Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (402)

Search Parameters:
Keywords = Rover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 19937 KiB  
Article
Development and Evaluation of a Two-Dimensional Extension/Contraction-Driven Rover for Sideslip Suppression During Slope Traversal
by Kenta Sagara, Daisuke Fujiwara and Kojiro Iizuka
Aerospace 2025, 12(8), 699; https://doi.org/10.3390/aerospace12080699 - 6 Aug 2025
Abstract
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. [...] Read more.
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. Previous research proposed using wheelbase extension/contraction and intentionally sinking wheels into the ground, thereby increasing shear resistance and reducing sideslip. Building upon this concept, this study proposes a novel recovery method that integrates beam extension/contraction and Archimedean screw-shaped wheels to enable lateral movement without rotating the rover body. The beam mechanism allows for independent wheel movement, maintaining stability by anchoring stationary wheels during recovery. Meanwhile, the helical structure of the screw wheels helps reduce lateral earth pressure by scraping soil away from the sides, improving lateral drivability. Driving experiments on a sloped sandbox test bed confirmed that the proposed 2DPPL (two-dimensional push-pull locomotion) method significantly reduces sideslip and prevents a drop in attitude angle during slope traversal. Full article
Show Figures

Figure 1

14 pages, 16353 KiB  
Communication
Fault Detection in Real-Time Kinematic Positioning Using Multiple Reference Stations
by Euiho Kim and Soomin Lee
Sensors 2025, 25(15), 4653; https://doi.org/10.3390/s25154653 - 27 Jul 2025
Viewed by 215
Abstract
Multiple-reference-station-based real-time kinematics (MR-RTK) is an advanced RTK technique that leverages global navigation satellite system (GNSS) measurements from multiple reference stations and their known baselines. This study investigates the fault detection capabilities of MR-RTK by employing additional measurements from continuously operating reference stations [...] Read more.
Multiple-reference-station-based real-time kinematics (MR-RTK) is an advanced RTK technique that leverages global navigation satellite system (GNSS) measurements from multiple reference stations and their known baselines. This study investigates the fault detection capabilities of MR-RTK by employing additional measurements from continuously operating reference stations (CORSs) to evaluate the probability of missed detection. The proposed method was validated using test data from a ground rover and a few CORSs within a 10 km radius. The test results show that the missed detection probability decreased by up to 55.0% as the number of reference stations increased up to four. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

27 pages, 31172 KiB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 226
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

18 pages, 4936 KiB  
Review
The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers
by Carrington Chun, Faysal Chowdoury, Muhammad Hassan Tanveer, Sumit Chakravarty and David A. Guerra-Zubiaga
Actuators 2025, 14(7), 356; https://doi.org/10.3390/act14070356 - 20 Jul 2025
Viewed by 465
Abstract
The robotic exploration of space began only five decades ago, and yet in the intervening years, a wide and diverse ecosystem of robotic explorers has been developed for this purpose. Such devices have greatly benefited from miniaturization trends and the increased availability of [...] Read more.
The robotic exploration of space began only five decades ago, and yet in the intervening years, a wide and diverse ecosystem of robotic explorers has been developed for this purpose. Such devices have greatly benefited from miniaturization trends and the increased availability of high-quality commercial off-the-shelf (COTS) components. This review outlines the specific taxonomic distinction between planetary surface rovers and other robotic space exploration vehicles, such as orbiters and landers. Additionally, arguments are made to standardize the classification of planetary rovers by mass into categories similar to those used for orbital satellites. Discussions about recent noteworthy trends toward the miniaturization of planetary rovers are also included, as well as a compilation of previous planetary rovers. This analysis compiles relevant metrics such as the mass, the distance traveled, and the locomotion or actuation technique for previous planetary rovers. Additional details are also examined about archetypal rovers that were chosen as representatives of specific small-scale rover classes. Finally, potential future trends for miniature planetary surface rovers are examined by way of comparison to similar miniaturized orbital robotic explorers known as CubeSats. Based on the existing relationship between CubeSats and their Earth-based simulation equivalents, CanSats, the importance of a potential Earth-based analog for miniature rovers is identified. This research establishes such a device, coining the new term ‘CanBot’ to refer to pathfinding systems that are deployed terrestrially to help develop future planetary surface exploration robots. Establishing this explicit genre of robotic vehicle is intended to provide a unified means for categorizing and encouraging the development of future small-scale rovers. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

24 pages, 3601 KiB  
Article
Laser-Induced Breakdown Spectroscopy Quantitative Analysis Using a Bayesian Optimization-Based Tunable Softplus Backpropagation Neural Network
by Xuesen Xu, Shijia Luo, Xuchen Zhang, Weiming Xu, Rong Shu, Jianyu Wang, Xiangfeng Liu, Ping Li, Changheng Li and Luning Li
Remote Sens. 2025, 17(14), 2457; https://doi.org/10.3390/rs17142457 - 16 Jul 2025
Viewed by 307
Abstract
Laser-induced breakdown spectroscopy (LIBS) has played a critical role in Mars exploration missions, substantially contributing to the geochemical analysis of Martian surface substances. However, the complex nonlinearity of LIBS processes can considerably limit the quantification accuracy of conventional LIBS chemometric methods. Hence chemometrics [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) has played a critical role in Mars exploration missions, substantially contributing to the geochemical analysis of Martian surface substances. However, the complex nonlinearity of LIBS processes can considerably limit the quantification accuracy of conventional LIBS chemometric methods. Hence chemometrics based on artificial neural network (ANN) algorithms have become increasingly popular in LIBS analysis due to their extraordinary ability in nonlinear feature modeling. The hidden layer activation functions are key to ANN model performance, yet common activation functions usually suffer from problems such as gradient vanishing (e.g., Sigmoid and Tanh) and dying neurons (e.g., ReLU). In this study, we propose a novel LIBS quantification method, named the Bayesian optimization-based tunable Softplus backpropagation neural network (BOTS-BPNN). Based on a dataset comprising 1800 LIBS spectra collected by a laboratory duplicate of the MarSCoDe instrument onboard the Zhurong Mars rover, we have revealed that a BPNN model adopting a tunable Softplus activation function can achieve higher prediction accuracy than BPNN models adopting other common activation functions if the tunable Softplus parameter β is properly selected. Moreover, the way to find the proper β value has also been investigated. We demonstrate that the Bayesian optimization method surpasses the traditional grid search method regarding both performance and efficiency. The BOTS-BPNN model also shows superior performance over other common machine learning models like random forest (RF). This work indicates the potential of BOTS-BPNN as an effective chemometric method for analyzing Mars in situ LIBS data and sheds light on the use of chemometrics for data analysis in future planetary explorations. Full article
Show Figures

Figure 1

23 pages, 3008 KiB  
Article
Quantitative Analysis of Sulfur Elements in Mars-like Rocks Based on Multimodal Data
by Yuhang Dong, Zhengfeng Shi, Junsheng Yao, Li Zhang, Yongkang Chen and Junyan Jia
Sensors 2025, 25(14), 4388; https://doi.org/10.3390/s25144388 - 14 Jul 2025
Viewed by 365
Abstract
The Zhurong rover of the Tianwen-1 mission has detected sulfates in its landing area. The analysis of these sulfates provides scientific evidence for exploring past hydration conditions and atmospheric evolution on Mars. As a non-contact technique with long-range detection capability, Laser-Induced Breakdown Spectroscopy [...] Read more.
The Zhurong rover of the Tianwen-1 mission has detected sulfates in its landing area. The analysis of these sulfates provides scientific evidence for exploring past hydration conditions and atmospheric evolution on Mars. As a non-contact technique with long-range detection capability, Laser-Induced Breakdown Spectroscopy (LIBS) is widely used for elemental identification on Mars. However, quantitative analysis of anionic elements using LIBS remains challenging due to the weak characteristic spectral lines of evaporite salt elements, such as sulfur, in LIBS spectra, which provide limited quantitative information. This study proposes a quantitative analysis method for sulfur in sulfate-containing Martian analogs by leveraging spectral line correlations, full-spectrum information, and prior knowledge, aiming to address the challenges of sulfur identification and quantification in Martian exploration. To enhance the accuracy of sulfur quantification, two analytical models for high and low sulfur concentrations were developed. Samples were classified using infrared spectroscopy based on sulfur content levels. Subsequently, multimodal deep learning models were developed for quantitative analysis by integrating LIBS and infrared spectra, based on varying concentrations. Compared to traditional unimodal models, the multimodal method simultaneously utilizes elemental chemical information from LIBS spectra and molecular structural and vibrational characteristics from infrared spectroscopy. Considering that sulfur exhibits distinct absorption bands in infrared spectra but demonstrates weak characteristic lines in LIBS spectra due to its low ionization energy, the combination of both spectral techniques enables the model to capture complementary sample features, thereby effectively improving prediction accuracy and robustness. To validate the advantages of the multimodal approach, comparative analyses were conducted against unimodal methods. Furthermore, to optimize model performance, different feature selection algorithms were evaluated. Ultimately, an XGBoost-based feature selection method incorporating prior knowledge was employed to identify optimal LIBS spectral features, and the selected feature subsets were utilized in multimodal modeling to enhance stability. Experimental results demonstrate that, compared to the BPNN, SVR, and Inception unimodal methods, the proposed multimodal approach achieves at least a 92.36% reduction in RMSE and a 46.3% improvement in R2. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 4852 KiB  
Article
Geological Mapping and Rover Mobility Planning Integration: A Case Study for Zhurong Rover’s Landing Area
by Haoli Ding, Enhui Zou, Lihui Lian, Wenzhen Ma, Yantong Huang and Teng Hu
Remote Sens. 2025, 17(14), 2400; https://doi.org/10.3390/rs17142400 - 11 Jul 2025
Viewed by 353
Abstract
This study conducted a comprehensive geological background investigation of the Zhurong rover’s landing area in Utopia Planitia using 3.5 m/pixel DEM and 0.7 m/pixel DOM data and completed the compilation of a 1:250,000-scale geological map. A total of 17 geological structures were systematically [...] Read more.
This study conducted a comprehensive geological background investigation of the Zhurong rover’s landing area in Utopia Planitia using 3.5 m/pixel DEM and 0.7 m/pixel DOM data and completed the compilation of a 1:250,000-scale geological map. A total of 17 geological structures were systematically identified within the landing area. Additionally, focusing on scientific questions regarding the evolution of troughs, cone units, and mesas, we theoretically designed an exploration route considering slope constraints by taking the Zhurong rover route design as a case study. This route, a conceptual design, starts from the hibernation location of the Zhurong rover and has a total length of 126 km. It can provide a reference for advancing detection strategies for volatile components (e.g., water and ice) and contribute to the design of the Tianwen-3 exploration route. Ultimately, this study aims to establish a general guideline for integrating geological mapping with rover mobility planning in future extraterrestrial exploration missions. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Graphical abstract

15 pages, 33163 KiB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Viewed by 463
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

32 pages, 2740 KiB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Viewed by 1397
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

12 pages, 2660 KiB  
Article
Fast and Fractionated: Correlation of Dose Attenuation and the Response of Human Cancer Cells in a New Anthropomorphic Brain Phantom
by Bernd Frerker, Elette Engels, Jason Paino, Vincent de Rover, John Paul Bustillo, Marie Wegner, Matthew Cameron, Stefan Fiedler, Daniel Häusermann, Guido Hildebrandt, Michael Lerch and Elisabeth Schültke
Biomimetics 2025, 10(7), 440; https://doi.org/10.3390/biomimetics10070440 - 3 Jul 2025
Viewed by 456
Abstract
The results of radiotherapy in patients with primary malignant brain tumors are extremely dissatisfactory: the overall survival after a diagnosis of glioblastoma is typically less than three years. The development of spatially fractionated radiotherapy techniques could help to improve this bleak prognosis. In [...] Read more.
The results of radiotherapy in patients with primary malignant brain tumors are extremely dissatisfactory: the overall survival after a diagnosis of glioblastoma is typically less than three years. The development of spatially fractionated radiotherapy techniques could help to improve this bleak prognosis. In order to develop technical equipment and organ-specific therapy plans, dosimetry studies as well as radiobiology studies are conducted. Although perfect spheres are considered optimal phantoms by physicists, this does not reflect the wide variety of head sizes and shapes in our patient community. Depth from surface and X-ray dose absorption by tissue between dose entry point and target, two key parameters in medical physics planning, are largely determined by the shape and thickness of the skull bone. We have, therefore, designed and produced a biomimetic tool to correlate measured technical dose and biological response in human cancer cells: a brain phantom, produced from tissue-equivalent materials. In a first pilot study, utilizing our phantom to correlate technical dose measurements and metabolic response to radiation in human cancer cell lines, we demonstrate why an anthropomorphic phantom is preferable over a simple spheroid phantom. Full article
Show Figures

Graphical abstract

25 pages, 1155 KiB  
Article
A Framework for Bluetooth-Based Real-Time Audio Data Acquisition in Mobile Robotics
by Sandeep Gupta, Udit Mamodiya, A. K. M. Zakir Hossain and Ahmed J. A. Al-Gburi
Signals 2025, 6(3), 31; https://doi.org/10.3390/signals6030031 - 2 Jul 2025
Viewed by 667
Abstract
This paper presents a novel framework addressing the fundamental challenge of concurrent real-time audio acquisition and motor control in resource-constrained mobile robotics. The ESP32-based system integrates a digital MEMS microphone with rover mobility through a unified Bluetooth protocol. Key innovations include (1) a [...] Read more.
This paper presents a novel framework addressing the fundamental challenge of concurrent real-time audio acquisition and motor control in resource-constrained mobile robotics. The ESP32-based system integrates a digital MEMS microphone with rover mobility through a unified Bluetooth protocol. Key innovations include (1) a dual-thread architecture enabling non-blocking concurrent operation, (2) an adaptive eight-bit compression algorithm optimizing bandwidth while preserving audio quality, and (3) a mathematical model for real-time resource allocation. A comprehensive empirical evaluation demonstrates consistent control latency below 150 ms with 90–95% audio packet delivery rates across varied environments. The framework enables mobile acoustic sensing applications while maintaining responsive motor control, validated through comprehensive testing in 40–85 dB acoustic environments at distances up to 10 m. A performance analysis demonstrates the feasibility of high-fidelity mobile acoustic sensing on embedded platforms, opening new possibilities for environmental monitoring, surveillance, and autonomous acoustic exploration systems. Full article
Show Figures

Figure 1

19 pages, 873 KiB  
Article
Urban Middle Schoolers’ Experiences of an Outdoor Adventure Education Program to Facilitate Social and Emotional Development
by Cian L. Brown, Benjamin C. Heddy, Kanvarbir S. Gill, Jakob Gowell and Alison C. Koenka
Educ. Sci. 2025, 15(7), 841; https://doi.org/10.3390/educsci15070841 - 2 Jul 2025
Viewed by 506
Abstract
Middle school students face significant transitions and often do not receive education on important social-emotional learning (SEL) skills. To address this issue, we investigated how middle school students experience an outdoor adventure education program focused on SEL development. Nine students from an urban [...] Read more.
Middle school students face significant transitions and often do not receive education on important social-emotional learning (SEL) skills. To address this issue, we investigated how middle school students experience an outdoor adventure education program focused on SEL development. Nine students from an urban public charter school participated in the ROVER program, which taught the following SEL skills: resilience, risk management, self-efficacy, self-regulation, and emotion regulation. Students then applied these concepts through adventure sports and were instructed to translate the lessons to their home and school lives. Students completed weekly reflections to explore how students experienced this piloted program. A Structure Tabular-Thematic Analysis (ST-TA) approach was used to investigate thematic coding of reflections. Prominent themes uncovered across the reflections were emotion regulation, experience intensity, social influences, resilience, and self-preservation. We describe program implementation and discuss how using adventure sports after-school programs can impact urban middle school students’ SEL skills development. Implications suggest potential benefits of directly teaching and applying SEL competencies. Full article
(This article belongs to the Special Issue Social and Emotional Learning and Wellbeing in Education)
Show Figures

Figure 1

21 pages, 21726 KiB  
Article
Evaluation of Positioning Accuracy Using Smartphone RGB and LiDAR Sensors with the viDoc RTK Rover
by Sara Zollini and Laura Marconi
Sensors 2025, 25(13), 3867; https://doi.org/10.3390/s25133867 - 21 Jun 2025
Viewed by 917
Abstract
Modern surveying is increasingly focused on fast data acquisition and processing using lightweight, low-cost equipment, particularly for the continuous monitoring of structures and infrastructures. This study investigates the use of LiDAR and RGB sensors embedded in Apple and Android smartphones, paired with an [...] Read more.
Modern surveying is increasingly focused on fast data acquisition and processing using lightweight, low-cost equipment, particularly for the continuous monitoring of structures and infrastructures. This study investigates the use of LiDAR and RGB sensors embedded in Apple and Android smartphones, paired with an innovative device, the viDoc RTK Rover, for centimeter-level surveying. Three case studies were selected, each characterized by different materials, functional uses, and environmental contexts. The methodology centers on evaluating final accuracy during both the data acquisition and processing phases. Coordinates of target points were obtained directly via the viDoc device and indirectly through dense point clouds. Validation was conducted using a geodetic GNSS receiver. Results demonstrate that, in most cases, the system achieves accuracy comparable to traditional surveying methods. The findings confirm that these emerging tools offer a reliable and efficient solution for rapid 3D surveys with centimeter-level accuracy. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 7181 KiB  
Article
Satellite Navigation of a Lunar Rover with Sensor Fusion for High-Accuracy Navigation
by Marco Sabatini, Giovanni B. Palmerini, Filippo Rodriguez, Riccardo Petix, Gabriele Lambiase and Pietro Pacchiarotti
Aerospace 2025, 12(7), 565; https://doi.org/10.3390/aerospace12070565 - 20 Jun 2025
Viewed by 420
Abstract
The Moon has become the focus of renewed interest for numerous space agencies and private companies worldwide. In the coming years, various scientific and commercial missions are planned, with a particular emphasis on exploring the South Pole. These missions include orbiters, landers, as [...] Read more.
The Moon has become the focus of renewed interest for numerous space agencies and private companies worldwide. In the coming years, various scientific and commercial missions are planned, with a particular emphasis on exploring the South Pole. These missions include orbiters, landers, as well as both static and mobile rovers. For all these operations, continuous and accurate position knowledge is essential. This paper evaluates the performance of a navigation system designed for a lunar rover using the future satellite navigation infrastructure. It highlights the critical role of integrating multiple information sources, including a Digital Elevation Model (DEM) of the lunar surface and a high-precision Inertial Measurement Unit (IMU). The results demonstrate that a comprehensive suite of instruments enables highly accurate and reliable navigation for a mobile rover. While standalone satellite navigation, due to the reduced number of available sources, offers navigation accuracy of the orders of tens of meters, the addition of the DEM lowers the error at 5 m level; the IMU further improve by roughly 40% the performance on horizontal positioning. Full article
(This article belongs to the Special Issue Advances in Lunar Exploration)
Show Figures

Figure 1

23 pages, 3907 KiB  
Article
Woodot: An AI-Driven Mobile Robotic System for Sustainable Defect Repair in Custom Glulam Beams
by Pierpaolo Ruttico, Federico Bordoni and Matteo Deval
Sustainability 2025, 17(12), 5574; https://doi.org/10.3390/su17125574 - 17 Jun 2025
Viewed by 460
Abstract
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines [...] Read more.
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines an omnidirectional rover, a six-dof collaborative arm, and a fine-tuned Segment Anything computer vision pipeline to identify, mill, and plug surface knots on geometrically variable beams. The perception model was trained on a purpose-built micro-dataset and reached an F1 score of 0.69 on independent test images, while the integrated system located defects with a 4.3 mm mean positional error. Full repair cycles averaged 74 s per knot, reducing processing time by more than 60% compared with skilled manual operations, and achieved flush plug placement in 87% of trials. These outcomes demonstrate that a lightweight AI model coupled with mobile manipulation can deliver reliable, shop-floor automation for low-volume, high-variation timber production. By shortening cycle times and lowering worker exposure to repetitive tasks, Woodot offers a viable pathway to enhance the environmental, economic, and social sustainability of digital timber construction. Nevertheless, some limitations remain, such as dependency on stable lighting conditions for optimal vision performance and the need for tool calibration checks. Full article
Show Figures

Figure 1

Back to TopTop