Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = SARS-CoV-2 spike glycoprotein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2175 KB  
Article
In Silico Ligand-Based Screening of PDB Database for Searching Unique Motifs Against SARS-CoV-2
by Andrey V. Machulin, Juliya V. Badaeva, Sergei Y. Grishin, Evgeniya I. Deryusheva and Oxana V. Galzitskaya
Biomolecules 2026, 16(1), 163; https://doi.org/10.3390/biom16010163 - 19 Jan 2026
Viewed by 204
Abstract
SARS-CoV-2, the virus responsible for coronavirus disease COVID-19, is a highly transmissible pathogen that has caused substantial global morbidity and mortality. The ongoing COVID-19 pandemic caused by this virus has had a significant impact on public health and the global economy. One approach [...] Read more.
SARS-CoV-2, the virus responsible for coronavirus disease COVID-19, is a highly transmissible pathogen that has caused substantial global morbidity and mortality. The ongoing COVID-19 pandemic caused by this virus has had a significant impact on public health and the global economy. One approach to combating COVID-19 is the development of broadly neutralizing antibodies for prevention and treatment. In this work, we performed an in silico ligand-based screening of the PDB database to search for unique anti-SARS-CoV-2 motifs. The collected data were organized and presented in a classified SARS-CoV-2 Ligands Database, categorized based on the number of ligands and structural components of the spike glycoprotein. The database contains 1797 entries related to the structures of the spike glycoprotein (UniProt ID: P0DTC2), including both full-length molecules and their fragments (individual domains and their combinations) with various ligands, such as angiotensin-converting enzyme II and antibodies. The database’s capabilities allow users to explore various datasets according to the research objectives. To search for motifs in the receptor-binding domain (RBD) most frequently involved in antibody binding sites, antibodies were classified into four classes according to their location on the RBD; for each class, special binding motifs are revealed. In the RBD binding sites, specific tyrosine-containing motifs were found. Data obtained may help speed up the creation of new antibody-based therapies, and guide the rational design of next-generation vaccines. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

17 pages, 3283 KB  
Article
Development and Application of a Pseudovirus-Based Assay for Modelling SARS-CoV-2 Spike Protein Mediated Drug Screening
by Shokhrukh A. Khasanov, Iana L. Esaulkova, Alexandrina S. Volobueva, Alexander V. Slita, Daria V. Kriger, Dmitri Tentler, Olga I. Yarovaya, Anastasia S. Sokolova, Andrey N. Gorshkov, Anna S. Dolgova, Irina N. Lavrentieva, Vladimir G. Dedkov, Nariman F. Salakhutdinov and Vladimir V. Zarubaev
Int. J. Mol. Sci. 2026, 27(2), 791; https://doi.org/10.3390/ijms27020791 - 13 Jan 2026
Viewed by 300
Abstract
Requirements for novel effective antiviral agents against SARS-CoV-2 emphasizes the importance of robust in vitro screening platforms. We developed a test system based on spike-pseudotyped lentiviruses, carrying either luc+ or EGFP reporter genes as a payload, and a human non-small cell lung carcinoma [...] Read more.
Requirements for novel effective antiviral agents against SARS-CoV-2 emphasizes the importance of robust in vitro screening platforms. We developed a test system based on spike-pseudotyped lentiviruses, carrying either luc+ or EGFP reporter genes as a payload, and a human non-small cell lung carcinoma (NSCLC) cell line, overexpressing ACE2 (H1299-hACE2). The cell origin makes our system resemble lung epithelium infection. Transmission electron microscopy confirmed that the spike glycoproteins on the pseudotyped lentiviral particles resemble native SARS-CoV-2 spike glycoproteins, thus validating their use in inhibitor screening. H1299-hACE2 cells showed significantly higher infection rate (p < 0.005) with spike-pseudotyped lentiviruses compared to parental H1299 cells, as determined by luciferase and fluorescence assays. The susceptibility of the stable H1299-hACE2 cell line to a broad panel of SARS-CoV-2 variants (Wuhan, Beta, Delta, Omicron) was assessed here for the first time in a unified experimental setting. Infection of H1299-hACE2 cells with SARS-CoV-2 induced cell fusion and syncytium formation with subsequent cell death. The developed pseudovirus-based assay was further used for assessment of the antiviral properties of derivatives of 1,7,7-trimethyl-[2.2.1]-bicycloheptane-potential spike protein inhibitors, which possess moderate activity against lentiviral particles. The H1299-hACE2/spike-pseudotyped lentivirus assay is, therefore, a reliable, high-efficiency platform for screening spike-mediated entry inhibitors. The cell line obtained during the development of the platform can be used to isolate and study new variants of SARS-CoV-2. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 7281 KB  
Article
Beyond the Spike Glycoprotein: Mutational Signatures in SARS-CoV-2 Structural Proteins
by Emil Tonon, Riccardo Cecchetto, Virginia Lotti, Anna Lagni, Erica Diani, Asia Palmisano, Marco Mantoan, Livio Montesarchio, Francesca Palladini, Giona Turri and Davide Gibellini
Infect. Dis. Rep. 2025, 17(6), 150; https://doi.org/10.3390/idr17060150 - 18 Dec 2025
Viewed by 357
Abstract
Background: The continuous emergence of SARS-CoV-2 variants represents a major public health concern. Next-generation sequencing (NGS) enables genomic surveillance, facilitating the detection and monitoring of mutations that impact viral evolution. Methods: In this study, full-length SARS-CoV-2 genomes were analyzed between February 2022 and [...] Read more.
Background: The continuous emergence of SARS-CoV-2 variants represents a major public health concern. Next-generation sequencing (NGS) enables genomic surveillance, facilitating the detection and monitoring of mutations that impact viral evolution. Methods: In this study, full-length SARS-CoV-2 genomes were analyzed between February 2022 and March 2024 as part of routine genomic surveillance conducted in Verona, Italy. Mutations in the envelope (E), membrane (M), and nucleocapsid (N) structural proteins were investigated. Only substitutions with a total prevalence of greater than 1% in the study dataset were considered. Results: A total of 178 mutations were identified across the three proteins (E: 16; M: 33; N: 129), of which 18 met the inclusion threshold (E: 3; M: 5; N: 10). Mutations were classified according to temporal dynamics as fixed, emerging, or transient. Throughout the study period, fixed mutations were consistently prevalent, emerging mutations appeared later but persisted with an ascending trend, while transient mutations displayed a single frequency peak before disappearing. Several mutations were reported with potential structural or functional relevance based on the existing literature, while others remain of unknown significance. Conclusions: The mutational patterns detected in this study broadly reflect global evolutionary trends of SARS-CoV-2. These findings emphasize the importance of continued genomic surveillance and underline the need for integrated experimental approaches to clarify the biological and epidemiological impact of poorly characterized mutations. Full article
(This article belongs to the Section Viral Infections)
Show Figures

Figure 1

11 pages, 1279 KB  
Article
Indium Tin Oxide-Based Voltammetric Biosensor for the Detection of Antibodies Against the SARS-CoV-2 Virus Spike Protein
by Greta Zvirzdine, Maryia Drobysh, Almira Ramanaviciene, Vilma Ratautaite, Sarunas Zukauskas, Migle Stanciauskaite, Ieva Plikusiene and Arunas Ramanavicius
Sensors 2025, 25(21), 6737; https://doi.org/10.3390/s25216737 - 4 Nov 2025
Viewed by 2450
Abstract
This study aims to propose a plausible application of a novel electrochemical biosensing system for detecting antibodies against SARS-CoV-2 (anti-rS) in serum samples. The uniqueness of this study lies in the biosensor utilizing recombinant spike glycoprotein (SCoV2-rS) immobilized on an indium tin oxide [...] Read more.
This study aims to propose a plausible application of a novel electrochemical biosensing system for detecting antibodies against SARS-CoV-2 (anti-rS) in serum samples. The uniqueness of this study lies in the biosensor utilizing recombinant spike glycoprotein (SCoV2-rS) immobilized on an indium tin oxide (ITO) electrode modified with (3-aminopropyl)triethoxysilane (APTES). The electrochemical performance was evaluated using square wave voltammetry (SWV), demonstrating a linear relationship between the current density and anti-rS concentration. The limit of detection (LOD) was found to be 113 ng/mL (0.75 nM), and the limit of quantitation (LOQ) was equal to 338 ng/mL (2.25 nM). The reported electrochemical biosensor offers a straightforward and efficient method for evaluating the immune status of individuals who have recovered from COVID-19 and been vaccinated against this virus without the need for any redox probe. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

25 pages, 3620 KB  
Article
Multimodal Structural Characterization of SARS-CoV-2 Spike Variants: Spectroscopic and Computational Insights
by Tiziana Mancini, Nicole Luchetti, Salvatore Macis, Velia Minicozzi, Rosanna Mosetti, Alessandro Nucara, Stefano Lupi and Annalisa D’Arco
Int. J. Mol. Sci. 2025, 26(21), 10342; https://doi.org/10.3390/ijms262110342 - 23 Oct 2025
Viewed by 735
Abstract
The SARS-CoV-2 pandemic has driven the emergence of many viral variants carrying multiple mutations, particularly in the spike glycoprotein, which enhance viral adaptability and may alter the structure and functionality of the protein. Here, we present, to the best of our knowledge, the [...] Read more.
The SARS-CoV-2 pandemic has driven the emergence of many viral variants carrying multiple mutations, particularly in the spike glycoprotein, which enhance viral adaptability and may alter the structure and functionality of the protein. Here, we present, to the best of our knowledge, the first systematic and comparative structural analysis of monomeric spike protein subunit 1 from three distinct SARS-CoV-2 variants at physiological pH (7.4). A multimodal approach was employed, integrating experimental techniques, including Attenuated Total Reflection Infrared and circular dichroism spectroscopies, with computational methods such as molecular dynamics simulations and surface polarity analyses. This combined approach allowed us to characterize the secondary structure composition, three-dimensional conformational organization, and solvent interaction profiles of each variant. Our findings reveal how the structural and functional properties of the spike protein subunit 1 are influenced by specific amino acid mutations. Indeed, the observed conformational changes and variations in solvent interactions have significant implications for viral infectivity and immune evasion. These findings contribute to the broader understanding of the evolution of SARS-CoV-2 variants and offer valuable insights for drug development, targeted prevention strategies, and biosensor design. Full article
(This article belongs to the Special Issue Respiratory Virus Infection)
Show Figures

Figure 1

18 pages, 5986 KB  
Article
Broadly Sarbecovirus-Neutralizing Antibodies Induced by Ancestral SARS-CoV-2 Infection
by Yiwei Zhang, Zhen Zhang, Feiyang Yu, Xianying Chen, Shangyu Yang, Jingyi Lin, Genmao Liu, Xinyang Liu, Ming Guo, Yu Chen, Ke Lan and Haiyan Zhao
Viruses 2025, 17(10), 1285; https://doi.org/10.3390/v17101285 - 23 Sep 2025
Viewed by 1177
Abstract
The COVID-19 pandemic, driven by SARS-CoV-2, continues to challenge global health due to emerging variants and the potential risk posed by related sarbecoviruses. Neutralizing antibodies targeting the spike (S) glycoprotein, particularly the receptor-binding domain (RBD), play a crucial role in viral neutralization and [...] Read more.
The COVID-19 pandemic, driven by SARS-CoV-2, continues to challenge global health due to emerging variants and the potential risk posed by related sarbecoviruses. Neutralizing antibodies targeting the spike (S) glycoprotein, particularly the receptor-binding domain (RBD), play a crucial role in viral neutralization and vaccine design. Although broadly neutralizing anti-RBD antibodies have been identified, the nature of cross-reactive humoral responses induced by natural infection with ancestral SARS-CoV-2 strains remains incompletely understood. Here, we isolated 105 S-specific monoclonal antibodies (mAbs) from individuals recovered from prototype SARS-CoV-2 infection. Of these, 30 mAbs cross-recognized SARS-CoV-1, including 25 RBD-directed mAbs, of which 12 displayed cross-neutralizing activity against both viruses. Among them, mAb 12C2 potently neutralized SARS-CoV-1 and multiple SARS-CoV-2 variants, likely through mechanisms that include inhibition of membrane fusion and potential destabilization of the S trimer. Cryo-electron microscopy revealed that 12C2 engages the outer face of the RBD, overlapping with the epitope recognized by the broadly neutralizing antibody S309 derived from SARS-CoV-1 convalescent. Collectively, these findings demonstrate that ancestral SARS-CoV-2 infection can elicit robust cross-neutralizing antibody responses and provide valuable insights for the design of broadly protective antibodies and vaccines. Full article
(This article belongs to the Special Issue Humoral Immune Response to Viruses)
Show Figures

Figure 1

20 pages, 6505 KB  
Article
CLEC5A Activation in Inflammatory Monocytes: A Mechanism for Enhanced Adaptive Immunity Following COVID-19 mRNA Vaccination in a Preclinical Study
by Renan Galuzo, Thiago Lazari Machado, Ryann de Souza Nascimento, Jorvan Ramos de Medeiros, Luciana Neves Tubarão, Jane Silva, Vanessa Pimenta Rocha, Tamiris Azamor, Felipe Soares Coelho, Andrea Marques Vieira da Silva, Lorenna Carvalho da Rosa, Juliana Fernandes Amorim da Silva, Renata Tourinho Santos, Rodrigo Müller, Carolina Baeta Salvador Várady, Ana Paula Dinis Ano Bom, Patricia Cristina da Costa Neves and Juliana Gil Melgaço
Viruses 2025, 17(9), 1233; https://doi.org/10.3390/v17091233 - 10 Sep 2025
Cited by 1 | Viewed by 1397 | Correction
Abstract
Background: CLEC5A is a C-type lectin expressed by monocytes and neutrophils, playing an important role in innate immunity. Although it has been shown to interact with the spike protein of SARS-CoV-2, its role during vaccination remains poorly understood. Methods: To address this question, [...] Read more.
Background: CLEC5A is a C-type lectin expressed by monocytes and neutrophils, playing an important role in innate immunity. Although it has been shown to interact with the spike protein of SARS-CoV-2, its role during vaccination remains poorly understood. Methods: To address this question, we combined in vitro assays to characterize CLEC5A and spike expression and their impact on monocyte differentiation and T-cell activation; in vivo studies to evaluate CLEC5A expression, immune responses, and vaccine efficacy in a murine model; and in silico analyses to identify potential spike epitopes and CLEC5A interaction sites. Results: The Pfizer-BioNTech bivalent mRNA vaccine induced spike expression and CLEC5A upregulation in THP-1 monocytes, promoting M1-like differentiation and CD86+ activation. In PBMC co-cultures, CLEC5A+ monocytes acted as antigen-presenting cells, releasing inflammatory chemokines and activating both CD4+ and CD8+ T cells, thereby linking CLEC5A expression to adaptive immunity. In mice, CLEC5A expression was observed on inflammatory monocytes (CCR2+CX3CR1low) within two days of vaccination. In vivo, CLEC5A expression increased during SARS-CoV-2 infection and after immunization, but declined following viral challenge in vaccinated animals. Consistently, robust humoral and cellular responses were detected post-immunization. In silico analysis further suggested differential CLEC5A binding across B- and T-cell epitopes within the spike glycoprotein. Conclusions: These findings suggest that CLEC5A may play a role in bridging innate and adaptive immune responses during SARS-CoV-2 vaccination. Although further studies with different vaccine platforms are necessary to confirm and expand these observations, our results provide preliminary evidence supporting the potential of CLEC5A as an exploratory biomarker of vaccine-induced immunity. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Graphical abstract

22 pages, 4411 KB  
Article
Synthesis, Structural Characterization, and In Silico Antiviral Prediction of Novel DyIII-, YIII-, and EuIII-Pyridoxal Helicates
by Francisco Mainardi Martins, Yuri Clemente Andrade Sokolovicz, Morgana Maciél Oliveira, Carlos Serpa, Otávio Augusto Chaves and Davi Fernando Back
Inorganics 2025, 13(8), 252; https://doi.org/10.3390/inorganics13080252 - 23 Jul 2025
Cited by 4 | Viewed by 1583
Abstract
The synthesis and structural characterization of three new triple-stranded helical complexes ([Dy2(L2)3]2Cl∙15H2O (C1), [Y2(L2)3]3(NO3)Cl∙14H2O∙DMSO (C2), and [Eu2(L4) [...] Read more.
The synthesis and structural characterization of three new triple-stranded helical complexes ([Dy2(L2)3]2Cl∙15H2O (C1), [Y2(L2)3]3(NO3)Cl∙14H2O∙DMSO (C2), and [Eu2(L4)3]∙12H2O (C3), where L2 and L4 are ligands derived from pyridoxal hydrochloride and succinic or adipic acid dihydrazides, respectively, were described. The X-ray data, combined with spectroscopic measurements, indicated that L2 and L4 act as bis-tridentate ligands, presenting two tridentate chelating cavities O,N,O to obtain the dinuclear complexes C1C3. Their antiviral profile was predicted via in silico calculations in terms of interaction with the structural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein in the down- and up-states and complexed with the cellular receptor angiotensin-converting enzyme 2 (ACE2). The best affinity energy values (−9.506, −9.348, and −9.170 kJ/mol for C1, C2, and C3, respectively) were obtained for the inorganic complexes docked in the model spike-ACE2, with C1 being suggested as the most promising candidate for a future in vitro validation. The obtained in silico antiviral trend was supported by the prediction of the electronic and physical–chemical properties of the inorganic complexes via the density functional theory (DFT) approach, representing an original and relevant contribution to the bioinorganic and medicinal chemistry fields. Full article
Show Figures

Figure 1

17 pages, 1965 KB  
Article
The Role of Long-Range Non-Specific Electrostatic Interactions in Inhibiting the Pre-Fusion Proteolytic Processing of the SARS-CoV-2 S Glycoprotein by Heparin
by Yi Du, Yang Yang, Son N. Nguyen and Igor A. Kaltashov
Biomolecules 2025, 15(6), 778; https://doi.org/10.3390/biom15060778 - 28 May 2025
Cited by 2 | Viewed by 997
Abstract
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of [...] Read more.
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of the critical importance of this step for the viral infectivity cycle, it has been a target of extensive efforts aimed at identifying highly specific protease inhibitors as potential antiviral agents. An alternative strategy to disrupt the pre-fusioviden processing of the SARS-CoV-2 S glycoprotein aims to protect the substrate rather than directly inhibit the proteases. In this work, we focused on furin, a serine protease located primarily in the Golgi apparatus, but also present on the cell membrane. Its cleavage site within the S glycoprotein is located within the stalk region of the latter and comprises an arginine-rich segment (SPRRARS), which fits the definition of the Cardin–Weintraub glycosaminoglycan recognition motif. Native mass spectrometry (MS) measurements confirmed the binding of a hexadecameric peptide representing the loop region at the S1/S2 interface and incorporating the furin cleavage site (FCS) to heparin fragments of various lengths, as well as unfractionated heparin (UFH), although at the physiological ionic strength, only UFH remains tightly bound to the FCS. The direct LC/MS monitoring of FCS digestion with furin revealed a significant impact of both heparin fragments and UFH on the proteolysis kinetics, although only the latter had IC50 values that could be considered physiologically relevant (0.6 ± 0.1 mg/mL). The results of this work highlight the importance of the long-range and relatively non-specific electrostatic interactions in modulating physiological and pathological processes and emphasize the multi-faceted role played by heparin in managing coronavirus infections. Full article
(This article belongs to the Special Issue Molecular Mechanism and Detection of SARS-CoV-2)
Show Figures

Figure 1

17 pages, 1146 KB  
Article
Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals
by Jonathan Kitonsa, Jennifer Serwanga, Hannah M. Cheeseman, Andrew Abaasa, Jane Frances Lunkuse, Eugene Ruzagira, Laban Kato, Florence Nambaziira, Gerald Kevin Oluka, Ben Gombe, Sembera Jackson, Joseph Katende Ssebwana, Leon R. McFarlane, Sarah Joseph, Benjamin F. Pierce, Robin J. Shattock and Pontiano Kaleebu
Vaccines 2025, 13(6), 553; https://doi.org/10.3390/vaccines13060553 - 23 May 2025
Cited by 1 | Viewed by 13701
Abstract
Background: The COVID-19 pandemic highlighted the need for innovative vaccine platforms that elicit durable immunity. Self-amplifying RNA (saRNA) vaccines offer rapid production and dose-sparing advantages over traditional mRNA platforms. In Uganda’s first SARS-CoV-2 vaccine trial (NCT04934111), we assessed the safety and immunogenicity of [...] Read more.
Background: The COVID-19 pandemic highlighted the need for innovative vaccine platforms that elicit durable immunity. Self-amplifying RNA (saRNA) vaccines offer rapid production and dose-sparing advantages over traditional mRNA platforms. In Uganda’s first SARS-CoV-2 vaccine trial (NCT04934111), we assessed the safety and immunogenicity of a saRNA vaccine encoding the SARS-CoV-2 spike (S) glycoprotein in seronegative and seropositive adults. Methods: This non-randomised phase 1 trial (December 2021–April 2022) enrolled 42 healthy adults (18–45 years), including 12 seronegative and 30 seropositive for SARS-CoV-2. Participants received two 5 μg doses of saRNA vaccine, four weeks apart. Reactogenicity was assessed using diary cards for seven days post-vaccination, and adverse events were monitored throughout the 24-week study. Binding and neutralising antibody levels were quantified using ELISA and pseudovirus neutralisation assays. Findings: The vaccine was well tolerated, with only mild-to-moderate adverse events, including fatigue, headache, and chills. No serious vaccine-related events occurred. Among seronegative participants, 91.6% seroconverted after two doses (median S-IgG: 3695 ng/mL, p < 0.001). In the seropositive participants, S-IgG rose modestly from 7496 to 11,028 ng/mL after the second dose. Neutralising titres increased modestly across WT, BA.2, and A.23.1 variants, with no significant differences between groups. Conclusion: The saRNA SARS-CoV-2 vaccine was safe and immunogenic, inducing robust spike glycoprotein-specific antibody responses, particularly in seronegative participants. This trial demonstrates the potential of saRNA vaccines for broader use. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

12 pages, 822 KB  
Article
Antibody Response Against SARS-CoV-2 Spike Protein in People with HIV After COVID-19 Vaccination
by María José Muñoz-Gómez, Pablo Ryan, Marta Quero-Delgado, María Martin-Vicente, Guillermo Cuevas, Jorge Valencia, Eva Jiménez, Natalia Blanca-López, Samuel Manzano, Juan Ignacio Lazo, Vicente Mas, Mónica Vázquez, Daniel Sepúlveda-Crespo, Juan Torres-Macho, Isidoro Martínez and Salvador Resino
Vaccines 2025, 13(5), 480; https://doi.org/10.3390/vaccines13050480 - 29 Apr 2025
Cited by 1 | Viewed by 1349
Abstract
Background/Objectives: People with HIV (PWH) often have a suboptimal response to vaccines, raising concerns regarding the efficacy of coronavirus disease 2019 (COVID-19) vaccines in this population. We aimed to evaluate the humoral immune response to the B.1 lineage and Omicron variant in PWH [...] Read more.
Background/Objectives: People with HIV (PWH) often have a suboptimal response to vaccines, raising concerns regarding the efficacy of coronavirus disease 2019 (COVID-19) vaccines in this population. We aimed to evaluate the humoral immune response to the B.1 lineage and Omicron variant in PWH on antiretroviral therapy (ART) following COVID-19 vaccination. Methods: We conducted a prospective study of 19 PWH on ART who received a two-dose series of the COVID-19 mRNA vaccine and a booster six months later. Participants without HIV infection (n = 25) were included as a healthy control (HC) group. The humoral response to the COVID-19 vaccine (anti-SARS-CoV-2 S IgG levels and ability to block ACE2-S interaction) against both the original B.1 lineage and the Omicron variant was assessed using immunoassays. Results: The humoral response in PWH was very strong (geometric mean fold rise, GMFR > 8) after the second dose and strong (GMFR > 4) after the booster dose for both the B.1 lineage and the Omicron variant. We found comparable humoral responses to the B.1 lineage and Omicron variant between PWH and HC groups after the second and booster doses (q-value > 0.05). The COVID-19 vaccine generated a significantly weaker humoral response against the Omicron variant compared to the B.1 lineage in both groups (q-value < 0.05). However, this response improved after the booster dose, although it remained weaker in PWH. Conclusions: PWH showed a strong humoral response to the COVID-19 vaccine against B.1 and Omicron, though the Omicron response was weaker than B.1. Booster doses in PWH improved the Omicron response, but it stayed lower than B.1. Findings confirm vaccine effectiveness in PWH, stressing the critical role of boosters and potential need for updated vaccines for variants like Omicron. Full article
(This article belongs to the Special Issue Vaccines and Vaccination: HIV, Hepatitis Viruses, and HPV)
Show Figures

Figure 1

17 pages, 3611 KB  
Article
Characterization of Nanobody Binding to Distinct Regions of the SARS-CoV-2 Spike Protein by Flow Virometry
by Mariam Maltseva, Martin A. Rossotti, Jamshid Tanha and Marc-André Langlois
Viruses 2025, 17(4), 571; https://doi.org/10.3390/v17040571 - 15 Apr 2025
Cited by 1 | Viewed by 1913
Abstract
Nanobodies, or single-domain antibodies (VHHs) from camelid heavy-chain-only antibodies, offer significant advantages in therapeutic and diagnostic applications due to their small size and ability to bind cryptic protein epitopes inaccessible to conventional antibodies. In this study, we examined nanobodies specific to [...] Read more.
Nanobodies, or single-domain antibodies (VHHs) from camelid heavy-chain-only antibodies, offer significant advantages in therapeutic and diagnostic applications due to their small size and ability to bind cryptic protein epitopes inaccessible to conventional antibodies. In this study, we examined nanobodies specific to regions of the SARS-CoV-2 spike glycoprotein, including the receptor-binding domain (RBD), N-terminal domain (NTD), and subunit 2 (S2). Using flow virometry, a high-throughput technique for viral quantification, we achieved the efficient detection of pseudotyped viruses expressing the spike glycoprotein. RBD-targeting nanobodies showed the most effective staining, followed by NTD-targeting ones, while S2-specific nanobodies exhibited limited resolution. The simple genetic structure of nanobodies enables the creation of multimeric formats, improving binding specificity and avidity. Bivalent VHH-Fc constructs (VHHs fused to the Fc region of human IgG) outperformed monovalent formats in resolving viral particles from background noise. However, S2-specific monovalent VHHs demonstrated improved staining efficiency, suggesting their smaller size better accesses restricted antigenic sites. Furthermore, direct staining of cell supernatants was possible without virus purification. This versatile nanobody platform, initially developed for antiviral therapy against SARS-CoV-2, can be readily adapted for flow virometry applications and other diagnostic assays. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Graphical abstract

16 pages, 2125 KB  
Article
The Use of Heterologous Antigens for Biopanning Enables the Selection of Broadly Neutralizing Nanobodies Against SARS-CoV-2
by Vazirbek S. Aripov, Anna V. Zaykovskaya, Ludmila V. Mechetina, Alexander M. Najakshin, Alexander A. Bondar, Sergey G. Arkhipov, Egor A. Mustaev, Margarita G. Ilyina, Sophia S. Borisevich, Alexander A. Ilyichev, Valentina S. Nesmeyanova, Anastasia A. Isaeva, Ekaterina A. Volosnikova, Dmitry N. Shcherbakov and Natalia V. Volkova
Antibodies 2025, 14(1), 23; https://doi.org/10.3390/antib14010023 - 7 Mar 2025
Cited by 1 | Viewed by 1627
Abstract
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are [...] Read more.
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are unable to neutralize new variants. Antibodies that neutralize a broad range of SARS-CoV-2 variants are of significant value in combating both current and potential future variants, making the identification and development of such antibodies an ongoing critical goal. This study discusses the strategy of using heterologous antigens in biopanning rounds. Methods: After four rounds of biopanning, nanobody variants were selected from a phage display library. Immunochemical methods were used to evaluate their specificity to the S protein of various SARS-CoV-2 variants, as well as to determine their competitive ability against ACE2. Viral neutralization activity was analyzed. A three-dimensional model of nanobody interaction with RBD was constructed. Results: Four nanobodies were obtained that specifically bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and exhibit neutralizing activity against various SARS-CoV-2 strains. Conclusions: The study demonstrates that performing several rounds of biopanning with heterologous antigens allows the selection of nanobodies with a broad reactivity spectrum. However, the fourth round of biopanning does not lead to the identification of nanobodies with improved characteristics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Graphical abstract

20 pages, 1815 KB  
Article
Simian Immunodeficiency Virus-Based Virus-like Particles Are an Efficient Tool to Induce Persistent Anti-SARS-CoV-2 Spike Neutralizing Antibodies and Specific T Cells in Mice
by Alessandra Gallinaro, Chiara Falce, Maria Franca Pirillo, Martina Borghi, Felicia Grasso, Andrea Canitano, Serena Cecchetti, Marco Baratella, Zuleika Michelini, Sabrina Mariotti, Maria Vincenza Chiantore, Iole Farina, Antonio Di Virgilio, Antonella Tinari, Gabriella Scarlatti, Donatella Negri and Andrea Cara
Vaccines 2025, 13(3), 216; https://doi.org/10.3390/vaccines13030216 - 21 Feb 2025
Cited by 1 | Viewed by 1741
Abstract
Background/Objectives: Virus-like particles (VLPs) represent an attractive platform for delivering vaccine formulations, combining a high biosafety profile with a potent immune-stimulatory ability. VLPs are non-infectious, non-replicating, self-assembling nanostructures that can be exploited to efficiently expose membrane-tethered glycoproteins such as the SARS-CoV-2 Spike (S) [...] Read more.
Background/Objectives: Virus-like particles (VLPs) represent an attractive platform for delivering vaccine formulations, combining a high biosafety profile with a potent immune-stimulatory ability. VLPs are non-infectious, non-replicating, self-assembling nanostructures that can be exploited to efficiently expose membrane-tethered glycoproteins such as the SARS-CoV-2 Spike (S) protein, the main target of approved preventive vaccines. Here, we describe the development and preclinical validation of Simian Immunodeficiency Virus (SIV)-based GFP-labeled VLPs displaying S from the B.1.617.2 (Delta) variant (VLP/S-Delta) for inducing persistent anti-SARS-CoV-2 neutralizing antibodies (nAbs) and S-specific T cell responses in mice. Methods: SIV-derived VLP/S-Delta were produced by co-transfecting a plasmid expressing SIVGag-GFP, required for VLP assembly and quantification by flow virometry, a plasmid encoding the Delta S protein deleted in the cytoplasmic tail (CT), to improve membrane binding, and a VSV.G-expressing plasmid, to enhance VLP uptake. Recovered VLPs were titrated by flow virometry and characterized in vitro by transmission electron microscopy (TEM) and confocal microscopy (CLSM). BALB/c mice were immunized intramuscularly with VLP/S-Delta following a prime–boost regimen, and humoral and cellular immune responses were assessed. Results: VLP/S-Delta were efficiently pseudotyped with CT-truncated S-Delta. After BALB/c priming, VLP/S-Delta elicited both specific anti-RBD IgGs and anti-Delta nAbs that significantly increased after the boost and were maintained over time. The prime–boost vaccination induced similar levels of cross-nAbs against the ancestral Wuhan-Hu-1 strain as well as cross-nAbs against Omicron BA.1, BA.2 and BA.4/5 VoCs, albeit at lower levels. Moreover, immunization with VLP/S-Delta induced S-specific IFNγ-producing T cells. Conclusions: These data suggest that SIV-based VLPs are an appropriate delivery system for the elicitation of efficient and sustained humoral and cellular immunity in mice, paving the way for further improvements in the immunogen design to enhance the quality and breadth of immune responses against different viral glycoproteins. Full article
(This article belongs to the Collection COVID-19 Vaccine Development and Vaccination)
Show Figures

Figure 1

13 pages, 2651 KB  
Article
A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction
by Jorge L. Arias-Arias, Laura Monturiol-Gross and Eugenia Corrales-Aguilar
BioTech 2025, 14(1), 10; https://doi.org/10.3390/biotech14010010 - 14 Feb 2025
Cited by 1 | Viewed by 2021
Abstract
Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains [...] Read more.
Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains a receptor binding domain (RBD) that recognizes the angiotensin-converting enzyme 2 receptor (ACE2) in host cells, allowing virus entry. The gold standard for determining SARS-CoV-2 neutralizing antibodies is the plaque reduction neutralization test (PRNT), which relies on live-virus replication performed exclusively in biosafety level 3 (BSL-3) laboratories. Here, we report the development of a surrogate live-cell imaging-based fluorescent SARS-CoV-2 neutralization assay, applicable to BSL-1 or BSL-2 laboratories, by antibody-mediated blockage of the interaction between recombinant RBD with overexpressed ACE2 receptor in a genetically modified HEK 293T stable cell line. Our approach was able to detect neutralizing antibodies both in COVID-19-positive human serum samples and polyclonal equine formulations against SARS-CoV-2. This new cell-based surrogate neutralization assay represents a virus-free fluorescence imaging alternative to the reported approaches, which can be used to detect antibody-neutralizing capabilities toward SARS-CoV-2. This assay could also be extrapolated in the future to other established and emergent viral agents. Full article
(This article belongs to the Special Issue Advances in Bioimaging Technology)
Show Figures

Figure 1

Back to TopTop