consisted of denaturation at 95 °C for 1 min, annealing
at 54 °C for 1 min, and extension at 72 °C for 2 min. The cycle at which the fluorescence
surpassed a predefined threshold value during the exponential amplification phase, known
as the threshold cycle (Ct), was determined. For subsequent analysis, raw fluorescence
data (Rn and DRn) were acquired through the use of the ABI7500 software (SDS V2.3).
To standardize the quantity of transcripts, a normalization process was conducted. This
process entailed subtracting the mean Ct value of the reference transcript (GAPDH) from
the mean Ct value of the target transcript for each experimental condition. The difference
between the normalized Ct values of infected and/or treated cells and control cells served
as an indicator of alterations in mRNA expression. Throughout the methodology and
analysis, careful consideration was given to numerous facets of the MIQE guidelines [28].

2.4. Animal Experiments

Gut-derived P. aeruginosa sepsis was induced following previously established proto-
cols [32]. The mice used in this study were generously provided by the National Laboratory
Animal Center. Specifically, female C57BL/6 mice, aged six to eight weeks and raised in a
specific-pathogen—free (SPF) environment at the Kaohsiung Chang Gung Memorial Hos-
pital animal center, were utilized. All animal experiments conducted were in compliance
with legal requirements and approved by the Kaohsiung Chang Gung Memorial Hospital
Institutional Animal Care and Use Committee. The mice were categorized into five groups:
NA (open control), VD (1,25D3 treatment), PS (comparison group), BU (butyrate treatment),
and VD + BU (combined treatment with 1,25D3 and butyrate).

Before inducing the sepsis model, mice were orally administered 1,25D3 at a dose of
0.2 ug/25g mice (VD group), butyrate (BU), or a combination of both 1,25D3 and butyrate
(VD + BU group) for 3 days via oral gavage. Other groups were fed 100 uL of PBS (open
control and PS group). Water and food were provided ad libitum. From the fourth to
the seventh day, animals were infected with P. aeruginosa PAO1-LAC at a concentration
of 107 CFU suspended in 100 uL PBS, or given sterile 1xPBS buffer (100 pL) for the open
control group. After infection for 4 days, the mice were again treated with 1,25D3, butyrate,
or both for 7 days. Other groups were fed 100 pL of sterile 1xPBS (open control and
PS group). On the ninth and twelfth day, mice were given intraperitoneal injections of
150-200 mg/kg of cyclophosphamide (Infection group) or 1xPBS (open control). Following
the experimental procedures, mice were humanely euthanized using CO, asphyxiation.
Tissue samples from the spleens and livers were collected to assess bacterial colonization.
Additionally, samples from the cecum were promptly frozen in liquid nitrogen for mRNA
isolation. Some samples were fixed and embedded in paraffin to evaluate disease activity
and perform immunohistochemistry (IHC). For survival studies, mice were monitored on
weight and clinical score 96 h post bacterial infection (Supplementary Figure S1).

2.5. Clinical Scores

The Disease Activity Index (DAI) scores in mice, which provide an overall assessment
of their conditions and inflammation, were obtained by evaluating the extent of body
weight loss, stool consistency or presence of diarrhea, and the occurrence of fecal occult
blood or hematochezia, adhering to a standardized scoring system [33].

2.6. Histological Scores

Segments of the ileum, cecum, and colon were prepared for fixation and embedding
in paraffin following established protocols. Alternatively, tissue samples can be embedded
in O.C.T. compound (Sakura, Torrance, CA, USA), rapidly frozen in liquid nitrogen, and
stored at —80 °C. Subsequently, cryosections with thicknesses of 5 or 30 um were prepared
and placed onto glass slides. These sections are then allowed to air dry for 2 h at room
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temperature before staining with hematoxylin and eosin (H&E). In order to ensure an
unbiased evaluation, the tissue sections were anonymized before being assessed by a
pathologist. The pathologist assigned scores for the pathological changes, following our
previous reports [19].

2.7. Immunohistochemical (IHC) Staining

Colon segments were collected and fixed in a solution of 4% paraformaldehyde. Sub-
sequently, 5 um-thick sections of the colon, embedded in paraffin, were prepared. These
sections were then treated to inhibit the activity of endogenous peroxidase by incubating
them in a solution of 0.3% hydrogen peroxide in methanol for 20 min at room temperature.
For antigen retrieval, the sections underwent treatment with citrate buffer (pH 6.0) and were
exposed to three rounds of microwave heating, each lasting 5 min. Following this, the sec-
tions were blocked using 5% bovine serum albumin (BSA) at room temperature for 30 min.
They were subsequently incubated overnight at 4 °C with primary antibodies including ZO-
1 (1:50, Proteintech, Rosemont, IL., USA), Occludin (1:50, Proteintech), and Claudin-1 (1:50,
Proteintech). The next step involved incubating the sections with corresponding secondary
antibodies at room temperature for 40 min. After washing with phosphate-buffered serum
(PBS), the sections were subjected to an avidin-biotin complex, following the instructions
provided by the manufacturer of a Boster ABC Kit (Boster, Wuhan, China). To visualize
peroxidase activity, diaminobenzidine (DAB) was used as a chromogen. Following this, the
sections were counterstained with hematoxylin. Subsequent histological examination was
carried out using a Leica TCS SP light microscope (Leica, Heidelberg, Germany).

2.8. Statistical Analysis

All of the previously described experiments were conducted precisely, yielding con-
sistent outcomes. Statistical analyses were conducted using appropriate methods: paired
Student’s t-test was employed for comparing two variables when they were parametric,
while the Mann—-Whitney U test was utilized for nonparametric comparisons. For compar-
isons involving three or more nonparametric variables, Kruskal-Wallis one-way analysis of
variance was utilized. These statistical analyses were performed using GraphPad Prism
8 software, developed by GraphPad Software in San Diego, CA, USA. A significance
threshold of p < 0.05 was employed, with results at or below this threshold being deemed
statistically significant.

3. Results
3.1. The Combined Administration of Butyrate and 1,25D3 Effectively Reduces the Severity of
Colitis in Mice That Have Undergone Chemotherapy and Subsequently Developed Gut-Derived
P. aeruginosa Sepsis

To investigate the impact of combining 1,25D3 and postbiotics on the severity of colitis
in mice afflicted with gut-derived P. aeruginosa sepsis, we scrutinized the cecal pathology
of infected WT mice in the presence or absence of 1,25D3 (VD), butyrate (BU), or both
treatments. As seen in Figure 1a, consistent with a prior study [32], evident pathological
alterations were observed in the H&E-stained cecum sections from the infected WT mice
(Figure 1b). However, notably contrasting these observations, the combination treatment
involving BU and VD significantly mitigated the severity of colitis in mice receiving
chemotherapy and affected by gut-derived P. aeruginosa sepsis, including diarrhea and
pathologic scores. This improvement was evident in various aspects, including reduced
body weight loss, improved condition, and decreased pathologic scores in CH57B/6 mice
when compared to infection only.
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Figure 1. The combined administration of butyrate and 1,25D3 effectively mitigates colitis in mice
that have undergone chemotherapy and subsequently developed gut-derived P. aeruginosa sepsis.
Female C57BL/6 mice aged 6-8 weeks sourced from Charles River, USA, were bred and maintained
under specific-pathogen-free conditions at the Center for Cellular and Biomolecular Research in
Kaohsiung, Taiwan. These mice were infected with P. aeruginosa PAO1-LAC at a concentration of
107 CFU (suspended in 100 pL PBS). An open control group was administered 100 uL of sterile
1xPBS bulffer. Prior to and following infection, the mice were orally administered either a vehicle
control (5% dimethyl sulfoxide), 1,25D3 at a dosage of 0.2 pg/25g mice/day (VD group), butyrate
(BU group), or a combination of 1,25D3 and butyrate (VD + BU group) on a daily basis, as described
in the Materials and Methods section. Diarrhea situation scores (a) of mice were recorded daily. The
cecum specimens were surgically removed, fixed in formaldehyde, and subsequently processed for
staining with hematoxylin and eosin (H&E). (b) Representative histological images of the cecum from
various experimental groups were captured at magnifications of 2x, 20x and 50x. (c) Pathological
scoring for colitis was conducted based on the assessment of cecum sections obtained from mice in
different experimental groups. The data shown are means & SEM (1 = 6 mice/group). *, p < 0.05.
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3.2. Combination of 1,25D3 and Butyrate Enhanced Anti-Inflammatory Responses and
Antimicrobial Peptide Expression in Mice That had Undergone Chemotherapy and Developed
Gut-Derived P. aeruginosa Sepsis

To explore the effects of combined 1,25D3 and butyrate on inflammatory and antimi-
crobial peptide responses in mice subjected to chemotherapy and subsequent gut-derived
P. aeruginosa sepsis, we assessed the gene expression levels of cytokines and antimicrobial
peptides using real-time PCR in cecal tissue obtained from these mice. These assessments
were conducted in groups receiving treatment with 1,25D3 (VD), butyrate (BU), or a com-
bination of both (VD + BU). The cecal gene expression of IL-6, IL-13, TNF-«, IL-17A,
IL-22, and CRAMP (homologue of human cathelicidin LL-37) (Figure 2) was significantly
elevated in mice with gut-derived P. aeruginosa sepsis. In contrast, IL-6, IL-13, and TNF-&
were synergistically suppressed in the cecal tissue of mice that had undergone chemother-
apy and developed gut-derived P. aeruginosa sepsis but were treated with a combination
of active 1,25D3 and butyrate whereas IL-17A, IL-22, CRAMP, ATG16L1 and AhR were
synergistically enhanced.
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Figure 2. The immunoregulatory effects of combined administration of 1,25D3 and butyrate on cecal
cytokines and antimicrobial peptides in mice that had undergone chemotherapy and subsequently
developed gut-derived P. aeruginosa sepsis. Female C57BL/6 mice, aged 6 to 8 weeks and obtained
from Charles River, USA, were bred and housed under specific-pathogen-free conditions at the
animal facility within the Center for Cellular and Biomolecular Research in Kaohsiung, Taiwan.
Mice were either infected with P. aeruginosa PAO1-LAC at a concentration of 107 CFU suspended
in 100 L PBS or given 100 pL of sterile 1xPBS buffer as an open control. Before and after infection,
mice received daily oral gavage of vehicle control (5% dimethyl sulfoxide), vitamin D3 at a dose
of 0.2 ug/25 g mice/day (VD group), or butyrate (BU group), or a combination of both 1,25D3 and
butyrate (VD + BU group), as described in Section 2. Total RNA was isolated from the cecal tissues
of the mice. Subsequently, the gene expressions of various markers including IL-6 (a), IL-1f (b),
TNF-« (c), IL-17A (d), IL-22 (e), and CRAMP (a homolog of human cathelicidin LL-37) (f), as well
as ATG16L1 (g) and AhR (h) mRNA, were assessed using real-time quantitative PCR. The values
obtained were determined as fold increases relative to the levels observed in mice solely infected
with Salmonella for comparison purposes. The presented data are displayed as means =+ the standard
error of the mean (SEM) with a sample size of 7 mice per group (1 = 6 mice/group). An asterisk (*)
denotes significant differences observed among the groups, as determined by one-way analysis of
variance (ANOVA). *, p < 0.05.

Overall, these findings suggest the synergistic impact of combined 1,25D3 and butyrate
treatment on reducing the severity of colitis in mice that have undergone chemotherapy
and developed gut-derived P. aeruginosa sepsis. This effect is achieved by enhancing
antibacterial and anti-inflammatory responses, alongside the potential involvement of
ATG16L1 and AhR in mediating these synergistic effects.

3.3. Combination of Butyrate and Active 1,25D3 Attenuates Bacterial Translocation in Mice That
had Undergone Chemotherapy and Developed Gut-Derived P. aeruginosa Sepsis

Khailova et al. [34] demonstrated in their study that 1,25D3 has the potential to
decrease mortality and systemic bacterial translocation in experimental sepsis in weanling
mice. Additionally, they found that 1,25D3 could reduce bacterial translocation in the liver
and spleen in a mouse model of gut-derived P. aeruginosa sepsis. To further assess the
impact of combined treatment involving 1,25D3 and butyrate on tissue bacterial loads, liver
and spleen samples were obtained from mice with chemotherapy-induced gut-derived
P. aeruginosa sepsis that were treated with 1,25D3, butyrate, or a combination of both.
These tissue samples were homogenized and plated on LB plates to quantify the colony-
forming units (CFU). The results revealed that the combination of 1,25D3 and butyrate led
to a reduction in bacterial loads within the liver and spleen of mice that had undergone
chemotherapy and developed gut-derived P. aeruginosa sepsis (Figure 3).
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Figure 3. Combination of postbiotic butyrate and active 1,25D3 attenuates systemic translocation of
gut-derived P. aeruginosa in mice. Female C57BL/6 mice, aged 6 to 8 weeks and obtained from Charles
River, USA, were bred and housed under specific-pathogen-free conditions at the animal facility
within the Center for Cellular and Biomolecular Research in Kaohsiung, Taiwan. Mice were either
infected with P. aeruginosa PAO1-LAC at a concentration of 107 CFU suspended in 100 uL PBS or
given 100 pL of sterile 1xPBS buffer as an open control. Before and after infection, mice received daily
oral gavage of vehicle control (5% dimethyl sulfoxide), vitamin D3 at a dose of 0.2 ng/25 g mice/day
(VD group), or butyrate (BU group), or a combination of both 1,25D3 and butyrate (VD + BU group).
The quantities of bacteria retrieved from liver (a) and spleen (b) homogenates of infected and treated
mice were measured. The presented data are displayed as means + SEM (n = 6 mice/group). An
asterisk (*) denotes significant differences observed among the groups, as determined by one-way
analysis of variance (ANOVA). *, p < 0.05.

Altogether, the aforementioned study showed that the combined administration of
butyrate and 1,25D3 effectively mitigated the severity of colitis in mice that had undergone
chemotherapy and developed gut-derived P. aeruginosa sepsis. This effect was attributed
to the synergistic impact on anti-inflammatory responses and the inhibition of bacterial
invasiveness through enhanced antimicrobial peptide activity.

3.4. Combination of Butyrate and Active 1,25D3 Suppressed the Expression of Zonulin and
Claudin-2 Protein Expression in Cecal Tissue of Mice That had Undergone Chemotherapy and
Developed Gut-Derived P. aeruginosa Sepsis

Altered intestinal permeability, a component of the intestinal barrier, plays a role
in many pathological conditions [35], including sepsis. Zonulin-dependent intestinal
barrier impairment is an early step leading to altered gut permeability and increased
morbidity /mortality in the DSS colitis model [36]. To investigate the role of zonulin
and claudin-2 in chemotherapy-induced P. aeruginosa sepsis, we performed IHC to detect
the expression of zonulin and claudin-2 on the cecal tissue of mice that had undergone
chemotherapy and developed gut-derived P. aeruginosa sepsis. IHC staining revealed that
markedly increased expressions of zonulin and claudin-2 were observed in the cecal tissue
of mice with gut-derived P. aeruginosa sepsis compared with the untreated mice. However,
the combination of butyrate and active 1,25D3 attenuated the increase in zonulin and
claudin-2 protein expression in the cecal tissue of mice that had undergone chemotherapy
and developed gut-derived P. aeruginosa sepsis (Figure 4). These data indicate that a
combination of butyrate and 1,25D3 ameliorates bacterial translocation and sepsis in mice
that had undergone chemotherapy and developed gut-derived P. aeruginosa sepsis by
enhancing and maintaining intestinal T] barrier integrity.
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Figure 4. The combined use of butyrate and active 1,25D3 reduced the expression of zonulin and

claudin-2 proteins in the cecal tissue of mice that had undergone chemotherapy and subsequently
developed gut-derived P. aeruginosa sepsis. Female C57BL/6 mice, aged 6 to 8 weeks and obtained
from Charles River, USA, were bred and housed under specific-pathogen-free conditions at the
animal facility within the Center for Cellular and Biomolecular Research in Kaohsiung, Taiwan. Mice
were either infected with P. aeruginosa PAO1-LAC at a concentration of 107 CFU suspended in 100 uL
PBS or given 100 puL of sterile 1xPBS buffer as an open control. Prior to and after infection, the mice
were orally administered either a vehicle control (5% dimethyl sulfoxide), treated with 0.2 ug of
1,25D3 per 25 g of mice per day (VD group), given butyrate (BU group), or received both 1,25D3
and butyrate (VD + BU group) on a daily basis, as described in the Material and Methods section.
The detection of zonulin (a), claudin-2 (b) and AhR (c) expression in these groups was performed
through immunohistochemistry (IHC) staining (original magnification, 400 scale bar, 25 um; 1 = 3).
Zonulin (d), claudin-2 (e) and AhR (f) protein expressions in the IHC images were analyzed using
Image] software (Java 1.8.0_345). ** p< 0.01, *** p< 0.001.

4. Discussion

LL-37 is one of the most extensively investigated antimicrobial peptides (AMPs) within
the mammalian gene family. Produced by the mucosal epithelium, LL-37 is present in
mucosal secretions and plasma, where it demonstrates efficacy in effectively killing a va-
riety of Gram-negative bacteria. It exhibited maximal antibacterial activity [37] against
many pathogens. Currently, there is significant interest in AMP inducers, such as 1,25-
dihydroxyvitamin D3 and phenylbutyrate, due to their effectiveness in activating the
immune system for the treatment of chronic infections [38]. A randomized controlled trial
showed substantial benefits of combining oral phenylbutyrate and vitamin D3 therapy in
patients with pulmonary tuberculosis [39]. Currently, there is significant interest in AMP
inducers, such as 1,25-dihydroxyvitamin D3 and phenylbutyrate, due to their effectiveness
in activating the immune system for the treatment of chronic infections [35]. A randomized
controlled trial showed substantial benefits of combining oral phenylbutyrate and vitamin
D3 therapy in patients with pulmonary tuberculosis [36]. Recent evidence indicates that
vitamin D enhances the innate immune response [40,41] by inducing AMPs. Moreover,
vitamin D supplementation increases the expression and secretion of antimicrobial pep-
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tides against P. aeruginosa. Plasma concentrations of LL-37 were positively correlated with
those of vitamin D among ICU patients with sepsis [12]. Phenylbutyrate has been demon-
strated to induce LL-37-dependent autophagy and facilitate the intracellular elimination of
Moycobacterium tuberculosis in human macrophages [42].

Chemokines are key mediators of leukocyte recruitment during pathogenic insult
that direct the migration of leukocytes throughout the body under both physiological and
inflammatory conditions. P. aeruginosa is recognized for inducing neutrophilic inflammation
in airway epithelial cells, which triggers increased chemokine synthesis, including IL-8,
IL-17A [43] or IL-22 [44], consequently leading to neutrophil recruitment to infection sites.
This recruitment often results in tissue damage and progressive loss of function. IL-17A
and IL-22 enhance basic innate barrier defenses at mucosal surfaces, such as the production
of AMPs and neutrophil recruitment; both of these event defend against enteric bacterial
pathogens [45]. Colitis-associated epithelial injury and intestinal leakage can be exacerbated
in the absence of IL-17A signaling and reveals that IL-17A serves a beneficial role in the
intestinal epithelium by helping to maintain the epithelial tight-junction barrier during
inflammation [46]. The IL-17 pathway likely plays a critical role in conferring resistance
to and modulating the inflammatory response during acute P. aeruginosa infection [47-49].
Stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity,
while IL-22 promotes epithelial proliferation and repair following injury [50]. SCFAs can
enhance IL-17A expression under T17-inducing conditions [51]. Butyrate supplementation
has been shown to increase IL-22 production in intestinal immune cells, thereby mitigating
the severity of Citrobacter rodentium (C. rodentium) infection. This supplementation facilitates
the clearance of the pathogen and reduces its spread from the colon to the liver in wild-
type (WT) mice [52]. Furthermore, butyrate protects the intestines from inflammation
induced by both enteric infection and intestinal injury through the upregulation of IL-22
production [52].

1,25(0OH);D3 has been shown to diminish the production of pro-inflammatory cy-
tokines/chemokines, including IL-6, TNF-«, IL-13, and IL-8, subsequent to P. aeruginosa
infection [53]. Meanwhile, sodium butyrate has shown the ability to alleviate inflammatory
responses, reduce neutrophil infiltration and oxidative stress in the lungs, and provide
protection against distant acute lung injury resulting from severe burns [54]. This combined
action may contribute to establishing a mucosal barrier to prevent the invasion of the
intestinal epithelium by pathogenic microorganisms. We observed that the combination
of butyrate and 1,25D3 enhanced IL-17A, IL-22, and LL-37 expression but suppressed the
expression of proinflammatory cytokines in mice that had undergone chemotherapy and
suffered from P. aeruginosa sepsis.

Yoseph et al. showed that T] protein expression is altered in an experimental model
of sepsis [55]. Zonulin, the only known physiological modulator of intercellular TJs, is
regarded as a master regulator of intercellular TJ in health and disease. The inappropri-
ately increased production of zonulin by enteric pathogens [56] causes a functional loss
of barrier function and altered gut permeability, with a subsequent uncontrolled influx of
microbial antigens to trigger a submucosal innate immune response [57] and increased
morbidity /mortality in the DSS colitis model [36]. This suggests that zonulin acts as a
master regulator of intercellular TJ in sepsis. In patients with septicemia, serum zonulin
levels were found to be increased [58]. Butyrate has been shown to be a potent regulator of
zonulin (decreased serum zonulin concentration in arthritis mice) and the intestinal barrier
and appears to be an essential mediator between microbial dysbiosis and barrier function,
subsequently attenuating arthritic symptoms [59]. Sodium butyrate has been shown to
prevent the lethality associated with severe sepsis and protect against damage to the liver,
kidneys, and lungs in a sepsis model induced by cecal ligation and puncture (CLP) [60].
Vitamins D [61] has been observed to modulate the epithelial barrier by reducing serum
zonulin levels. Claudin-2 serves as a mediator of the leaky gut barrier during intestinal in-
flammation [62]. Pore pathway permeability is increased by pore-forming claudin-2 protein
upregulation, resulting in barrier loss and the inhibition of wound healing [63]. Claudin-2 is
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a potential therapeutic target for the modulation of T] pore and leak pathway permeability.
Unfortunately, no drug for claudin-2 modulation currently exists. Butyrate, unlike other
short-chain fatty acids (SCFAs), mitigates cytokine-induced barrier dysfunction by reduc-
ing the levels of claudin-2 [64], without altering the levels of other tight junction proteins.
Intravenous injection of butyrate at a dose of 200 mg/kg ameliorated intestinal injury and
improved the survival rate of rats in polymicrobial sepsis by strengthening intestinal barrier
function [65] and decreasing bacterial translocation [66]. Dietary sodium butyrate may
play an important role in recovering intestinal TJs with a positive effect on maintaining
gut integrity [67]. Moreover, LL-37 promotes intestinal barrier integrity accompanied by
modulation of the infiltration of neutrophils and monocytes/macrophages in polymicrobial
sepsis. Therefore, our observations revealed that the combined treatment of butyrate and
1,25D3 resulted in decreased mucosal expression of zonulin and claudin-2 proteins in the
cecum of mice who had undergone chemotherapy and developed P. aeruginosa sepsis. This
decrease was in contrast to untreated mice, leading to a reduction in the translocation of
bacteria to the liver, spleen, and blood.

The findings that AhR spies on bacterial communication, exerts distinct gene expres-
sion programs and translates the bacterial signaling vocabulary into the most appropriate
host defenses emphasize the crucial role for host AhR as a master regulator of host defense
responses, capable of tuning immune defense according to the stage of infection and dis-
ease [68]. Butyrate is not a direct ligand for AhR, but it stabilizes AhR, increasing its activity
in the presence of true ligands such as microbial pigment virulence factors from P. aerugi-
nosa. AhR signaling upregulates IL-22 production to produce antimicrobial peptides [69]
and inhibit inflammation and colitis in the gastrointestinal tracts of mice [70]. A recent
study also reported that the AhR protects against P. aeruginosa infection, as AhR-deficient
mice exhibited increased susceptibility to infection [71]. On the other hand, AhR™/~ mice
are hypersensitive to LPS-induced septic shock, suggesting that AhR may also be involved
in immune responses toward other Gram-negative bacteria [72-74]. Upon LPS treatment,
AhR~/~ mice exhibited increased serum levels of IL-6, IL-1 3, and TNF-«. In previous
studies, we observed the participation of AhR in the collective effects of postbiotics and
1,25D3. This involvement resulted in the suppression of cecal inflammatory responses,
downregulation of zonulin and claudin-2 proteins, and an increase in the expression of anti-
bacterial IL-22 and LL-37. These combined effects led to a decrease in the severity of colitis
and the invasion of Salmonella [30,31]. Likewise, we demonstrated that the combination of
butyrate and 1,25D3 exerts similar beneficial effects on gut-derived P. aeruginosa sepsis in
mice receiving chemotherapy, while the inhibition of AhR counteracted these effects. This
suggests that AhR is involved in the collective beneficial effects of butyrate and 1,25D3 on
cecal inflammation, expression of tight junction (T]) proteins, and invasion of gut-derived
P. aeruginosa infection in mice undergoing chemotherapy. In fact, molecular modeling
with an AhR ligand binding domain model suggested that vitamin D3 hydroxyderivatives
could serve as effective ligands for this receptor [75]. This discovery paves the way for
intriguing investigations into the interplay between various vitamin D3 hydroxyderivatives
and AhR, as well as the consequent activation of downstream signal transduction pathways.
The same is true for melatonin, which can play a beneficial role in the regulation of GI
functions [76].

In a P. aeruginosa sepsis model, a lack of autophagy protein showed impaired pathogen
clearance, decreased survival, and widespread dissemination of bacteria into the blood
and lung tissue [77]. Wu et al. reported that P. aeruginosa promotes autophagy, suppressing
macrophage-mediated bacterial phagocytosis and intracellular killing [78]. Recent research
indicates that autophagy positively or negatively regulates the innate immune response in
a cell-type-specific manner [79]. Previously, our in vitro study demonstrated that 1,25D3
enhanced VDR-mediated Atgl6L1 mRNA and membranous Atgl6L1 protein expression,
leading to enhanced autophagic clearance of Salmonella in intestinal epithelial cells but sup-
pressed IL-1p expression [80]. Likewise, this study observed that a combination of 1,25D3
and butyrate enhanced the autophagy gene ATG16L1 but suppressed proinflammatory
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IL-13 mRNA expression in chemotherapy-receiving mice complicated with gut-derived
P. aeruginosa sepsis.

Limitations

While the therapeutic potential of active vitamin D is promising, its clinical use has
been limited by the risk of hypercalcemia, a condition characterized by elevated levels
of calcium in the blood. However, a systematic review of existing studies [81] did not
find evidence to suggest that vitamin D or its analogues worsen colitis or pose harm to
participants. This indicates that they are generally well tolerated in the context of colitis
treatment. To address concerns regarding hypercalcemia, there is growing interest in
developing vitamin D analogues that exhibit selective binding to the vitamin D receptor
(VDR) without inducing elevated calcium levels. These selective VDR ligands could offer
the therapeutic benefits of vitamin D while minimizing the risk of adverse effects associated
with hypercalcemia. Such advancements hold promise for improving the safety and efficacy
of vitamin-D-based therapies for various conditions, including colitis. Indeed, while
animal studies provide valuable insights into the potential effects of interventions, their
translation to human applications requires cautious interpretation. Experimental models
serve as a critical platform for exploring the relationships between various interventions
and disease processes, providing a basis for further investigation. Moving forward, there is
a clear need for more clinical trials involving human participants to elucidate the impact of
combining postbiotics and vitamin D on infection outcomes. These trials can help determine
the optimal dosages and formulations of both postbiotics and vitamin D necessary to
achieve synergistic effects in humans. By conducting rigorous clinical research, we can
better understand how these interventions may benefit human health and inform future
therapeutic strategies.

5. Conclusions

P. aeruginosa has the highest fatality rate among Gram-negative bacteria and is also
the most common infection in the hospital. The generation of multi-drug resistant strains
also exacerbates this situation. This study explores, using a gut-derived P. aeruginosa sepsis
animal model, the benefits of using postbiotics plus VD in P. aeruginosa sepsis in patients re-
ceiving chemotherapy and the mechanisms of gut-derived P. aeruginosa sepsis, particularly
focusing on the interaction of AhR, innate immunity and autophagy in colon mucosa. This
strategy could be used to reduce the abuse of antibiotics and waste of resources in hospitals,
increase the productivity of family society, reduce economic depletion, and significantly
contribute to the global fight against multi-drug resistant P. aeruginosa infection. We can
extend this treatment to the study of various infections. Since AhR has been found to
control a variety of genes, we can further investigate its epigenetic regulation and disease
correlation to achieve preventive medicine and personalized treatment goals.
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