Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = Rosmarinus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12523 KiB  
Article
Essential Oils as an Antifungal Alternative for the Control of Various Species of Fungi Isolated from Musa paradisiaca: Part I
by Maritza D. Ruiz Medina and Jenny Ruales
Microorganisms 2025, 13(8), 1827; https://doi.org/10.3390/microorganisms13081827 - 5 Aug 2025
Abstract
This study evaluated the antifungal potential of essential oils (EOs): oregano (Origanum vulgare), rosemary (Salvia rosmarinus), clove (Syzygium aromaticum), thyme (Thymus vulgaris), cinnamon (Cinnamomum verum), and basil (Ocimum basilicum). These oils [...] Read more.
This study evaluated the antifungal potential of essential oils (EOs): oregano (Origanum vulgare), rosemary (Salvia rosmarinus), clove (Syzygium aromaticum), thyme (Thymus vulgaris), cinnamon (Cinnamomum verum), and basil (Ocimum basilicum). These oils were tested against fungi isolated from banana peels (Musa paradisiaca). The fungi tested were identified through macroscopic and microscopic analyses and DNA sequencing, after being isolated in potato dextrose agar (PDA) medium modified with 0.05% chloramphenicol. Subsequently, the antifungal properties of the tested essential oils were evaluated in vitro at concentrations of 200, 400, 600, 800, and 1000 ppm prepared in a 0.05% Tween 80 solution. Cinnamon EOs showed the highest antifungal activity, significantly inhibiting the growth of pathogens at a concentration of 400 ppm. Other EOs showed moderate effects at higher concentrations: rosemary inhibited fungal growth at 600 ppm, oregano at 800 ppm, and clove at 1000 ppm. These findings highlight the potential of EOs as eco-friendly alternatives to synthetic fungicides, contributing to the development of sustainable agricultural practices and the post-harvest management of bananas. It is recommended to conduct future research to assess the economic viability and practical impacts of large-scale applications. Full article
(This article belongs to the Special Issue Current Pattern in Epidemiology and Antifungal Resistance)
Show Figures

Figure 1

14 pages, 923 KiB  
Article
Mitigating Effects of Rosmarinus officinalis Essential Oil and Sugar Beet Pulp on Immune Response and Growth Performance of Heat-Stressed Lambs
by Maria Giovanna Ciliberti, Rosaria Marino, Mariangela Caroprese, Cristina Stango, Agostino Sevi and Marzia Albenzio
Animals 2025, 15(15), 2241; https://doi.org/10.3390/ani15152241 - 30 Jul 2025
Viewed by 122
Abstract
Dietary supplementation under high ambient temperatures can be considered crucial for supporting immune responses in livestock. In the present paper, Rosmarinus officinalis essential oil (REO) alone and in combination with dried sugar beet pulp (REO + B) was included in the diet of [...] Read more.
Dietary supplementation under high ambient temperatures can be considered crucial for supporting immune responses in livestock. In the present paper, Rosmarinus officinalis essential oil (REO) alone and in combination with dried sugar beet pulp (REO + B) was included in the diet of lambs during the fattening period under heat stress conditions. Environmental conditions and physiological and growth parameters of lambs were monitored throughout the trial. Plasma samples were collected to evaluate cytokine secretion (IL-1β, IL-6, and IL-10). Notably, REO inclusion reduced rectal temperature and respiration rate while increasing pro-inflammatory cytokines (IL-1β and IL-6) at the same time, suggesting an enhanced immune response without compromising growth performance. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

15 pages, 752 KiB  
Article
Enhanced Anti-Inflammatory Effects of Rosemary (Salvia rosmarinus) Extracts Modified with Pseudomonas shirazensis Nanoparticles
by Enrique Gutierrez-Albanchez, Elena Fuente-González, Svitlana Plokhovska, Francisco Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Antioxidants 2025, 14(8), 931; https://doi.org/10.3390/antiox14080931 - 29 Jul 2025
Viewed by 250
Abstract
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary [...] Read more.
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary extracts in postharvest applications. Rosemary stems were treated with AgNPs coated with bacterial metabolites (NP), bacterial cells, or metabolites (LM), and the extracts’ phytochemical composition and bioactivities were assessed. HPLC and HPLC–MS analyses revealed that the NP treatment induced significant metabolic remodeling, particularly upregulating rosmarinic acid and selected triterpenes (ursolic and betulinic acids), while reducing carnosic acid levels. NP-treated extracts exhibited significantly enhanced inhibition of cyclooxygenase (COX-1 and COX-2), indicating improved anti-inflammatory potential. The α-glucosidase inhibition and antioxidant activity (DPPH assay) of the extracts were not substantially altered, suggesting the selective enhancement of pharmacological functions. These findings demonstrate that nanoparticle-based elicitation selectively remodels secondary metabolism in rosemary, improving extract quality and bioactivity. This strategy offers a novel, sustainable tool for optimizing plant-based therapeutics in the phytopharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 286
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

20 pages, 2432 KiB  
Article
Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs
by Anna Rusaczonek, Patryk Sankiewicz, Maria Duszyn, Mirosława Górecka, Katarzyna Chwedorzewska and Ewa Muszyńska
Agriculture 2025, 15(15), 1586; https://doi.org/10.3390/agriculture15151586 - 24 Jul 2025
Viewed by 251
Abstract
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within [...] Read more.
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within the same family. Helichrysum italicum and Salvia officinalis had the highest polyphenol levels, while Achillea millefolium and Ocimum basilicum had the lowest. Total polyphenols did not always correlate with antioxidant activity. For instance, Petroselinum hortense and Salvia rosmarinus showed high antioxidant activity despite low polyphenol levels, whereas Levisticum officinale and Artemisia dracunculus combined both. Mentha spicata, M. x citrata, Origanum vulgare, and S. officinalis were rich in carotenoids, while H. italicum showed high α-carotene but low levels of other carotenoids. Most Lamiaceae accumulated a high amount of chlorophylls and polyphenols. Cultivated herbs like M. spicata, M. x citrata, and S. officinalis exhibited stronger and more diverse properties than wild species. It can be concluded that taxonomy alone does not predict antioxidant potential. The differences observed may be attributed to species-specific metabolic pathways, ecological adaptations, or environmental factors influencing phytochemical expression. These findings highlight the importance of conducting species-level screenings in the search for plant-derived antioxidants with potential therapeutic applications. Full article
Show Figures

Graphical abstract

24 pages, 411 KiB  
Review
Natural Compounds and Their Potential in Eating-Related Aspects of Mental Health Disorders
by Wenbin Ma, Ralf Regenthal and Ute Krügel
Nutrients 2025, 17(14), 2383; https://doi.org/10.3390/nu17142383 - 21 Jul 2025
Viewed by 444
Abstract
Background and Objectives: Mental health and healthy eating are inextricably linked by bi-directional interaction. As pharmacological interventions for eating disorders and mental illness have limited efficacy and are associated with significant side effects, natural compounds traditionally used in these fields represent an [...] Read more.
Background and Objectives: Mental health and healthy eating are inextricably linked by bi-directional interaction. As pharmacological interventions for eating disorders and mental illness have limited efficacy and are associated with significant side effects, natural compounds traditionally used in these fields represent an extremely rich source for potential future drugs. This review aims to summarise complex and/or specific pharmacological and clinical effects of mixed compositions and individual compounds derived from Rosmarinus officinalis, Ginkgo biloba, and Bupleurum chinense as well as from Berberis vulgaris and other berberine (BBR)-containing plants, which have been traditionally used for eating and mental health purposes. Results and Conclusions: The data on favoured natural compounds and main ingredients of compound mixtures presented here could provide new impetus for preventive or targeted supplementary treatment, potential drug development, and the design of new compound congeners with improved target spectrum and potency in mental health disorders and eating-related issues. Contemporary methodological development steps in this direction are then proposed. Full article
(This article belongs to the Special Issue Eating and Mental Health Disorders)
13 pages, 1829 KiB  
Article
The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea
by Vytautas Bunevičius, Armina Morkeliūnė, Justina Griauzdaitė, Alma Valiuškaitė and Neringa Rasiukevičiūtė
Agronomy 2025, 15(7), 1728; https://doi.org/10.3390/agronomy15071728 - 17 Jul 2025
Viewed by 351
Abstract
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental [...] Read more.
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental pollution, and adverse effects on human health. Also, due to the goals of the European Green Deal and the decreasing use of chemical pesticides, it has become essential to look for safer alternatives. The aim of this study was to investigate the inhibitory effect of plant extracts of clove (Syzygium aromaticum L.) and rosemary (Rosmarinus officinalis L.) against Colletotrichum acutatum and Botrytis cinerea plant pathogens and to evaluate fungal pathogens recovery after the exposure to the extract. The plant extracts (PEs) were obtained by subcritical CO2 extraction. The inhibitory effect of PEs was investigated in vitro at concentrations of 1200, 1600, 2000, 2400, 2800, and 3000 μL/L. Petri dishes were incubated at 25 ± 2 °C, and the mycelial growth of fungal pathogens was evaluated at 2, 4, and 7 days after inoculation (DAI). Reinoculation was then performed. The research showed that both plant extracts had an antifungal effect. However, clove PE was more effective. This allows us to say that plant-based measures can inhibit plant pathogens, but it is essential to determine the optimal concentrations and test them with different pathogens. Full article
Show Figures

Figure 1

19 pages, 2186 KiB  
Article
Optimizing Rooting and Growth of Salvia rosmarinus Cuttings in Soilless Systems Affected by Growth Regulators
by Georgios Lykokanellos, Ioannis Lagogiannis, Aglaia Liopa-Tsakalidi, Sofia Anna Barla and Georgios Salachas
Plants 2025, 14(14), 2210; https://doi.org/10.3390/plants14142210 - 17 Jul 2025
Viewed by 326
Abstract
This study investigated how propagation systems, growth regulators, and hormone formulations interactively affect the rooting and subsequent growth of rosemary (Salvia rosmarinus Spenn) cuttings. A three factorial (3 × 2 × 7) experiment was conducted under a fully controlled greenhouse environment, incorporating [...] Read more.
This study investigated how propagation systems, growth regulators, and hormone formulations interactively affect the rooting and subsequent growth of rosemary (Salvia rosmarinus Spenn) cuttings. A three factorial (3 × 2 × 7) experiment was conducted under a fully controlled greenhouse environment, incorporating three soilless propagation systems (mist, float, aeroponics), two rooting hormone formulations (powder and gel-based IBA), and two growth regulators (paclobutrazol and daminozide) at three concentrations each. Significant differences (p < 0.001) were found in shoot height, root length, and number of lateral roots. The float system combined with powder hormone and no retardants achieved the highest shoot height (mean = 16.7 cm), while aeroponics with powder hormone and daminozide 1000 ppm promoted the greatest root branching (mean = 12.2 lateral roots per cutting). Root length was maximized (mean = 15.9 cm) under float systems with daminozide 1000 ppm. High doses of both growth regulators negatively affected all parameters across systems. Post-transplantation monitoring confirmed that cuttings from float and mist systems treated with powder hormone and low or no growth retardants exhibited superior establishment and net growth over 60 days. These findings demonstrate the critical importance of pairing hormone type, regulator concentration, and propagation system, providing actionable protocols for nursery managers aiming to enhance Salvia rosmarinus propagation in commercial practice. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 9507 KiB  
Article
Essential Oils as an Antifungal Alternative to Control Several Species of Fungi Isolated from Musa paradisiaca: Part III
by Maritza D. Ruiz Medina and Jenny Ruales
Microorganisms 2025, 13(7), 1663; https://doi.org/10.3390/microorganisms13071663 - 15 Jul 2025
Viewed by 340
Abstract
Essential oils (EOs) are widely recognized for their antifungal properties, but their efficacy against specific phytopathogenic fungi associated with banana (Musa paradisiaca) rot remains underexplored. This study aimed to evaluate the antifungal potential of EOs from Origanum vulgare, Salvia rosmarinus [...] Read more.
Essential oils (EOs) are widely recognized for their antifungal properties, but their efficacy against specific phytopathogenic fungi associated with banana (Musa paradisiaca) rot remains underexplored. This study aimed to evaluate the antifungal potential of EOs from Origanum vulgare, Salvia rosmarinus, Syzygium aromaticum, Thymus vulgaris, Cinnamomum verum, and Ocimum basilicum against five fungal species isolated from infected banana peels. Fungal isolates were obtained using PDA medium supplemented with chloramphenicol and were purified by weekly subculturing. Morphological and microscopic characterization was complemented by molecular identification based on ITS sequencing and phylogenetic reconstruction using Neighbor-Joining and UPGMA methods in MEGA v11. In vitro and ex vivo antifungal assays were performed at EO concentrations ranging from 200 to 1000 ppm. Thyme oil exhibited the strongest inhibitory effect, with complete growth suppression at 1000 ppm. Cinnamon and oregano also demonstrated effective inhibition at 600 ppm, while clove, rosemary, and basil were markedly less effective. Statistical analysis confirmed significant effects of EO type and concentration on fungal growth (p < 0.001). Molecular results showed strong phylogenetic support for isolate identification, with bootstrap values above 93% in most clades. These findings support the selective use of specific EOs as sustainable alternatives to synthetic fungicides in the postharvest management of banana diseases and provide a molecularly supported basis for their targeted application in integrated control strategies. Full article
(This article belongs to the Special Issue Current Pattern in Epidemiology and Antifungal Resistance)
Show Figures

Figure 1

18 pages, 907 KiB  
Article
Evaluating Coffee and Rosemary Extracts as Sustainable Alternatives to Synthetic Preservatives
by Luiza Aparecida Luna Silvério, Érica Mendes dos Santos, Josélia Cristina de Oliveira Moreira, Ana Lucia Tasca Gois Ruiz, Karina Cogo-Müller, Janaína Artem Ataide, Ana Cláudia Paiva-Santos and Priscila Gava Mazzola
Cosmetics 2025, 12(4), 147; https://doi.org/10.3390/cosmetics12040147 - 11 Jul 2025
Cited by 1 | Viewed by 646
Abstract
Preservatives are essential for ensuring the stability, safety, and efficacy of pharmaceuticals, cosmetics, and food products. However, synthetic preservatives often raise toxicity concerns. This study evaluated Rosmarinus officinalis (rosemary) leaf extracts and coffee by-products from Coffea arabica and Coffea canephora as potential natural [...] Read more.
Preservatives are essential for ensuring the stability, safety, and efficacy of pharmaceuticals, cosmetics, and food products. However, synthetic preservatives often raise toxicity concerns. This study evaluated Rosmarinus officinalis (rosemary) leaf extracts and coffee by-products from Coffea arabica and Coffea canephora as potential natural preservatives for emulsions. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, along with cytotoxicity tests on human keratinocytes and antioxidant activity. The most effective extracts were incorporated into an oil-in-water emulsion for evaluation. C. arabica extracts showed the best results among coffee samples, with 43.53 mg GAE/g (gallic acid equivalents) and 2.32 mg QE/g of total phenolics (quercetin equivalents) and flavonoids, and minimum inhibitory concentrations (MICs) of 12.5 mg/mL against Escherichia coli, and 25 mg/mL against Staphylococcus aureus and Pseudomonas aeruginosa. Rosemary extract showed 158.01 ± 23.67 mg GAE/g and 1.95 ± 0.05 mg QE/g, with MICs of 2.5 mg/mL against E. coli, 1.25 mg/mL against P. aeruginosa, 0.3 mg/mL against S. aureus, and 0.08 mg/mL against Candida albicans. However, rosemary extracts displayed complete inhibition of keratinocyte growth at 20 µg/mL. A combination of both extracts had synergistic effects against S. aureus and P. aeruginosa. The emulsion met microbial safety standards in the challenge test for bacteria but not yeast. The results suggest that rosemary extracts enhance the potential of coffee by-product as a preservative system, and as a multifunctional excipient system in cosmetics, offering preservation and antioxidant protection. However, further strategies, such as adding other ingredients or adjusting the formulation pH, are required to ensure yeast inhibition. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

17 pages, 1433 KiB  
Article
Insights into Chemopreventive Effects of Rosmarinic Acid Against Aflatoxin B1-Induced Genotoxic Effects
by Veronika Furlan, Matjaž Novak, Martina Štampar, Alja Štern, Bojana Žegura and Urban Bren
Foods 2025, 14(12), 2111; https://doi.org/10.3390/foods14122111 - 16 Jun 2025
Viewed by 404
Abstract
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation [...] Read more.
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation of the chemical reactions between rosmarinic acid and the carcinogenic metabolite of AFB1, aflatoxin B1 exo-8,9-epoxide (AFBO), was conducted by activation free energies calculations with DFT functionals M11-L and MN12-L, in conjunction with the 6-311++G(d,p) flexible basis set and implicit solvation model density (SMD), according to a newly developed quantum mechanics-based protocol for the evaluation of carcinogen scavenging activity (QM-CSA). Following the computational analyses, the chemoprotective effects of RA were further studied in vitro in human hepatocellular carcinoma HepG2 cells by analyzing its influence on AFB1-induced genotoxicity using a comet assay, γH2AX, and p-H3, while its impact on cell proliferation and cell cycle modulation was assessed using flow cytometry. Our computational results revealed that the activation free energy required for the reaction of RA with AFBO (14.86 kcal/mol) is significantly lower than the activation free energy for the competing reaction of AFBO with guanine (16.88 kcal/mol), which indicates that RA acts as an efficient natural scavenger of AFBO, potentially preventing AFB1-specific DNA adduct formation. The chemoprotective activity of RA was confirmed through in vitro experiments, which demonstrated a statistically significant (p < 0.05) reduction in AFB1-induced single- and double-strand breaks in HepG2 cells exposed to a mixture of AFB1 and RA at non-cytotoxic concentrations. In addition, RA reversed the AFB1-induced reduction in cell proliferation. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Graphical abstract

32 pages, 7243 KiB  
Article
Artificial Intelligence and Extraction of Bioactive Compounds: The Case of Rosemary and Pressurized Liquid Extraction
by Martha Mantiniotou, Vassilis Athanasiadis, Konstantinos G. Liakos, Eleni Bozinou and Stavros I. Lalas
Processes 2025, 13(6), 1879; https://doi.org/10.3390/pr13061879 - 13 Jun 2025
Cited by 1 | Viewed by 475
Abstract
Rosemary (Rosmarinus officinalis or Salvia rosmarinus) is an aromatic herb that possesses numerous health-promoting and antioxidant properties. Pressurized Liquid Extraction (PLE) is an efficient, environmentally friendly technique for obtaining valuable compounds from natural sources. The optimal PLE conditions were established as [...] Read more.
Rosemary (Rosmarinus officinalis or Salvia rosmarinus) is an aromatic herb that possesses numerous health-promoting and antioxidant properties. Pressurized Liquid Extraction (PLE) is an efficient, environmentally friendly technique for obtaining valuable compounds from natural sources. The optimal PLE conditions were established as 25% v/v ethanol at 160 °C for 25 min, and a liquid-to-solid ratio of 10 mL/g. The optimal extract exhibited high polyphenol and antioxidant content through various assays. The recovered bioactive compounds possess potential applications in the food, pharmaceutical, and cosmetics sectors, in addition to serving as feed additives. This research compares two distinct optimization models: one statistical, derived from experimental data, and the other based on artificial intelligence (AI). The objective was to evaluate if AI could replicate experimental models and ultimately supplant the laborious experimental process, yielding the same results more rapidly and adaptably. To further enhance data interpretation and predictive capabilities, six machine learning models were implemented on the original dataset. Due to the limited sample size, synthetic data were generated using Random Forest (RF)-based resampling and Gaussian noise addition. The augmented dataset significantly improved the model performance. Among the models tested, the RF algorithm achieved the highest accuracy. Full article
Show Figures

Figure 1

15 pages, 715 KiB  
Article
Essential Oils as Nature’s Dual Powerhouses for Agroindustry and Medicine: Volatile Composition and Bioactivities—Antioxidant, Antimicrobial, and Cytotoxic
by Javier Rocha-Pimienta, Javier Espino, Sara Martillanes and Jonathan Delgado-Adámez
Separations 2025, 12(6), 145; https://doi.org/10.3390/separations12060145 - 1 Jun 2025
Viewed by 486
Abstract
Essential oils (EOs), which are complex mixtures of plant-derived volatile compounds, have been utilized for centuries in the medical, food, and pharmaceutical industries because of their diverse biological properties. In recent years, there has been growing interest in elucidating the bioactivities of essential [...] Read more.
Essential oils (EOs), which are complex mixtures of plant-derived volatile compounds, have been utilized for centuries in the medical, food, and pharmaceutical industries because of their diverse biological properties. In recent years, there has been growing interest in elucidating the bioactivities of essential oils and their underlying mechanisms of action. This study aimed to investigate the antioxidant, antimicrobial, and cytotoxic characteristics of Laurus nobilis, Eucalyptus camaldulensis, Rosmarinus officinalis, and Mentha suaveolens oils and relate them to their volatile compound content. The volatile compounds of the essential oils were characterized and quantified by gas chromatography, the antioxidant activity was quantified using the ABTS assay, the antibacterial activity was quantified using broth microdilution and agar diffusion techniques, and the MTT assay was used to establish the cytotoxic potential. This study revealed a significant antioxidant capacity, which correlated with the proportion of terpenes known for their antioxidant properties. The antioxidant potency was ranked in descending order: R. officinalis, M. suaveolens, E. camaldulensis, and L. nobilis. Antimicrobial testing demonstrated that all the examined essential oils were effective against the evaluated microbial species, including both Gram-positive (Listeria innocua) and Gram-negative (Escherichia coli) bacteria. Additionally, all the tested essential oils triggered cell death in the human epithelioid cervical carcinoma (HeLa) cell line. Collectively, this article highlights the promising therapeutic and alimentary potential of essential oils and underscores the need for further research to fully harness their benefits in industrial settings. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

20 pages, 4454 KiB  
Article
Toxicity of Essential Oils of Origanum vulgare, Salvia rosmarinus, and Salvia officinalis Against Aculops lycopersici
by Thomas Giordano, Giuliano Cerasa, Ilaria Marotta, Mauro Conte, Santo Orlando, Adele Salamone, Michele Massimo Mammano, Carlo Greco and Haralabos Tsolakis
Plants 2025, 14(10), 1462; https://doi.org/10.3390/plants14101462 - 14 May 2025
Viewed by 895
Abstract
The tomato russet mite (TRM), Aculops lycopersici, is a destructive pest of tomato crops worldwide. It poses a significant challenge to growers in both greenhouse and open-field conditions. Traditional chemical control methods are often ineffective, promote resistance, and have negative environmental impacts. [...] Read more.
The tomato russet mite (TRM), Aculops lycopersici, is a destructive pest of tomato crops worldwide. It poses a significant challenge to growers in both greenhouse and open-field conditions. Traditional chemical control methods are often ineffective, promote resistance, and have negative environmental impacts. This has prompted the search for alternative strategies, such as biological control and eco-friendly botanical pesticides. In this study, we evaluated the acaricidal effects of essential oils (EOs) extracted from three officinal plants, Origanum vulgare L., Salvia rosmarinus Spenn., and Salvia officinalis L., cultivated using precision aromatic crop (PAC) techniques. Their efficacy was evaluated against A. lycopersici under laboratory conditions. The chemical composition of the EOs was determined by solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC-MS). The dominant component of O. vulgare EO was carvacrol (83.42%), followed by ρ-cymene (3.06%), and γ-terpinene (2.93%). In S. rosmarinus, α-pinene (28.0%), 1,8-cineole (11.00%), and borneol (7.72%) were the major components. S. officinalis EO was characterized by high levels of 1,8-cineole (27.67%), camphor (21.91%), and crisantenone (12.87%). We tested multiple concentrations (320–5000 μL L−1) and exposure times (1–4 days) to assess mite mortality. The results revealed both dose- and time-dependent toxic activity, with significant differences among EOs. O. vulgare EO was the most toxic, causing 90% mortality at 0.5% (w/v) concentration after 4 days. S. rosmatinus and S. officinalis EOs had more limited effects, with 46% and 42% mortality, respectively. Lethal concentration (LC50) values were 2.23 mL L−1 (95% CI: 1.74–3.05) for O. vulgare, 5.84 mL L−1 (95% CI: 3.28–22.29) for S. rosmarinus, and 6.01 mL L−1 (95% CI: 2.63–261.60) for S. officinalis. These results indicate that O. vulgare EO shows efficacy comparable to commercially available botanical pesticides. Our findings support the potential of O. vulgare EO as a viable alternative for the control of A. lycopersici, contributing to integrated pest management (IPM) strategies. Full article
(This article belongs to the Special Issue Plant Protection: Focusing on Phytophagous Mites)
Show Figures

Graphical abstract

33 pages, 7181 KiB  
Article
In Vitro and In Silico Evaluation of the Potential Anti-Prostate Cancer Activity of Rosmarinus officinalis L. Leaf Extracts
by Samantha Franchette B. Austria, Mon-Juan Lee, Kathlia A. De Castro-Cruz, Pang-Hung Hsu, Cheng-Yang Hsieh, Steven Kuan-Hua Huang and Po-Wei Tsai
Int. J. Mol. Sci. 2025, 26(10), 4650; https://doi.org/10.3390/ijms26104650 - 13 May 2025
Viewed by 1305
Abstract
Prostate cancer is one of the most prevalent cancer types diagnosed in older men. Investigations into traditional medicines like Rosmarinus officinalis L., popularly known as rosemary, are a current research interest due to its anti-cancer properties. This study investigates the cytotoxicity of aqueous [...] Read more.
Prostate cancer is one of the most prevalent cancer types diagnosed in older men. Investigations into traditional medicines like Rosmarinus officinalis L., popularly known as rosemary, are a current research interest due to its anti-cancer properties. This study investigates the cytotoxicity of aqueous and ethanolic rosemary leaf extracts in DU-145 cells and the interaction of its active metabolites with key prostate cancer targets using an in silico approach. The water extract of rosemary leaves showed greater cytotoxicity than the ethanol extract, with IC50 values of 1.4140 ± 0.1138 mg/mL and 1.8666 ± 0.0367 mg/mL, respectively; the highest cytotoxic effects for both extracts were observed at 5 mg/mL. These findings indicate significant cytotoxic differences based on concentration and solvent. Network pharmacology identified 37 genes linked to prostate adenocarcinoma, highlighting key genes like EGFR, TP53, ERBB2, IGFBP3, MMP-2, MMP-9, HDAC6, PDGFRB, and FGFR1. Molecular dynamics simulations and binding energy calculations revealed strong interactions between carnosol and rosmarinic acid with these targets, with TP53–carnosol showing the most stable conformation. Rosmarinic acid was identified as a promising candidate due to its low toxicity. This study demonstrates the potential anti-prostate cancer properties of rosemary leaf extracts for further investigations on the development of drugs against prostate cancer. Full article
Show Figures

Figure 1

Back to TopTop