Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = S-desulfurization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2630 KiB  
Article
Mechanistic Insights into Full Solid-Waste Activators for Enhancing the Performance of Blast Furnace Slag–Fly Ash Cementitious Composites
by Huiying Zhang, Yongchun Li, Dingbang Wei, Xu Wu and Yapeng Wang
Materials 2025, 18(14), 3275; https://doi.org/10.3390/ma18143275 - 11 Jul 2025
Viewed by 323
Abstract
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS [...] Read more.
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS activators on the hydration behavior of blast furnace slag (GGBS)–fly ash (FA) cementitious composites were systematically investigated. Mechanical performance, phase evolution, and microstructural development were analyzed through compressive strength tests, XRD, FTIR, TG-DTG, and SEM-EDS. Results demonstrate that in the SR-CS activator system, which combines with desulfuriation gypsum as sulfate activator, increasing CS content elevates the normal consistency water demand due to the high-polarity, low-solubility Ca(OH)2 in CS. The SR-CS activator accelerates the early hydration process of cementitious materials, shortening the paste setting time while achieving compressive strengths of 17 MPa at 7 days and 32.4 MPa at 28 days, respectively. Higher fly ash content reduced strength owing to increased unreacted particles and prolonged setting. Conversely, desulfurization gypsum exhibited a sulfate activation effect, with compressive strength peaking at 34.2 MPa with 4 wt% gypsum. Chloride immobilization by C-S-H gel was confirmed, effectively mitigating environmental risks associated with SR. This work establishes a sustainable pathway for developing low-carbon cementitious materials using multi-source solid wastes. Full article
Show Figures

Figure 1

18 pages, 4826 KiB  
Article
Mass Distribution of Organic Carbon, S-Containing Compounds and Heavy Metals During Flotation of Municipal Solid Waste Incineration Fly Ash
by Weifang Chen, Peng Li, Shuyue Zhang and Yifan Chen
Recycling 2025, 10(4), 135; https://doi.org/10.3390/recycling10040135 - 8 Jul 2025
Viewed by 243
Abstract
Flotation was investigated to treat incineration fly ash with diesel, kerosene, TX-100, or SDS as a collector and methyl isobutyl carbinol (MIBC) or 2-Octyl alcohol as a frother. Fly ash was separated into light and residual materials. Comparison of yield, carbon and sulfur [...] Read more.
Flotation was investigated to treat incineration fly ash with diesel, kerosene, TX-100, or SDS as a collector and methyl isobutyl carbinol (MIBC) or 2-Octyl alcohol as a frother. Fly ash was separated into light and residual materials. Comparison of yield, carbon and sulfur removal showed that kerosene and MIBC showed the best performance. The results revealed that flotation was a method that could simultaneously achieve the removal of organics and S-containing compounds. Specifically, approximately 7.63–9.45% of the total mass was collected as light material, which was enriched with organic carbon. Contents of organic carbon reached 14.35 wt%–14.56 wt% in the light materials from those of 2.74 wt%–3.52 wt% in the original fly ash. Elemental analysis further proved that sulfur was also accumulated in light material. Approximately 78.84–81.69% of the organic carbon and 80.47–82.66% of the sulfur were removed. Decarbonization was primarily achieved through the flotation of organic materials, while desulfurization resulted from both flotation and the dissolution of soluble salts. Furthermore, the contents of the chloride and heavy metals in the residual fly ash also decreased. Particle size analysis showed that flotation was effective in the removal of smaller particles, and those particles were also rich in heavy metals. Overall, by selecting the right collector and frother, flotation was also able to reduce the leaching toxicity of heavy metals. The residual fly ash was safe for further disposal. Organic carbon, sulfur and heavy metals were accumulated in the light materials, which accounted for less than 10% of the original mass. The portion of fly ash needing further treatment was therefore greatly reduced. Full article
Show Figures

Figure 1

16 pages, 6879 KiB  
Article
Heteropolyacid-Based Poly(Ionic Liquid) Catalyst for Ultra-Deep and Recyclable Oxidative Desulfurization of Fuels
by Mengyue Chen, Tianqi Huang, Shuang Tong, Chao Wang and Ming Zhang
Catalysts 2025, 15(7), 622; https://doi.org/10.3390/catal15070622 - 24 Jun 2025
Viewed by 399
Abstract
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction [...] Read more.
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction parameters (e.g., temperature, catalyst dosage, and O/S molar ratio) were systematically investigated, as well as the catalytic mechanism. The typical sample C8-PIL@PW exhibited exceptional oxidative desulfurization (ODS) performance, achieving a sulfur removal of 99.2% for dibenzothiophene (DBT) without any organic solvent as extractant. Remarkably, the sulfur removal could still retain 89% after recycling five times without regeneration. This study provides a sustainable and high-efficiency catalyst for ODS, offering insights into fuel purification strategies. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Figure 1

21 pages, 1205 KiB  
Article
Development of an Innovative Landfill Gas Purification System in Latvia
by Laila Zemite, Davids Kronkalns, Andris Backurs, Leo Jansons, Nauris Eglitis, Patrick Cnubben and Sanda Lapuke
Sustainability 2025, 17(13), 5691; https://doi.org/10.3390/su17135691 - 20 Jun 2025
Viewed by 383
Abstract
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national [...] Read more.
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m3/h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H2S) concentrations to <7 mg/m3 and siloxanes to ≤0.3 mg/m3, thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions. Full article
Show Figures

Figure 1

22 pages, 1719 KiB  
Article
Selection of High-Performance Sorbent for H2S Removal and Regulation of Reaction Products via Thermodynamic Simulation
by Yanni Xuan, Shuaicheng Peng, Hong Tian, Zhangmao Hu, Yanshan Yin and Haitao Gao
Materials 2025, 18(12), 2918; https://doi.org/10.3390/ma18122918 - 19 Jun 2025
Viewed by 419
Abstract
Thermodynamic simulations of the H2S removal from blast furnace gas by metal oxides were conducted to select a suitable metal desulfurizer. Notably, the Mn oxides demonstrated themselves as the optimal H2S removal agents. They are characterized by the absence [...] Read more.
Thermodynamic simulations of the H2S removal from blast furnace gas by metal oxides were conducted to select a suitable metal desulfurizer. Notably, the Mn oxides demonstrated themselves as the optimal H2S removal agents. They are characterized by the absence of radioactive pollution, high cost-effectiveness, high sulfur fixation potential, and non-reactivity with CO2, CO, and CH4. Through a comprehensive comparison of Mn oxides, the sulfur fixation potential and sulfur capacity were elucidated as follows: Mn3O4 > Mn2O3 > MnO2 > MnO. The higher-valence manganese oxides were shown to have stronger oxidation ability, larger sulfur capacity, and the advantage of producing elemental sulfur with high utilization value during the reaction. After selecting Mn oxides as the optimal H2S removal agents, an equilibrium component analysis of the regeneration process of the sulfided MnS was carried out. The results indicate that an oxygen amount that is 1.5 times that of MnS is the optimal dosage, and such an amount can oxidize all of the MnS at a relatively low temperature. Conversely, a diluted oxygen concentration can further reduce the temperature of the regeneration process, preventing the sintering of the regenerated desulfurizer and thus maintaining its reusability. This research provides a sufficient theoretical basis for the use of Mn oxides as active components of desulfurizers to remove H2S from blast furnace gas and for the regeneration of MnS after desulfurization. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

15 pages, 4450 KiB  
Article
Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials
by Zian Geng, Yu Zhang, Yiwen Zhou, Jiapeng Duan and Zhuqing Yu
Materials 2025, 18(11), 2636; https://doi.org/10.3390/ma18112636 - 4 Jun 2025
Viewed by 435
Abstract
Solid waste-based cementitious materials (SWBC) are composed of steel slag (SS), granulated blast furnace slag (GBFS), fly ash (FA), desulfurization gypsum (DG), and Portland cement (PC). Currently, SWBC holds great potential as a sustainable building material; however, its low early compressive strength and [...] Read more.
Solid waste-based cementitious materials (SWBC) are composed of steel slag (SS), granulated blast furnace slag (GBFS), fly ash (FA), desulfurization gypsum (DG), and Portland cement (PC). Currently, SWBC holds great potential as a sustainable building material; however, its low early compressive strength and volume expansion limit its range of application. Therefore, the main objective of this study is to enhance the mechanical properties and dimensional stability of SWBC by adding nano-SiO2, while also improving its resistance to chloride ions, thereby promoting its use in the field of sustainable building materials. A comprehensive experimental approach integrating mechanical performance testing, shrinkage analysis, and chloride diffusion coefficient evaluation was established, with the testing methods of thermogravimetric analysis-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The study found that adding nano-SiO2 enhanced the nucleation of calcium silicate hydrates (C-S-H) gel in hydrated SWBC, leading to improved compressive strength and reduced chloride permeability when SiO2 addition was 0.5%. When the hydration period extends to 28 days, the modified SWBC achieves a compressive strength of 56 MPa. However, excessive nano-SiO2 (≥1%) inhibited the long-term hydration of SWBC but had no significant effect on the final compressive strength. Full article
Show Figures

Figure 1

16 pages, 3639 KiB  
Article
Study on the Surface Structure of Nano-ZnO Desulfurizers and Their Performance and Mechanism in H2S Removal at Room Temperature
by Chunhong Shao, Yue Gao, Xuan Qi and Xiuli Yang
Catalysts 2025, 15(6), 547; https://doi.org/10.3390/catal15060547 - 30 May 2025
Viewed by 560
Abstract
This study investigates the performance and underlying mechanism of nano-ZnO desulfurizers with varying particle sizes for hydrogen sulfide (H2S) removal at room temperature. Nano-ZnO samples with different particle sizes were synthesized via the homogeneous precipitation method. The surface structure of the [...] Read more.
This study investigates the performance and underlying mechanism of nano-ZnO desulfurizers with varying particle sizes for hydrogen sulfide (H2S) removal at room temperature. Nano-ZnO samples with different particle sizes were synthesized via the homogeneous precipitation method. The surface structure of the synthesized nano-ZnO was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The desulfurization performance of nano-ZnO improves significantly as the particle size decreases, with the primary mechanism being closely related to oxygen vacancies. Oxygen vacancies enhance H2S adsorption on the ZnO surface and facilitate redox reactions that produce elemental sulfur. MS-H2S-TPSR analysis revealed the formation of polysulfides and the redox processes involving sulfur. The effects of particle size, surface oxygen vacancies, and the distribution of oxidized sulfur species on desulfurization performance are also analyzed. Full article
Show Figures

Figure 1

22 pages, 6168 KiB  
Article
Integrated Soil Fertility Management Enhances Soil Properties, Yield, and Nitrogen Use Efficiency of Rice Cultivation: Influence of Fertilizer Rate, Humic Acid, and Gypsum
by Hartina, Tidarat Monkham, Patma Vityakon and Tanabhat-Sakorn Sukitprapanon
Agronomy 2025, 15(6), 1335; https://doi.org/10.3390/agronomy15061335 - 29 May 2025
Viewed by 708
Abstract
Integrated soil fertility management is essential for improving soil productivity, rice yield, and nitrogen use efficiency (NUE). This study investigated the combined effects of the chemical fertilizer rate, humic acid (HA), and flue gas desulfurization gypsum (FG) on the soil chemical properties, rice [...] Read more.
Integrated soil fertility management is essential for improving soil productivity, rice yield, and nitrogen use efficiency (NUE). This study investigated the combined effects of the chemical fertilizer rate, humic acid (HA), and flue gas desulfurization gypsum (FG) on the soil chemical properties, rice yield, NUE, and nitrogen agronomic efficiency (NAE) in acidic paddy soil. The following three factors were evaluated: (1) fertilization based on farmer practices and rice nutrient requirements; (2) HA at 0 and 975 kg ha−1; and (3) FG at 0, 23, and 636 kg ha−1. Fertilization based on rice requirements reduced the nitrogen (N) input by 14.5% compared to farmer practices while still maintaining similar grain yields. Under farmer practice, HA enhanced total N content, cation exchange capacity (CEC), rice yield, NUE, and NAE. HA with FG (636 kg ha−1) increased total organic carbon (TOC) levels, total N levels, and exchangeable ammonium nitrogen (NH4-N), but decreased the yield. In contrast, HA combined with FG at 23 kg ha−1 enhanced the soil exchangeable Ca and S levels, as well as resulting in a high rice yield (7.7 t ha−1), NUE (39%), and NAE (32 kg kg−1). The findings suggest that to maintain farmer fertilization practices while improving soil properties and rice yield, HA should be applied with FG (23 kg ha−1). Full article
Show Figures

Figure 1

12 pages, 2076 KiB  
Article
A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts
by Houyu Zhu, Xiaohan Li, Xiaoxin Zhang, Yucheng Fan, Xin Wang, Dongyuan Liu, Zhennan Liu, Xiaoxiao Gong, Wenyue Guo and Hao Ren
Nanomaterials 2025, 15(11), 788; https://doi.org/10.3390/nano15110788 - 23 May 2025
Viewed by 420
Abstract
Nickel (Ni) catalysts have numerous applications in the chemical industry, but they are susceptible to sulfurization, with their sulfurized structures and underlying formation mechanisms remaining unclear. Herein, density functional theory (DFT) combined with the particle swarm optimization (PSO) algorithm is employed to investigate [...] Read more.
Nickel (Ni) catalysts have numerous applications in the chemical industry, but they are susceptible to sulfurization, with their sulfurized structures and underlying formation mechanisms remaining unclear. Herein, density functional theory (DFT) combined with the particle swarm optimization (PSO) algorithm is employed to investigate the low-energy structures and formation mechanisms of sulfide phases on Ni(111) surfaces, especially under high-sulfur-coverage conditions where traditional DFT calculations fail to reach convergence. Using (3×3 ) Ni(111) slab models, we identify a sulfurization limit, finding that each pair of deposited sulfur atoms can sulfurize one layer of three Ni atoms at most (Ni:S = 3:2), with additional sulfur atoms penetrating deeper layers until saturation. Under typical reactive adsorption desulfurization conditions, the ab initio thermodynamics analysis indicates that Ni3S2 is the most stable sulfide phase, consistent with sulfur K-edge XANES data. Unsaturated phases, including Ni3S, Ni2S, and Ni9S5, represent intermediate states towards saturation, potentially explaining the diverse Ni sulfide compositions observed in experiments. Full article
(This article belongs to the Special Issue Catalysis at the Nanoscale: Insights from Theory and Simulation)
Show Figures

Graphical abstract

16 pages, 3096 KiB  
Article
Effect of Desulfurization Ash Content on the Low-Temperature Rheological Properties of Asphalt Mastic
by Yinghui Zhang, Kai Li, Yong Wu and Zhigang Zhou
Coatings 2025, 15(5), 604; https://doi.org/10.3390/coatings15050604 - 18 May 2025
Viewed by 424
Abstract
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% [...] Read more.
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% ash replacing mineral powder at 0.8–1.2 powder-binder mass ratios. Ductility and bending beam rheometer testing assessed flexibility and crack resistance. Burgers’ model fitted bending creep compliance to derive relaxation time, m(t)/S(t) index, and low-temperature compliance parameter for analytical insight. Scanning electron microscopy and Fourier transform infrared spectroscopy probed microstructural development and interaction mechanisms. Results showed that the inclusion of desulfurization ash reduced the low-temperature performance of the asphalt mastic compared to the mineral powder asphalt mastic. Additionally, as the temperature decreased further, the effect of the powder-to-gum ratio on the slurry’s crack resistance became less pronounced. Desulfurization ash primarily interacted with the base bitumen through physical means, and the performance of desulfurization ash asphalt slurry mainly depended on the degree of swelling between the desulfurization ash and the base asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

14 pages, 5095 KiB  
Article
Performance Study of CaO-CaF2- and CaO-Al2O3-SiO2-Based High-Efficiency Desulfurizers
by Ruihong Cao, Shengtao Qiu, Ting Wu and Haijun Wang
Metals 2025, 15(5), 550; https://doi.org/10.3390/met15050550 - 16 May 2025
Viewed by 366
Abstract
In order to reduce the content of harmful impurity sulfur elements in steel to meet the quality requirements of high value-added steel, efficient desulfurization of RH vacuum degassing is essential. Based on the simplex lattice composition design method, the effects of typical compositions [...] Read more.
In order to reduce the content of harmful impurity sulfur elements in steel to meet the quality requirements of high value-added steel, efficient desulfurization of RH vacuum degassing is essential. Based on the simplex lattice composition design method, the effects of typical compositions on liquidus temperature, sulfur capacity, melting temperature, the effects of typical compositions on liquidus temperature, sulfur capacity, melting temperature, viscosity, and desulfurization rate of CaO-CaF2- and CaO-Al2O3-SiO2-based desulfurizers were studied by thermodynamic calculation, the melting temperature test, and the slag–steel contact experiment. The results show that in CaO-CaF2- and CaO-Al2O3-SiO2-based desulfurizers, the changes in CaF2, MgO, and Al2O3 contents has little effect on the equilibrium S content of molten steel at lower SiO2 contents, whereas, at higher SiO2 contents, the equilibrium S content of the molten steel is greatly increased when the CaF2, MgO, and Al2O3 content is greater than a certain value. Meanwhile, the increase in CaF2 and MgO content reduces the high-temperature viscosity and breaking temperature (corresponding to the turning point on the viscosity–temperature curve) to varying degrees, which results in a better slag fluidity and is favorable to the prevention of crusting. With the increase in Al2O3 and SiO2 content, the breaking temperature of the CaO-CaF2-based desulfurizer is significantly reduced, which is beneficial to preventing crust. However, when the breaking temperature of CaO-Al2O3-SiO2-based desulfurizer increases, part of the slag system has solidified at 1400 °C, which is easy to lead to slag crust when the temperature drops. Comprehensively, for the CaO-CaF2-based desulfurizer, CaO = 60 wt%, CaF2 = 30 wt%, SiO2 = 0–5 wt%, and add a small amount of Al2O3 and MgO, its desulfurization effect is significant. For the CaO-Al2O3-SiO2-based desulfurizer, CaO = 39–57 wt%, Al2O3 = 20–35 wt%, SiO2 = 10–15 wt%, MgO = 4 wt%, CaF2 = 4–8 wt%, its desulfurization effect meets the demand, and it can reduce equipment erosion and environmental pollution. Full article
(This article belongs to the Special Issue Green Super-Clean Steels)
Show Figures

Figure 1

21 pages, 8111 KiB  
Article
Intensification of Multiphase Reactions in Petroleum Processing: A Simulation Study of SK Static Mixer Using NaClO for H2S Removal
by Mengmeng Gao, Jiacheng Liu, Ying Chen, Zibin Huang, Hongfu Wang, Peiqing Yuan, Xinru Xu and Jingyi Yang
Processes 2025, 13(5), 1515; https://doi.org/10.3390/pr13051515 - 15 May 2025
Viewed by 417
Abstract
During crude oil exploration and extraction, the presence of H2S not only poses a threat to operational safety but also accelerates equipment corrosion, highlighting the urgent need for efficient and cost-effective processing solutions. This study employs a coupled numerical simulation approach [...] Read more.
During crude oil exploration and extraction, the presence of H2S not only poses a threat to operational safety but also accelerates equipment corrosion, highlighting the urgent need for efficient and cost-effective processing solutions. This study employs a coupled numerical simulation approach that integrates computational fluid dynamics (CFD) and population balance models (PBM) to systematically investigate the multiphase flow characteristics within SK static mixers. By embedding mass transfer rates and reaction kinetics equations for hydrogen sulfide and sodium hypochlorite into the Euler-Euler multiphase flow model using user-defined functions (UDFs), the effects of equipment structure on the efficiency of the crude oil desulfurization process are examined. The results indicate that the optimized SK static mixer (with 15 elements, an aspect ratio of 1, and a twist angle of 90°) achieves an H2S removal efficiency of 72.02%, which is 18.84 times greater than that of conventional empty tube reactors. Additionally, the micro-mixing time is reduced to 0.001 s, and the coefficient of variation (CoV) decreases to 0.21, while maintaining acceptable pressure drop levels. Using the CFD-PBM model, the dispersion behavior of droplets within the static mixer is investigated. The results show that the diameter of the inlet pipe significantly affects droplet dispersion; smaller diameters (0.1 and 1 mm) enhance droplet breakup through increased shear force and turbulence effects. The findings of this study provide theoretical support for optimizing crude oil desulfurization processes and are of significant importance for enhancing the economic efficiency and safety of crude oil extraction operations. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 21884 KiB  
Article
Ti-Supported Oxide Coatings Based on MWO4 (M = Fe, Co, Ni): Plasma Electrolytic Synthesis, Characterization and Catalytic Properties in S, N-Heterocycles Peroxide Oxidation
by Irina G. Tarkhanova, Vladimir M. Zelikman, Irina V. Lukiyanchuk, Marina S. Vasilyeva, Vladimir V. Tkachev, Vladimir V. Korochentsev and Daria H. Shlyk
Molecules 2025, 30(9), 1998; https://doi.org/10.3390/molecules30091998 - 30 Apr 2025
Viewed by 394
Abstract
In this study, catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes based on sodium tungstate with the addition of sodium phosphate or sodium borate and chelate complexes of iron, cobalt or nickel. Taking into account the [...] Read more.
In this study, catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes based on sodium tungstate with the addition of sodium phosphate or sodium borate and chelate complexes of iron, cobalt or nickel. Taking into account the EDX, XPS and XRD data, the oxide–phosphate coatings (PWFe, PWCo, PWNi) contained crystalline titanium oxide and amorphous tungstates and/or phosphates of iron triad metals. Amorphization was facilitated by high phosphorus concentrations (up to 6 at.%). Replacing phosphate with borate in the electrolyte with Ni(II)-EDTA complexes led to the crystallization of WO3 and NiWO4 in the PEO coatings (BWNi). All formed PEO coatings were active in reactions of the oxidative desulfurization (ODS) of thiophene and dibenzothiophene and oxidative denitrogenation (ODN) of pyridine, as well as in the simultaneous removal of S- and N-containing substrates from their mixture. The stability of samples with MWO4 increased in the following series: PWNi < PWCo < PW < PWFe < BWNi. Replacing phosphate with borate in the electrolyte resulted in the preparation of catalysts with enhanced stability and activity. In contrast to PWM catalysts, the BWNi catalyst had selectivity toward the oxidation of pyridine in its mixture with thiophene. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

25 pages, 5808 KiB  
Article
Study on the Microscale Mechanisms of Multi-Source Solid Waste Synergy in Enhancing Physicochemical Properties of Red Mud-Based Backfill Materials
by Jinjing Huang, Guochao Yan, Shaoqi Kong, Xuyang Bai, Jiawei Zhang and Zhiguo Ge
Materials 2025, 18(8), 1822; https://doi.org/10.3390/ma18081822 - 16 Apr 2025
Cited by 2 | Viewed by 559
Abstract
To address the issues of the low pozzolanic activity and high pollution potential of red mud (RM), this study utilizes different industrial solid wastes to synergistically enhance the physicochemical properties of red mud-based filling materials. The compressive strengths of red mud-based filling materials [...] Read more.
To address the issues of the low pozzolanic activity and high pollution potential of red mud (RM), this study utilizes different industrial solid wastes to synergistically enhance the physicochemical properties of red mud-based filling materials. The compressive strengths of red mud-based filling materials activated by three types of solid wastes—desulfurized gypsum (DG), carbide slag (CS), and steel slag (SS)—were compared, revealing the differences in their effects on the physicochemical properties of the materials. The results showed that DG significantly enhanced the compressive strength of the backfill material. The composite system composed of 65.8% RM, 18.8% FA, 9.4% cement, and 6% DG achieved a compressive strength of 7.36 MPa after 28 days of curing, demonstrating a 97.8% increase compared to the control group. Techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analysis were employed to characterize the microstructural evolution of the red mud-based filling materials activated by different solid wastes. This study investigated the differences in the pore structure, microscopic morphology, and chemical composition of the materials containing different solid wastes. The results indicated that DG effectively promotes the formation of ettringite and C(-A)-S-H gel, optimizes the pore structure of the filling materials, and forms a dense matrix, thereby enhancing the stiffness and strength of the materials. Additionally, the red mud-based filling materials developed in this study exhibit excellent environmental performance. This not only provides theoretical support for the development of red mud-based filling materials but also offers new insights for mine backfilling and the co-disposal of solid wastes. Full article
Show Figures

Figure 1

23 pages, 3793 KiB  
Review
Recent Advances in Materials, Synthesis, and Reaction Model of Particle Adsorbent for Flue Gas Desulfurization
by Yanni Xuan, Kun Yu, Hong Tian, Zhangmao Hu, Wei Zhang, Yanshan Yin, Haitao Gao and Qingbo Yu
Molecules 2025, 30(8), 1653; https://doi.org/10.3390/molecules30081653 - 8 Apr 2025
Viewed by 645
Abstract
Particle adsorbents have gained significant traction in flue gas desulfurization applications, primarily attributed to their high structural homogeneity and large specific surface area. To address the multifaceted requirements of industrial sectors regarding the structural configurations and physicochemical properties of particle adsorbents while promoting [...] Read more.
Particle adsorbents have gained significant traction in flue gas desulfurization applications, primarily attributed to their high structural homogeneity and large specific surface area. To address the multifaceted requirements of industrial sectors regarding the structural configurations and physicochemical properties of particle adsorbents while promoting sustainable manufacturing practices, this study systematically evaluates and critically appraises contemporary advancements in particle desulfurizing agent technologies. The synthesis of these findings establishes a theoretical framework to facilitate technological innovation and industrial progress within the particle desulfurizer domain. The research systems of particle adsorbents, encompassing active components, inert carriers, preparation methodologies, and gas–solid reaction models, were comprehensively reviewed. The advantages and current limitations of these systems were then systematically summarized. Finally, the fundamental principles and research trajectories in the application fields of distinct particle adsorbent research systems were elucidated. An analysis of the developmental trends indicated that enhancing the utilization efficiency of active components and improving the cyclic stability of adsorbents remained critical engineering challenges. It is posited that the pursuit of high reaction activity, thermal stability, mechanical strength, and superior anti-aggregation/sintering performance constitutes key directions for the advancement of particle adsorbents in China’s flue gas desulfurization industry. Full article
Show Figures

Figure 1

Back to TopTop