Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Population
2.2. Procedures During the Screening Period
2.3. SARS-CoV-2 Serology Screening
2.4. Eligibility Assessment and Procedures at Enrolment
2.5. Procedures for Assessing Safety
2.6. Procedures for Assessing Primary Immunogenicity Endpoint
2.7. Statistical Methods
3. Results
3.1. Reactogenicity
3.2. Other Adverse Events
4. Immunogenicity
4.1. Significant Elevation of Spike-Specific IgG Binding Antibodies Following Two Vaccinations
4.2. Improved Neutralising Antibody Response Post-Second Vaccination Across Multiple SARS-CoV-2 Variants
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Impact of COVID-19 on People’s Livelihoods, Their Health and Our Food Systems; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Mishra, N.T.P.; Das, S.S.; Yadav, S.; Khan, W.; Afzal, M.; Alarifi, A.; Kenawy, E.-R.; Ansari, M.T.; Hasnain, M.S.; Nayak, A.K. Global impacts of pre- and post-COVID-19 pandemic: Focus on socio-economic consequences. Sens. Int. 2020, 1, 100042. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. COVID-19: WHO Declares End of Global Health Emergency; British Medical Journal Publishing Group: London, UK, 2023. [Google Scholar]
- WHO. COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/vaccines?n=c (accessed on 28 May 2024).
- Hernández Bautista, P.F.; Grajales Muñiz, C.; Cabrera Gaytán, D.A.; Rojas Mendoza, T.; Vallejos Parás, A.; Santacruz Tinoco, C.E.; Alvarado Yaah, J.E.; Anguiano Hernández, Y.M.; Sandoval Gutiérrez, N.; Jaimes Betancourt, L. Impact of vaccination on infection or death from COVID-19 in individuals with laboratory-confirmed cases: Case-control study. PLoS ONE 2023, 18, e0265698. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Wattam, S. Estimating the impact of interventions against COVID-19: From lockdown to vaccination. PLoS ONE 2021, 16, e0261330. [Google Scholar] [CrossRef]
- Parums, D.V. Editorial: First Full Regulatory Approval of a COVID-19 Vaccine, the BNT162b2 Pfizer-BioNTech Vaccine, and the Real-World Implications for Public Health Policy. Med. Sci. Monit. 2021, 27, e934625. [Google Scholar] [CrossRef] [PubMed]
- Farhud, D.D.; Zokaei, S. A brief overview of COVID-19 vaccines. Iran. J. Public Health 2021, 50, i–vi. [Google Scholar] [CrossRef]
- Nachega, J.B.; Sam-Agudu, N.A.; Masekela, R.; van der Zalm, M.M.; Nsanzimana, S.; Condo, J.; Ntoumi, F.; Rabie, H.; Kruger, M.; Wiysonge, C.S.; et al. Addressing challenges to rolling out COVID-19 vaccines in African coun-tries. Lancet Glob. Health 2021, 9, e746–e748. [Google Scholar] [CrossRef]
- Bok, K.; Sitar, S.; Graham, B.S.; Mascola, J.R. Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity 2021, 54, 1636–1651. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Joyal-Desmarais, K.; Ribeiro, P.A.B.; Vieira, A.M.; Stojanovic, J.; Sanuade, C.; Yip, D.; Bacon, S.L. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: Findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. Lancet Respir. Med. 2023, 11, 439–452. [Google Scholar] [CrossRef]
- Peng, Q.; Zhou, R.; Wang, Y.; Zhao, M.; Liu, N.; Li, S.; Huang, H.; Yang, D.; Au, K.-K.; Wang, H.; et al. Waning immune responses against SARS-CoV-2 variants of concern among vaccinees in Hong Kong. eBioMedicine 2022, 77, 103904. [Google Scholar] [CrossRef]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 COVID-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Menegale, F.; Manica, M.; Zardini, A.; Guzzetta, G.; Marziano, V.; d’Andrea, V.; Trentini, F.; Ajelli, M.; Poletti, P.; Merler, S. Evaluation of Waning of SARS-CoV-2 Vaccine-Induced Immunity: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2310650. [Google Scholar] [CrossRef]
- Cheng, K.; Wu, C.; Gu, S.; Lu, Y.; Wu, H.; Li, C. WHO declares the end of the COVID-19 global health emergency: Lessons and recommendations from the perspective of ChatGPT/GPT-4. Int. J. Surg. 2023, 109, 2859–2862. [Google Scholar] [CrossRef] [PubMed]
- Ao, D.; He, X.; Liu, J.; Xu, L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct. Target. Ther. 2023, 8, 466. [Google Scholar] [CrossRef] [PubMed]
- Telegraph. ‘Huge’ Impact on Deaths and Economies If Africa Left Behind for COVID Vaccine, Top Official Warns. The Telegraph, 27 November 2020. Available online: https://www.telegraph.co.uk/global-health/science-and-disease/huge-impact-deaths-economies-africa-left-behind-covid-vaccine/ (accessed on 28 May 2024).
- Tessema, G.A.; Kinfu, Y.; Dachew, B.A.; Tesema, A.G.; Assefa, Y.; Alene, K.A.; Aregay, A.F.; Ayalew, M.B.; Bezabhe, W.M.; Bali, A.G.; et al. The COVID-19 pandemic and healthcare systems in Africa: A scoping review of preparedness, impact and response. BMJ Glob. Health 2021, 6, e007179. [Google Scholar] [CrossRef] [PubMed]
- Valier, M.R.; Elam-Evans, L.D.; Mu, Y.; Santibanez, T.A.; Yankey, D.; Zhou, T.; Pingali, C.; Singleton, J.A. Racial and Ethnic Differences in COVID-19 Vaccination Coverage Among Children and Adolescents Aged 5–17 Years and Parental Intent to Vaccinate Their Children—National Immunization Survey-Child COVID Module, United States, December 2020–September 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1–8. [Google Scholar] [CrossRef]
- Choe, Y.J.; Blatt, D.B.; Lee, H.J.; Choi, E.H. Associations between geographic region and immune response variations to pneumococcal conjugate vaccines in clinical trials: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 92, 261–268. [Google Scholar] [CrossRef]
- van Dorst, M.; Pyuza, J.J.; Nkurunungi, G.; Kullaya, V.I.; Smits, H.H.; Hogendoorn, P.C.W.; Wammes, L.J.; Everts, B.; Elliott, A.M.; Jochems, S.P.; et al. Immunological factors linked to geographical variation in vaccine responses. Nat. Rev. Immunol. 2024, 24, 250–263. [Google Scholar] [CrossRef]
- Schmidt, C.; Schnierle, B.S. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023, 12, 138. [Google Scholar] [CrossRef]
- Pourseif, M.M.; Masoudi-Sobhanzadeh, Y.; Azari, E.; Parvizpour, S.; Barar, J.; Ansari, R.; Omidi, Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discov. Today 2022, 27, 103341. [Google Scholar] [CrossRef]
- Maruggi, G.; Mallett, C.P.; Westerbeck, J.W.; Chen, T.; Lofano, G.; Friedrich, K.; Qu, L.; Sun, J.T.; McAuliffe, J.; Kanitkar, A.; et al. A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Mol. Ther. 2022, 30, 1897–1912. [Google Scholar] [CrossRef]
- Pollock, K.M.; Cheeseman, H.M.; Szubert, A.J.; Libri, V.; Boffito, M.; Owen, D.; Bern, H.; O’Hara, J.; McFarlane, L.R.; Lemm, N.M.; et al. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. eClinicalMedicine 2022, 44, 101262. [Google Scholar] [CrossRef]
- Szubert, A.J.; Pollock, K.M.; Cheeseman, H.M.; Alagaratnam, J.; Bern, H.; Bird, O.; Boffito, M.; Byrne, R.; Cole, T.; Cosgrove, C.A.; et al. COVAC1 phase 2a expanded safety and immunogenicity study of a self-amplifying RNA vaccine against SARS-CoV-2. eClinicalMedicine 2023, 56, 101823. [Google Scholar] [CrossRef] [PubMed]
- Kitonsa, J.; Kamacooko, O.; Ruzagira, E.; Nambaziira, F.; Abaasa, A.; Serwanga, J.; Gombe, B.; Lunkuse, J.; Naluyinda, H.; Tukamwesiga, N.; et al. A phase I COVID-19 vaccine trial among SARS-CoV-2 seronegative and seropositive individuals in Uganda utilizing a self-amplifying RNA vaccine platform: Screening and enrollment experiences. Hum. Vaccines Immunother. 2023, 19, 2240690. [Google Scholar] [CrossRef]
- National HIV Testing Services Policy and Implementation Guidelines—Uganda. Available online: http://library.health.go.ug/communicable-disease/hivaids/national-hiv-testing-services-policy-and-implementation-guidelines-0 (accessed on 28 May 2024).
- FDA. Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials; FDA: Rockville, MD, USA, 2007. [Google Scholar]
- Lutalo, T.; Nalumansi, A.; Olara, D.; Kayiwa, J.; Ogwang, B.; Odwilo, E.; Watera, C.; Balinandi, S.; Kiconco, J.; Nakaseegu, J.; et al. Evaluation of the performance of 25 SARS-CoV-2 serological rapid diagnostic tests using a reference panel of plasma specimens at the Uganda Virus Research Institute. Int. J. Infect. Dis. 2021, 112, 281–287. [Google Scholar] [CrossRef]
- Oluka, G.K.; Namubiru, P.; Kato, L.; Ankunda, V.; Gombe, B.; Cotten, M.; Team, C.-I.; Musenero, M.; Kaleebu, P.; Fox, J.; et al. Optimisation and Validation of a conventional ELISA and cut-offs for detecting and quantifying anti-SARS-CoV-2 Spike, RBD, and Nucleoprotein IgG, IgM, and IgA antibodies in Uganda. Front. Immunol. 2023, 14, 1113194. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Jariwal, R.; Adebayo, M.; Jaka, S.; Petersen, G.; Cobos, E. Immune Thrombocytopenia following COVID-19 Vaccine. Case Rep. Hematol. 2022, 2022, 6013321. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H. COVID-19 vaccination and immune thrombocytopenia: Cause for vigilance, but not panic. Res. Pract. Thromb. Haemost. 2023, 7, 100039. [Google Scholar] [CrossRef]
- Low, J.G.; de Alwis, R.; Chen, S.; Kalimuddin, S.; Leong, Y.S.; Mah, T.K.L.; Yuen, N.; Tan, H.C.; Zhang, S.L.; Sim, J.X.Y.; et al. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying COVID-19 mRNA vaccine. NPJ Vaccines 2022, 7, 161. [Google Scholar] [CrossRef]
- Bayart, J.L.; Douxfils, J.; Gillot, C.; David, C.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Gerin, V.; et al. Waning of IgG, Total and Neutralizing Antibodies 6 Months Post-Vaccination with BNT162b2 in Healthcare Workers. Vaccines 2021, 9, 1092. [Google Scholar] [CrossRef]
- Evans, J.P.; Zeng, C.; Carlin, C.; Lozanski, G.; Saif, L.J.; Oltz, E.M.; Gumina, R.J.; Liu, S.-L. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci. Transl. Med. 2022, 14, eabn8057. [Google Scholar] [CrossRef]
- Faraji, N.; Zeinali, T.; Joukar, F.; Aleali, M.S.; Eslami, N.; Shenagari, M.; Mansour-Ghanaei, F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024, 10, e30208. [Google Scholar] [CrossRef] [PubMed]
- Zabidi, N.Z.; Liew, H.L.; Farouk, I.A.; Puniyamurti, A.; Yip, A.J.W.; Wijesinghe, V.N.; Low, Z.Y.; Tang, J.W.; Chow, V.T.K.; Lal, S.K. Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses 2023, 15, 944. [Google Scholar] [CrossRef] [PubMed]
- Ankunda, V.; Katende, J.S.; Oluka, G.K.; Sembera, J.; Baine, C.; Odoch, G.; Ejou, P.; Kato, L.; The COVID-19 Immunoprofiling Team; Kaleebu, P.; et al. The Subdued Post-Boost Spike-Directed Secondary IgG Antibody Response in Ugandan Recipients of the Pfizer-BioNTech BNT162b2 Vaccine Has Implications for Local Vaccination Policies. Front. Immunol 2024, 15, 1325387. [Google Scholar] [CrossRef]
- Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dam, K.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020, 588, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Blakney, A.K.; McKay, P.F.; Bouton, C.R.; Hu, K.; Samnuan, K.; Shattock, R.J. Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA. Mol. Ther. 2021, 29, 1174–1185. [Google Scholar] [CrossRef]
- PRNewswire. Japan’s Ministry of Health, Labour and Welfare Approves CSL and Arcturus Therapeutics’ ARCT-154, the First Self-Amplifying mRNA Vaccine Approved for COVID in Adults. 2023. Available online: https://www.prnewswire.com/news-releases/japans-ministry-of-health-labour-and-welfare-approves-csl-and-arcturus-therapeutics-arct-154-the-first-self-amplifying-mrna-vaccine-approved-for-covid-in-adults-301999193.html (accessed on 26 August 2024).
Characteristics | SARS-CoV-2 Seropositive (n = 30) n (%) | SARS-CoV-2 Seronegative (n = 12) n (%) | p-Value |
---|---|---|---|
Age (years), mean (SD) | 30.9 (8.0) | 28.4 (9.1) | |
Age group | 0.753 | ||
18–24 | 10 (33.3) | 5 (41.7) | |
25–34 | 8 (26.7) | 4 (33.3) | |
35–45 | 12 (40.0) | 3 (25.0) | |
Gender | 0.180 | ||
Male | 15 (50.0) | 9 (75.0) | |
Female | 15 (50.0) | 3 (25.0) | |
Contraception use | 0.311 | ||
Yes | 19 (63.3) | 6 (50.0) | |
No | 11 (36.7) | 6 (50.0) | |
Type of contraceptive | 0.766 | ||
Injectable | 6 (31.6) | 2 (33.3) | |
Implant | 9 (47.4) | 2 (33.3) | |
Intra uterine device | 1 (5.3) | 0 (0.0) | |
Oral | 1 (5.3) | 0 (0.0) | |
Other | 2 (10.5) | 2 (33.3) | |
Ever smoked | 1.000 | ||
Never | 28 (93.3) | 12 (100.0) | |
Yes, currently | 0 (0.0) | 0 (0.0) | |
Yes, previously | 2 (6.7) | 0 (0.0) |
Post-Prime Vaccination | Post-Boost Vaccination | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Event | SARS-CoV-2 Seropositive (n = 30) | SARS-CoV-2 Seronegative (n = 12) | Total (N = 42) | SARS-CoV-2 Seropositive (n = 29) | SARS-CoV-2 Seronegative (n = 12) | Total (N = 41) | ||||||||||||
Grade | One n (%) | Two n (%) | Three+ n (%) | All n (%) | One n (%) | Two n (%) | Three+ n (%) | All n (%) | N (%) | One n (%) | Two n (%) | Three+ n (%) | All n (%) | One n (%) | Two n (%) | Three+ n (%) | All n (%) | N (%) |
Systemic | ||||||||||||||||||
Chills /Shivering | 9 (30.0) | 2 (6.7) | 0 (0.0) | 11 (36.7) | 5 (41.7) | 1 (8.3) | 0 (0.0) | 6 (50.0) | 17 (40.5) | 10 (34.5) | 6 (20.6) | 1 (3.4) | 17 (58.6) | 7 (58.3) | 0 (0.0) | 0 (0.0) | 7 (58.3) | 24 (58.5) |
Myalgia | 5 (16.7) | 2 (6.7) | 0 (0.0) | 7 (23.3) | 4 (33.3) | 0 (0.0) | 0 (0.0) | 4 (33.3) | 11 (26.2) | 10 (34.5) | 2 (6.8) | 0 (0.0) | 14 (48.3) | 3 (25.0) | 0 (0.0) | 0 (0.0) | 3 (250) | 15 (36.5) |
Arthralgia | 5 (16.7) | 2 (6.7) | 0 (0.0) | 7 (23.3) | 6 (50.0) | 0 (0.0) | 0 (0.0) | 6 (50.0) | 13 (30.9) | 8 (27.5) | 2 (6.8) | 0 (0.0) | 10 (34.5) | 4 (33.3) | 0 (0.0) | 0 (0.0) | 3 (25.0) | 14 (34.1) |
Fatigue | 11 (36.7) | 2 (6.7) | 0 (0.0) | 13 (43.3) | 7 (58.3) | 0 (0.0) | 0 (0.0) | 7 (58.3) | 20 (47.6) | 12 (41.3) | 5 (17.2) | 0 (0.0) | 17 (58.6) | 8 (66.7) | 1 (8.3) | 0 (0.0) | 9 (75.0) | 26 (63.4) |
Headache | 7 (23.3) | 2 (6.7) | 0 (0.0) | 9 (30.0) | 7 (58.3) | 2 (16.7) | 0 (0.0) | 9 (75.0) | 18 (42.9) | 12 (41.3) | 6 (206) | 1 (3.4) | 19 (65.5) | 4 (33.3) | 2 (16.7) | 0 (0.0) | 6 (50.0) | 25 (60.9) |
Nausea | 4 (13.3) | 0 (0.0) | 0 (0.0) | 4 (13.3) | 4 (33.3) | 0 (0.0) | 0 (0.0) | 4 (33.3) | 8 (19.0) | 6 (20.6) | 2 (6.8) | 0 (0.0) | 8 (27.6) | 4 (333) | 0 (0.0) | 0 (0.0) | 4 (33.3) | 12 (29.2) |
Vomiting | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (8.3) | 0 (0.0) | 0 (0.0) | 0 (8.3) | 0 (0.0) | 0 (0.0) | 2 (6.8) | 0 (0.0) | 2 (6.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (4.8) |
Any | 25 (83.3) | 5 (16.7) | 0 (0.0) | 10 (83.3) | 3 (25.0) | 0 (0.0) | 27 (64.3) | 20 (68.9) | 12 (41.4) | 1 (3.4) | 10 (83.3) | 3 (25.0) | 0 (0.0) | 35 (85.4) | ||||
Local | ||||||||||||||||||
Pain | 17 (56.7) | 3 (10.0) | 0 (0.0) | 20 (66.7) | 8 (66.7) | 2 (16.7) | 0 (0.0) | 10 (83.3) | 30 (71.4) | 14 (48.2) | 6 (20.6) | 1 (3.4) | 21 (72.4) | 6 (50.0) | 1 (8.3) | 0 (0.0) | 7 (58.3) | 28 (68.2) |
Tenderness | 14 (46.7) | 6 (20.0) | 0 (0.0) | 20 (66.7) | 8 (66.7) | 0 (0.0) | 0 (0.0) | 8 (66.7) | 28 (66.7) | 12 (41.3) | 7 (24.1) | 0 (0.0) | 19 (65.5) | 6 (50.0) | 1 (8.3) | 0 (0.0) | 7 (58.3) | 26 (63.4) |
Erythema | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Swelling | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0 | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Any | 20 (66.6) | 6 (20.0) | 0 (0.0) | 10 (83.3) | 2 (16.7) | 0 (0.0) | 35 (83.3) | 17 (58.6) | 8 (27.6) | 1 (3.4) | 6 (50.0) | 1 (8.3) | 0 (0.0) | 31 (75.6) |
Event | Post-Prime Vaccination | Post-Boost Vaccination | ||||
---|---|---|---|---|---|---|
SARS-CoV-2 Seropositive | SARS-CoV-2 Seronegative | All | SARS-CoV-2 Seropositive | SARS-CoV-2 Seronegative | All | |
≥Grade 3 | ≥Grade 3 | ≥Grade 3 | ≥Grade 3 | ≥Grade 3 | ≥Grade 3 | |
Raised creatinine | 0 | 0 | 0 | 0 | 0 | 0 |
Raised ALT | 0 | 0 | 0 | 0 | 0 | 0 |
Raised AST | 0 | 0 | 0 | 0 | 0 | 0 |
Raised ALP | 0 | 0 | 0 | 0 | 0 | 0 |
Raised bilirubin | 0 | 0 | 0 | 0 | 0 | 0 |
Raised GGT | 0 | 0 | 0 | 0 | 0 | 0 |
Hypoglycemia | 1 | 0 | 1 | 1 | 0 | 1 |
Hyperglycemia | 0 | 1 | 1 | 0 | 1 | 1 |
Anaemia | 0 | 0 | 0 | 0 | 0 | 0 |
Leukopenia | 0 | 0 | 0 | 0 | 0 | 0 |
Leukocytosis | 0 | 0 | 0 | 0 | 0 | 0 |
Neutropenia | 2 | 1 | 3 | 8 | 5 | 13 |
Lymphopenia | 0 | 0 | 0 | 10 | 6 | 16 |
Thrombocytopenia | 4 | 0 | 4 | 8 | 0 | 8 |
All | 7 | 2 | 9 | 27 | 12 | 39 |
Baseline | D14 Post 1st Dose | 2nd Dose | D14 Post 2nd Dose | D28 Post 2nd Dose | Baseline | D14 Post 1st Dose | 2nd Dose | D14 Post 2nd Dose | D28 Post 2nd Dose | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 Spike IgG ELISA (ng/mL) | No. participants | 12 | 12 | 12 | 12 | 12 | 29 | 28 | 29 | 29 | 29 |
Minimum | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 3873 | 3411 | |
25% Percentile | <LOQ | <LOQ | <LOQ | 3101 | 2188 | 2662 | 3948 | 4257 | 7828 | 7277 | |
Median | <LOQ | 1869 | 2601 | 3695 | 3831 | 7496 | 11,198 | 9204 | 11,028 | 11,010 | |
75% Percentile | <LOQ | 3736 | 3946 | 9109 | 10,781 | 38,969 | 30,382 | 31,943 | 37,563 | 40,163 | |
Maximum | 3686 | 17,353 | 16,115 | 15,373 | 28,303 | 282,434 | 377,800 | 219,842 | 118,877 | 102,458 | |
WT pseudoneutralisation (NT50) | No. participants | 11 | 11 | 11 | 29 | 27 | 27 | ||||
Minimum | <LOQ | <LOQ | <LOQ | 10 | <LOQ | <LOQ | |||||
25% Percentile | <LOQ | 14 | 15 | 12 | 25 | 30 | |||||
Median | <LOQ | 19 | 20 | 32 | 73 | 57 | |||||
75% Percentile | <LOQ | 85 | 74 | 143 | 264 | 261 | |||||
Maximum | 265 | 1193 | 2537 | 1782 | 1578 | 2612 | |||||
BA.2 pseudoneutralisation (NT50) | No. participants | 11 | 11 | 11 | 29 | 28 | 28 | ||||
Minimum | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |||||
25% Percentile | <LOQ | 14 | 17 | <LOQ | 16 | 17 | |||||
Median | <LOQ | 22 | 25 | 14 | 39 | 43 | |||||
75% Percentile | 10 | 31 | 38 | 66 | 110 | 139 | |||||
Maximum | 109 | 2038 | 2223 | 956 | 1726 | 986 | |||||
A.23.1 pseudoneutralisation (NT50) | No. participants | 12 | 12 | 12 | 30 | 29 | 29 | ||||
Minimum | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |||||
25% Percentile | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |||||
Median | <LOQ | <LOQ | 14 | 14 | 26 | 24 | |||||
75% Percentile | <LOQ | 19 | 19 | 101 | 114 | 104 | |||||
Maximum | 113 | 199 | 105 | 536 | 1293 | 1359 |
Marker | Two Weeks Post Dose 1 | Two Weeks Post Dose 2 | ||||||
---|---|---|---|---|---|---|---|---|
SARS-CoV-2 Positive | SARS-CoV-2 Negative | SARS-CoV-2 Positive | SARS-CoV-2 Negative | |||||
GM (95% CI) | GM (95% CI) | aGM (95% CI) | p-Value | GM (95% CI) | GM (95% CI) | aGM (95% CI) | p-Value | |
Spike-specific IgG by ELISA | 4.00 (3.71, 4.29) | 2.55 (1.69, 3.42) | 1.72 (1.06, 2.37) | <0.001 | 4.20 (4.05, 4.37) | 3.49 (2.97, 4.01) | 1.41 (0.87, 1.94) | <0.001 |
Neutralising antibody (WT_NT50) | ND | ND | - | - | 4.25 (3.61, 4.89) | 3.87 (2.87, 4.87) | 0.44 (−0.54, 1.42) | 0.382 |
Neutralising antibody (A.23.1_NT50) | ND | ND | - | - | 3.07 (2.11, 4.03) | 3.79 (3.22, 4.35) | 0.72 (−0.22, 1.65) | 0.133 |
Neutralising antibody (BA.2_NT50) | ND | ND | - | - | 3.89 (3.28, 4.49) | 3.86 (2.77, 4.95) | 0.35 (−0.68, 1.38) | 0.502 |
Nucleocapsid-specific IgG | ND | ND | - | - | 3.55 (3.21, 3.89) | 1.65 (0.95, 2.34) | 2.12 (1.57, 2.67) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitonsa, J.; Serwanga, J.; Cheeseman, H.M.; Abaasa, A.; Lunkuse, J.F.; Ruzagira, E.; Kato, L.; Nambaziira, F.; Oluka, G.K.; Gombe, B.; et al. Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals. Vaccines 2025, 13, 553. https://doi.org/10.3390/vaccines13060553
Kitonsa J, Serwanga J, Cheeseman HM, Abaasa A, Lunkuse JF, Ruzagira E, Kato L, Nambaziira F, Oluka GK, Gombe B, et al. Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals. Vaccines. 2025; 13(6):553. https://doi.org/10.3390/vaccines13060553
Chicago/Turabian StyleKitonsa, Jonathan, Jennifer Serwanga, Hannah M. Cheeseman, Andrew Abaasa, Jane Frances Lunkuse, Eugene Ruzagira, Laban Kato, Florence Nambaziira, Gerald Kevin Oluka, Ben Gombe, and et al. 2025. "Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals" Vaccines 13, no. 6: 553. https://doi.org/10.3390/vaccines13060553
APA StyleKitonsa, J., Serwanga, J., Cheeseman, H. M., Abaasa, A., Lunkuse, J. F., Ruzagira, E., Kato, L., Nambaziira, F., Oluka, G. K., Gombe, B., Jackson, S., Ssebwana, J. K., McFarlane, L. R., Joseph, S., Pierce, B. F., Shattock, R. J., & Kaleebu, P. (2025). Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals. Vaccines, 13(6), 553. https://doi.org/10.3390/vaccines13060553