Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,104)

Search Parameters:
Keywords = SVM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 804 KiB  
Article
Beyond Classical AI: Detecting Fake News with Hybrid Quantum Neural Networks
by Volkan Altıntaş
Appl. Sci. 2025, 15(15), 8300; https://doi.org/10.3390/app15158300 - 25 Jul 2025
Abstract
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully [...] Read more.
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully connected neural layers with a parameterized quantum circuit, enabling the processing of textual data within both classical and quantum computational domains. To assess its effectiveness, we conducted experiments on the widely used LIAR dataset utilizing Term Frequency–Inverse Document Frequency (TF-IDF) features, as well as transformer-based DistilBERT embeddings. The experimental results demonstrate that the HQDNN achieves a superior recall performance—92.58% with TF-IDF and 94.40% with DistilBERT—surpassing traditional machine learning models such as Logistic Regression, Linear SVM, and Multilayer Perceptron. Additionally, we compare the HQDNN with SetFit, a recent CPU-efficient few-shot transformer model, and show that while SetFit achieves higher precision, the HQDNN significantly outperforms it in recall. Furthermore, an ablation experiment confirms the critical contribution of the quantum component, revealing a substantial drop in performance when the quantum layer is removed. These findings highlight the potential of hybrid quantum–classical models as effective and compact alternatives for high-sensitivity classification tasks, particularly in domains such as fake news detection. Full article
18 pages, 3717 KiB  
Article
A Hybrid LMD–ARIMA–Machine Learning Framework for Enhanced Forecasting of Financial Time Series: Evidence from the NASDAQ Composite Index
by Jawaria Nasir, Hasnain Iftikhar, Muhammad Aamir, Hasnain Iftikhar, Paulo Canas Rodrigues and Mohd Ziaur Rehman
Mathematics 2025, 13(15), 2389; https://doi.org/10.3390/math13152389 - 25 Jul 2025
Abstract
This study proposes a novel hybrid forecasting approach designed explicitly for long-horizon financial time series. It incorporates LMD (Local Mean Decomposition), SD (Signal Decomposition), and sophisticated machine learning methods. The framework for the NASDAQ Composite Index begins by decomposing the original time series [...] Read more.
This study proposes a novel hybrid forecasting approach designed explicitly for long-horizon financial time series. It incorporates LMD (Local Mean Decomposition), SD (Signal Decomposition), and sophisticated machine learning methods. The framework for the NASDAQ Composite Index begins by decomposing the original time series into stochastic and deterministic components using the LMD approach. This method effectively separates linear and nonlinear signal structures. The stochastic components are modeled using ARIMA to represent linear temporal dynamics, while the deterministic components are projected using cutting-edge machine learning methods, including XGBoost, Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs). This study employs various statistical metrics to evaluate the predictive ability across both short-term noise and long-term trends, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Directional Statistic (DS). Furthermore, the Diebold–Mariano test is used to determine the statistical significance of any forecast improvements. Empirical results demonstrate that the hybrid LMD–ARIMA–SD–XGBoost model consistently outperforms alternative configurations in terms of prediction accuracy and directional consistency. These findings demonstrate the advantages of integrating decomposition-based signal filtering with ensemble machine learning to improve the robustness and generalizability of long-term forecasting. This study presents a scalable and adaptive approach for modeling complex, nonlinear, and high-dimensional time series, thereby contributing to the enhancement of intelligent forecasting systems in the economic and financial sectors. As far as the authors are aware, this is the first study to combine XGBoost and LMD in a hybrid decomposition framework for forecasting long-horizon stock indexes. Full article
Show Figures

Figure 1

19 pages, 1339 KiB  
Article
Convolutional Graph Network-Based Feature Extraction to Detect Phishing Attacks
by Saif Safaa Shakir, Leyli Mohammad Khanli and Hojjat Emami
Future Internet 2025, 17(8), 331; https://doi.org/10.3390/fi17080331 - 25 Jul 2025
Abstract
Phishing attacks pose significant risks to security, drawing considerable attention from both security professionals and customers. Despite extensive research, the current phishing website detection mechanisms often fail to efficiently diagnose unknown attacks due to their poor performances in the feature selection stage. Many [...] Read more.
Phishing attacks pose significant risks to security, drawing considerable attention from both security professionals and customers. Despite extensive research, the current phishing website detection mechanisms often fail to efficiently diagnose unknown attacks due to their poor performances in the feature selection stage. Many techniques suffer from overfitting when working with huge datasets. To address this issue, we propose a feature selection strategy based on a convolutional graph network, which utilizes a dataset containing both labels and features, along with hyperparameters for a Support Vector Machine (SVM) and a graph neural network (GNN). Our technique consists of three main stages: (1) preprocessing the data by dividing them into testing and training sets, (2) constructing a graph from pairwise feature distances using the Manhattan distance and adding self-loops to nodes, and (3) implementing a GraphSAGE model with node embeddings and training the GNN by updating the node embeddings through message passing from neighbors, calculating the hinge loss, applying the softmax function, and updating weights via backpropagation. Additionally, we compute the neighborhood random walk (NRW) distance using a random walk with restart to create an adjacency matrix that captures the node relationships. The node features are ranked based on gradient significance to select the top k features, and the SVM is trained using the selected features, with the hyperparameters tuned through cross-validation. We evaluated our model on a test set, calculating the performance metrics and validating the effectiveness of the PhishGNN dataset. Our model achieved a precision of 90.78%, an F1-score of 93.79%, a recall of 97%, and an accuracy of 93.53%, outperforming the existing techniques. Full article
(This article belongs to the Section Cybersecurity)
Show Figures

Graphical abstract

4119 KiB  
Proceeding Paper
A Hybrid Machine Learning Approach to Power Load Optimization and Emission Reduction in Rural Microgrids
by Anirban Maity, Atanu Roy, Sajjan Kumar, Sabyasachi Pramanik, Pulok Pattanayak and Manashi Chakraborty
Eng. Proc. 2025, 93(1), 21; https://doi.org/10.3390/engproc2025093021 - 24 Jul 2025
Abstract
Fluctuating weather patterns challenge renewable energy stability in microgrids, making accurate load forecasting essential. This study focuses on power load forecasting in rural microgrids in the Diamond Harbour sector of Kolkata, India. The current research proposes long short-term memory for weather prediction and [...] Read more.
Fluctuating weather patterns challenge renewable energy stability in microgrids, making accurate load forecasting essential. This study focuses on power load forecasting in rural microgrids in the Diamond Harbour sector of Kolkata, India. The current research proposes long short-term memory for weather prediction and artificial neural networks for load forecasting under different climatic conditions. The result shows higher prediction accuracy (R2: 0.8852, MSE: 0.0043), outperforming GRU, SVM, ARIMA, and SARIMA, contributing to Sustainable Development Goals 7 and 13, which is essential for a sustainable and resilient power supply. Full article
Show Figures

Figure 1

19 pages, 3444 KiB  
Article
Snow Depth Retrieval Using Sentinel-1 Radar Data: A Comparative Analysis of Random Forest and Support Vector Machine Models with Simulated Annealing Optimization
by Yurong Cui, Sixuan Chen, Guiquan Mo, Dabin Ji, Lansong Lv and Juan Fu
Remote Sens. 2025, 17(15), 2584; https://doi.org/10.3390/rs17152584 - 24 Jul 2025
Abstract
Snow plays a crucial role in global climate regulation, hydrological processes, and environmental change, making the accurate acquisition of snow depth data highly significant. In this study, we used Sentinel-1 radar data and employed a simulated annealing algorithm to select the optimal influencing [...] Read more.
Snow plays a crucial role in global climate regulation, hydrological processes, and environmental change, making the accurate acquisition of snow depth data highly significant. In this study, we used Sentinel-1 radar data and employed a simulated annealing algorithm to select the optimal influencing factors from radar backscatter characteristics and spatiotemporal geographical parameters within the study area. Snow depth retrieval was subsequently performed using both random forest (RF) and Support Vector Machine (SVM) models. The retrieval results were validated against in situ measurements and compared with the long-term daily snow depth dataset of China for the period 2017–2019. The results indicate that the RF model achieves better agreement with the measured data than existing snow depth products. Specifically, in the Xinjiang region, the RF model demonstrates superior performance, with an R2 of 0.92, a root mean square error (RMSE) of 2.61 cm, and a mean absolute error (MAE) of 1.42 cm. In contrast, the SVM regression model shows weaker agreement with the observations, with an R2 lower than that of the existing snow depth product (0.51) in Xinjiang, and it performs poorly in other regions as well. Overall, the SVM model exhibits deficiencies in both predictive accuracy and spatial stability. This study provides a valuable reference for snow depth retrieval research based on active microwave remote sensing techniques. Full article
(This article belongs to the Special Issue Snow Water Equivalent Retrieval Using Remote Sensing)
Show Figures

Figure 1

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

23 pages, 6229 KiB  
Article
Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform
by Jingwen Yang, Demi Ai and Duluan Zhang
Buildings 2025, 15(15), 2616; https://doi.org/10.3390/buildings15152616 - 23 Jul 2025
Viewed by 38
Abstract
The identification of structural damage types remains a key challenge in electromechanical impedance/admittance (EMI/EMA)-based structural health monitoring realm. This paper proposed a damage classification approach for concrete structures by using integrating discrete wavelet transform (DWT) decomposition of EMA signatures with supervised machine learning. [...] Read more.
The identification of structural damage types remains a key challenge in electromechanical impedance/admittance (EMI/EMA)-based structural health monitoring realm. This paper proposed a damage classification approach for concrete structures by using integrating discrete wavelet transform (DWT) decomposition of EMA signatures with supervised machine learning. In this approach, the EMA signals of arranged piezoelectric ceramic (PZT) patches were successively measured at initial undamaged and post-damaged states, and the signals were decomposed and processed using the DWT technique to derive indicators including the wavelet energy, the variance, the mean, and the entropy. Then these indicators, incorporated with traditional ones including root mean square deviation (RMSD), baseline-changeable RMSD named RMSDk, correlation coefficient (CC), and mean absolute percentage deviation (MAPD), were processed by a support vector machine (SVM) model, and finally damage type could be automatically classified and identified. To validate the approach, experiments on a full-scale reinforced concrete (RC) slab and application to a practical tunnel segment RC slab structure instrumented with multiple PZT patches were conducted to classify severe transverse cracking and minor crack/impact damages. Experimental and application results cogently demonstrated that the proposed DWT-based approach can precisely classify different types of damage on concrete structures with higher accuracy than traditional ones, highlighting the potential of the DWT-decomposed EMA signatures for damage characterization in concrete infrastructure. Full article
Show Figures

Figure 1

21 pages, 2869 KiB  
Article
State of Health Estimation for Lithium-Ion Batteries Based on TCN-RVM
by Yu Zhao, Yonghong Xu, Yidi Wei, Liang Tong, Yiyang Li, Minghui Gong, Hongguang Zhang, Baoying Peng and Yinlian Yan
Appl. Sci. 2025, 15(15), 8213; https://doi.org/10.3390/app15158213 - 23 Jul 2025
Viewed by 55
Abstract
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; [...] Read more.
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; for instance, some studies rely on features whose physical correlation with SOH lacks strict verification, or the models struggle to simultaneously capture the temporal dynamics of health factors and nonlinear mapping relationships. To address this, this paper proposes an SOH estimation method based on incremental capacity (IC) curves and a Temporal Convolutional Network—Relevance Vector Machine (TCN-RVM) model, with core innovations reflected in two aspects. Firstly, five health factors are extracted from IC curves, and the strong correlation between these features and SOH is verified using both Pearson and Spearman coefficients, ensuring the physical rationality and statistical significance of feature selection. Secondly, the TCN-RVM model is constructed to achieve complementary advantages. The dilated causal convolution of TCN is used to extract temporal local features of health factors, addressing the insufficient capture of long-range dependencies in traditional models; meanwhile, the Bayesian inference framework of RVM is integrated to enhance the nonlinear mapping capability and small-sample generalization, avoiding the overfitting tendency of complex models. Experimental validation is conducted using the lithium-ion battery dataset from the University of Maryland. The results show that the mean absolute error of the SOH estimation using the proposed method does not exceed 0.72%, which is significantly superior to comparative models such as CNN-GRU, KELM, and SVM, demonstrating higher accuracy and reliability compared with other models. Full article
17 pages, 1848 KiB  
Article
Research on Attack Node Localization in Cyber–Physical Systems Based on Residual Analysis and Cooperative Game Theory
by Zhong Sun and Xinchun Jie
Electronics 2025, 14(15), 2943; https://doi.org/10.3390/electronics14152943 - 23 Jul 2025
Viewed by 44
Abstract
With the widespread application of cyber–physical systems (CPS) in the field of automation, security concerns have become increasingly prominent. One critical and urgent challenge is the accurate identification of sensor nodes compromised by false data injection (FDI) attacks in multiple-input multiple-output (MIMO) control [...] Read more.
With the widespread application of cyber–physical systems (CPS) in the field of automation, security concerns have become increasingly prominent. One critical and urgent challenge is the accurate identification of sensor nodes compromised by false data injection (FDI) attacks in multiple-input multiple-output (MIMO) control systems. Building on the implementation of multi-step sampling and residual-based anomaly detection using a support vector machine (SVM), this paper further introduces the Shapley value evaluation method from cooperative game theory and a voting mechanism, and proposes a method for node attack localization. First, multi-step sampling is conducted within each control period to provide a large amount of effective data for the localization of attacked sensor nodes. Next, the residual between the estimated value of the MIMO system’s full response and the actual value received by the controller is calculated, and an SVM model is used to detect anomalies in the residual. Finally, the Shapley value contribution of each residual to the SVM anomaly detection result is evaluated based on cooperative game theory and combined with a voting mechanism to achieve accurate localization of the attacked sensor nodes. Simulation results demonstrate that the proposed method achieves an anomaly detection accuracy of 96.472% and can accurately localize attacked nodes in both single-node and multi-node attack scenarios, indicating strong robustness and practical applicability. Full article
Show Figures

Figure 1

24 pages, 8682 KiB  
Article
Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO
by Shaokang Li, Wenzhe Dong and Aili Qu
Pharmaceuticals 2025, 18(8), 1092; https://doi.org/10.3390/ph18081092 - 23 Jul 2025
Viewed by 30
Abstract
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims [...] Read more.
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims to predict the inhibitory effects of Osimertinib derivatives against EGFRL858R/T790M/C797S mutations. Methods: Six models were established using heuristic method (HM), random forest (RF), gene expression programming (GEP), gradient boosting decision tree (GBDT), polynomial kernel function support vector machine (SVM), and mixed kernel function SVM (MIX-SVM). The descriptors for these models were selected by the heuristic method or XGBoost. Comprehensive learning particle swarm optimizer was adopted to optimize hyperparameters. Additionally, the internal and external validation were performed by leave-one-out cross-validation (QLOO2), 5-fold cross validation (Q5fold2) and concordance correlation coefficient (CCC), QF12, and QF22. The properties of novel EGFR inhibitors were explored through molecular docking analysis. Results: The model established by MIX-SVM whose kernel function is a convex combination of three regular kernel functions is best: R2 and RMSE for training set and test set are 0.9445, 0.1659 and 0.9490, 0.1814, respectively; QLOO2, Q5fold2, CCC, QF12, and QF22 are 0.9107, 0.8621, 0.9835, 0.9689, and 0.9680. Based on these results, the IC50 values of 162 newly designed compounds were predicted using the HM model, and the top four candidates with the most favorable physicochemical properties were subsequently validated through PEA. Conclusions: The MIX-SVM method will provide useful guidance for the design and screening of novel EGFRL858R/T790M/C797S inhibitors. Full article
(This article belongs to the Special Issue QSAR and Chemoinformatics in Drug Design and Discovery)
Show Figures

Graphical abstract

21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Viewed by 89
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

18 pages, 1794 KiB  
Article
Detection of Cumulative Bruising in Prunes Using Vis–NIR Spectroscopy and Machine Learning: A Nonlinear Spectral Response Approach
by Lisi Lai, Hui Zhang, Jiahui Gu and Long Wen
Appl. Sci. 2025, 15(15), 8190; https://doi.org/10.3390/app15158190 - 23 Jul 2025
Viewed by 31
Abstract
Early and accurate detection of mechanical damage in prunes is crucial for preserving postharvest quality and enabling automated sorting. This study proposes a practical and reproducible method for identifying cumulative bruising in prunes using visible–near-infrared (Vis–NIR) reflectance spectroscopy coupled with machine learning techniques. [...] Read more.
Early and accurate detection of mechanical damage in prunes is crucial for preserving postharvest quality and enabling automated sorting. This study proposes a practical and reproducible method for identifying cumulative bruising in prunes using visible–near-infrared (Vis–NIR) reflectance spectroscopy coupled with machine learning techniques. A self-developed impact simulation device was designed to induce progressive damage under controlled energy levels, simulating realistic postharvest handling conditions. Spectral data were collected from the equatorial region of each fruit and processed using a hybrid modeling framework comprising continuous wavelet transform (CWT) for spectral enhancement, uninformative variable elimination (UVE) for optimal wavelength selection, and support vector machine (SVM) for classification. The proposed CWT-UVE-SVM model achieved an overall classification accuracy of 93.22%, successfully distinguishing intact, mildly bruised, and cumulatively damaged samples. Notably, the results revealed nonlinear reflectance variations in the near-infrared region associated with repeated low-energy impacts, highlighting the capacity of spectral response patterns to capture progressive physiological changes. This research not only advances nondestructive detection methods for prune grading but also provides a scalable modeling strategy for cumulative mechanical damage assessment in soft horticultural products. Full article
Show Figures

Figure 1

31 pages, 4920 KiB  
Article
Quantifying the Geopark Contribution to the Village Development Index Using Machine Learning—A Deep Learning Approach: A Case Study in Gunung Sewu UNESCO Global Geopark, Indonesia
by Rizki Praba Nugraha, Akhmad Fauzi, Ernan Rustiadi and Sambas Basuni
Sustainability 2025, 17(15), 6707; https://doi.org/10.3390/su17156707 - 23 Jul 2025
Viewed by 63
Abstract
The Gunung Sewu UNESCO Global Geopark (GSUGGp) is one of Indonesia’s 12 UNESCO-designated geoparks. Its presence is expected to enhance rural development by boosting the local economy through tourism. However, there is a lack of statistical evidence quantifying the economic benefits of geopark [...] Read more.
The Gunung Sewu UNESCO Global Geopark (GSUGGp) is one of Indonesia’s 12 UNESCO-designated geoparks. Its presence is expected to enhance rural development by boosting the local economy through tourism. However, there is a lack of statistical evidence quantifying the economic benefits of geopark development, mainly due to the complex, non-linear nature of these impacts and limited village-level economic data available in Indonesia. To address this gap, this study aims to measure how socio-economic and environmental factors contribute to the Village Development Index (VDI) within the GSUGGp area, which includes the districts of Gunung Kidul, Wonogiri, and Pacitan. A machine learning–deep learning approach was employed, utilizing four algorithms grouped into eight models, with hyperparameter tuning and cross-validation, tested on a sample of 92 villages. The analysis revealed insights into how 17 independent variables influence the VDI. The Artificial Neural Network (ANN) algorithm outperformed others, achieving an R-squared of 0.76 and an RMSE of 0.040, surpassing random forest, CART, SVM, and linear models. Economically related factors—considered the foundation of rural development—had the strongest impact on village progress within GSUGGp. Additionally, features related to tourism, especially beach tourism linked to geological landscapes, contributed significantly. These findings are valuable for guiding geopark management and policy decisions, emphasizing the importance of integrated strategies and strong cooperation among local governments at the regency and provincial levels. Full article
(This article belongs to the Special Issue GeoHeritage and Geodiversity in the Natural Heritage: Geoparks)
Show Figures

Figure 1

22 pages, 3969 KiB  
Article
CLB-BER: An Approach to Electricity Consumption Behavior Analysis Using Time-Series Symmetry Learning and LLMs
by Jingyi Su, Nan Zhang, Yang Zhao and Hua Chen
Symmetry 2025, 17(8), 1176; https://doi.org/10.3390/sym17081176 - 23 Jul 2025
Viewed by 59
Abstract
This study proposes an application framework based on Large Language Models (LLMs) to analyze multimodal heterogeneous data in the power sector and introduces the CLB-BER model for classifying user electricity consumption behavior. We first employ the Euclidean–Cosine Dynamic Windowing (ECDW) method to optimize [...] Read more.
This study proposes an application framework based on Large Language Models (LLMs) to analyze multimodal heterogeneous data in the power sector and introduces the CLB-BER model for classifying user electricity consumption behavior. We first employ the Euclidean–Cosine Dynamic Windowing (ECDW) method to optimize the adjustment phase of the CLUBS clustering algorithm, improving the classification accuracy of electricity consumption patterns and establishing a mapping between unlabeled behavioral features and user types. To overcome the limitations of traditional clustering algorithms in recognizing emerging consumption patterns, we fine-tune a pre-trained DistilBERT model and integrate it with a Softmax layer to enhance classification performance. The experimental results on real-world power grid data demonstrate that the CLB-BER model significantly outperforms conventional algorithms in terms of classification efficiency and accuracy, achieving 94.21% accuracy and an F1 score of 94.34%, compared to 92.13% accuracy for Transformer and lower accuracy for baselines like KNN (81.45%) and SVM (86.73%); additionally, the Improved-C clustering achieves a silhouette index of 0.63, surpassing CLUBS (0.62) and K-means (0.55), underscoring its potential for power grid analysis and user behavior understanding. Our framework inherently preserves temporal symmetry in consumption patterns through dynamic sequence alignment, enhancing its robustness for real-world applications. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

25 pages, 1072 KiB  
Review
EEG-Based Biometric Identification and Emotion Recognition: An Overview
by Miguel A. Becerra, Carolina Duque-Mejia, Andres Castro-Ospina, Leonardo Serna-Guarín, Cristian Mejía and Eduardo Duque-Grisales
Computers 2025, 14(8), 299; https://doi.org/10.3390/computers14080299 - 23 Jul 2025
Viewed by 172
Abstract
This overview examines recent advancements in EEG-based biometric identification, focusing on integrating emotional recognition to enhance the robustness and accuracy of biometric systems. By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals based on neural responses. The overview [...] Read more.
This overview examines recent advancements in EEG-based biometric identification, focusing on integrating emotional recognition to enhance the robustness and accuracy of biometric systems. By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals based on neural responses. The overview discusses the influence of emotional states on EEG signals and the consequent impact on biometric reliability. It also evaluates recent emotion recognition techniques, including machine learning methods such as support vector machines (SVMs), convolutional neural networks (CNNs), and long short-term memory networks (LSTMs). Additionally, the role of multimodal EEG datasets in enhancing emotion recognition accuracy is explored. Findings from key studies are synthesized to highlight the potential of EEG for secure, adaptive biometric systems that account for emotional variability. This overview emphasizes the need for future research on resilient biometric identification that integrates emotional context, aiming to establish EEG as a viable component of advanced biometric technologies. Full article
(This article belongs to the Special Issue Multimodal Pattern Recognition of Social Signals in HCI (2nd Edition))
Show Figures

Figure 1

Back to TopTop