Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (597)

Search Parameters:
Keywords = River Basin Management Plans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 212
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

19 pages, 3405 KiB  
Article
Study on Hydrological–Meteorological Response in the Upper Yellow River Based on 100-Year Series Reconstruction
by Xiaohui He, Xiaoyu He, Yajun Gao and Fanchao Li
Water 2025, 17(15), 2223; https://doi.org/10.3390/w17152223 - 25 Jul 2025
Viewed by 361
Abstract
Precipitation, as a key input in the water cycle, directly influences the formation and change process of runoff. Meanwhile, the return runoff intuitively reflects the available quantity of water resources in a river basin. An in-depth analysis of the evolution laws and response [...] Read more.
Precipitation, as a key input in the water cycle, directly influences the formation and change process of runoff. Meanwhile, the return runoff intuitively reflects the available quantity of water resources in a river basin. An in-depth analysis of the evolution laws and response relationships between precipitation and return runoff over a long time scale serves as an important support for exploring the evolution of hydrometeorological conditions and provides an accurate basis for the scientific planning and management of water resources. Taking Lanzhou Station on the upper Yellow River as a typical case, this study proposes the VSSL (LSTM Fusion Method Optimized by SSA with VMD Decomposition) deep learning precipitation element series extension method and the SSVR (SVR Fusion Method Optimized by SSA) machine learning runoff element series extension method. These methods achieve a reasonable extension of the missing data and construct 100-year precipitation and return runoff series from 1921 to 2020. The research results showed that the performance of machine learning and deep learning methods in the precipitation and return runoff test sets is better than that of traditional statistical methods, and the fitting effect of return runoff is better than that of precipitation. The 100-year precipitation and return runoff series of Lanzhou Station from 1921 to 2020 show a non-significant upward trend at a rate of 0.26 mm/a and 0.42 × 108 m3/a, respectively. There is no significant mutation point in precipitation, while the mutation point of return runoff occurred in 1991. The 100-year precipitation series of Lanzhou Station has four time-scale alternations of dry and wet periods, with main periods of 60 years, 20 years, 12 years, and 6 years, respectively. The 100-year return runoff series has three time-scale alternations of dry and wet periods, with main periods of 60 years, 34 years, and 26 years, respectively. During the period from 1940 to 2000, an approximately 50-year cycle, precipitation and runoff not only have strong common-change energy and significant interaction, but also have a fixed phase difference. Precipitation changes precede runoff, and runoff responds after a fixed time interval. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

29 pages, 8743 KiB  
Article
Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China
by Huanyu Chang, Naren Fang, Yongqiang Cao, Jiaqi Yao and Zhen Hong
Water 2025, 17(14), 2103; https://doi.org/10.3390/w17142103 - 15 Jul 2025
Viewed by 405
Abstract
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated [...] Read more.
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated development scenarios and extreme climate stress. A 500-year precipitation series was reconstructed using historical drought and flood records combined with wavelet analysis and machine learning models (Random Forest and Support Vector Regression). Results show that during the reconstructed historical megadrought (1633–1647), with average precipitation anomalies reaching −20% to −27%, leading to a regional water shortage rate of 16.9%, food self-sufficiency as low as 44.7%, and a critical reduction in ecological river discharge. Under future recommended scenario with enhanced water conservation, reclaimed water reuse, and expanded inter-basin transfers, the region could maintain a water shortage rate of 2.6%, achieve 69.3% food self-sufficiency, and support ecological water demand. However, long-term water resource degradation could still reduce food self-sufficiency to 62.9% and ecological outflows by 20%. The findings provide insights into adaptive water management, highlight the vulnerability of highly coupled systems to prolonged droughts, and support regional policy decisions on resilience-oriented water infrastructure planning. Full article
(This article belongs to the Special Issue Advanced Perspectives on the Water–Energy–Food Nexus)
Show Figures

Figure 1

21 pages, 9658 KiB  
Article
Analysis of Ecosystem Pattern Evolution and Driving Forces in the Qin River Basin in the Middle Reaches of the Yellow River
by Yi Liu, Mingdong Zang, Jianbing Peng, Yuze Bai, Siyuan Wang, Zibin Wang, Peidong Shi, Miao Liu, Kairan Xu and Ning Zhang
Sustainability 2025, 17(13), 6199; https://doi.org/10.3390/su17136199 - 7 Jul 2025
Viewed by 380
Abstract
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and [...] Read more.
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and temporal patterns of ecosystems are evolving. Exploring its dynamics and driving mechanisms is crucial to the ecological protection and sustainable development of watersheds. This research systematically examines the spatiotemporal dynamics and driving mechanisms of ecosystem patterns in the middle Yellow River’s Qin River Basin (1990–2020). Quantitative assessments integrating ecosystem transition metrics and redundancy analysis reveal three critical insights: (1) dominance of agricultural land and woodland (74.81% combined coverage), with grassland (18.58%) and other land types (6.61%) constituting secondary components; (2) dynamic interconversion between woodland and grassland accompanied by urban encroachment on agricultural land, manifesting as net reductions in woodland (−13.74%), farmland (−6.60%), and wetland (−38.64%) contrasting with grassland (+43.34%) and built-up area (+116.63%) expansion; (3) quantified anthropogenic drivers showing agricultural intensification (45.03%) and ecological protection measures (36.50%) as primary forces, while urbanization account for 18.47% of observed changes. The first two RDA ordination axes significantly (p < 0.01) explain 68.3% of the variance in ecosystem evolution, particularly linking land-use changes to socioeconomic indicators. Based on these findings, the study proposes integrated watershed management strategies emphasizing scientific land-use optimization, controlled urban expansion, and systematic ecological rehabilitation to enhance landscape stability in this ecologically sensitive region. The conclusions of this study have important reference value for other ecologically sensitive watersheds in land use planning, ecological protection policy making, and ecological restoration practice, which can provide a theoretical basis and practical guidance. Full article
Show Figures

Figure 1

18 pages, 5272 KiB  
Article
Twin-Peaks Streamflow Timing: Can We Use Forest and Alpine Snow Melt-Out Response to Estimate?
by Lenka G. Doskocil, Steven R. Fassnacht, David M. Barnard, Anna K. D. Pfohl, Jeffrey E. Derry and William E. Sanford
Water 2025, 17(13), 2017; https://doi.org/10.3390/w17132017 - 4 Jul 2025
Viewed by 350
Abstract
Snow-dominated watersheds experience a snowmelt-driven peak in streamflow that occurs in the spring or early summer. Some of the headwater basins in Colorado, USA have two or more peaks in streamflow, including the Uncompahgre River, a Colorado River tributary. The timing of peak [...] Read more.
Snow-dominated watersheds experience a snowmelt-driven peak in streamflow that occurs in the spring or early summer. Some of the headwater basins in Colorado, USA have two or more peaks in streamflow, including the Uncompahgre River, a Colorado River tributary. The timing of peak streamflow is important for water management and recreational planning. As such, we examined the connection between the timing of each streamflow peak and readily available snow measurement information in the forest and alpine zones. These station data are the date of the initiation of snowmelt, 50% melt-out, and complete melt-out or the snow disappearance date (SDD). When it occurs before mid-June (14 of 20 years), the timing of the first peak is well correlated with the forested snow measurement station SDD. The second streamflow peak timing is well correlated with SDD from the alpine station except for very early (3 years) and very late (2 years) SDD. We also examine the spatial variability of snow disappearance and peak snow water equivalent (SWE) across the four seasonally snow-covered headwater sub-basins using a dataset from a coupled meteorological–snowpack model. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

24 pages, 456 KiB  
Article
Harmonizing Cultural Landscape with Resilience: Climate Adaptation Strategies in the Arno and Hudson River Basins
by Ahmadreza Shirvani Dastgerdi and Giuseppe De Luca
Sustainability 2025, 17(13), 6058; https://doi.org/10.3390/su17136058 - 2 Jul 2025
Viewed by 485
Abstract
Climate change increasingly threatens heritage-rich river basins, yet the integration of traditional ecological knowledge into formal environmental governance remains underexplored. This study investigates how historically embedded water management practices in Tuscany’s Arno River and New York’s Hudson River can inform adaptive strategies under [...] Read more.
Climate change increasingly threatens heritage-rich river basins, yet the integration of traditional ecological knowledge into formal environmental governance remains underexplored. This study investigates how historically embedded water management practices in Tuscany’s Arno River and New York’s Hudson River can inform adaptive strategies under conditions of climate uncertainty. Employing a Triangulated mixed-methods approach—including a systematic narrative literature review, variable coding (hydrological dynamics, cultural heritage, governance structures, economic livelihoods, and adaptive knowledge), and effect size analysis—we conducted a comparative assessment to uncover regional challenges, capacities, and implementation dynamics. The findings reveal that while both basins contend with hydrological volatility and fragmented governance, the Arno benefits from legally embedded heritage practices that continue to shape canal-based agriculture and flood mitigation. In contrast, the Hudson showcases strong multi-level stakeholder engagement and ecological restoration, though with less institutional reliance on traditional land stewardship. By integrating codified traditional practices with participatory governance and applying a weighted implementation structure, this study illustrates how resilience planning can be more context-sensitive, operationally feasible, and socially inclusive. Ultimately, this research positions cultural landscapes as active infrastructure for climate adaptation—provided they are institutionally supported and community-endorsed—offering a transferable model for policy innovation in similarly vulnerable riverine systems. Full article
(This article belongs to the Special Issue Sustainable Climate Action for Global Health)
Show Figures

Figure 1

13 pages, 500 KiB  
Article
Biome-Specific Estimation of Maximum Air Temperature Using MODIS LST in the São Francisco River Basin
by Fábio Farias Pereira, Mahelvson Bazilio Chaves, Claudia Rivera Escorcia, José Anderson Farias da Silva Bomfim and Mayara Camila Santos Silva
Meteorology 2025, 4(3), 17; https://doi.org/10.3390/meteorology4030017 - 30 Jun 2025
Viewed by 265
Abstract
The São Francisco River provides water for agriculture, urban areas, and hydroelectric power generation, benefiting millions of people in Brazil. Its Basin supports various species, some of which are endemic and rely on its unique habitats for survival. Currently, monitoring maximum air temperature [...] Read more.
The São Francisco River provides water for agriculture, urban areas, and hydroelectric power generation, benefiting millions of people in Brazil. Its Basin supports various species, some of which are endemic and rely on its unique habitats for survival. Currently, monitoring maximum air temperature in the São Francisco River Basin is limited due to sparse weather stations. This study proposes three linear regression models to estimate maximum air temperature using satellite-derived land surface temperature from the Aqua’s moderate resolution imaging spectroradiometer across the Basin’s three main biomes: Caatinga, Cerrado, and Mata Atlântica. With over 94,000 paired observations of ground and satellite data, the models showed good performance, accounting for 46% to 54% of temperature variation. Cross-validation confirmed reliable estimates with errors below 2.7 °C. The findings demonstrate that satellite data can improve air temperature monitoring in areas with limited ground observations and suggest that the proposed biome-specific models could assist in environmental management and water resource planning in the São Francisco River Basin. This includes providing more informed policies for climate adaptation and sustainable development or analyzing variations in maximum air temperature in arid and semi-arid regions to contribute to desertification mitigation strategies in the São Francisco River Basin. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2025))
Show Figures

Figure 1

19 pages, 3260 KiB  
Article
Individual Variation in Movement Behavior of Stream-Resident Mediterranean Brown Trout (Salmo trutta Complex)
by Enric Aparicio, Rafel Rocaspana, Antoni Palau-Ibars, Neus Oromí, Dolors Vinyoles and Carles Alcaraz
Fishes 2025, 10(7), 308; https://doi.org/10.3390/fishes10070308 - 30 Jun 2025
Viewed by 361
Abstract
Understanding individual movement patterns in stream-resident salmonids is critical for conservation and river management, particularly in Mediterranean streams characterized by high environmental variability. We tagged 997 Mediterranean brown trout (Salmo trutta complex) and conducted an 11-month mark–recapture study using Passive Integrated Transponder [...] Read more.
Understanding individual movement patterns in stream-resident salmonids is critical for conservation and river management, particularly in Mediterranean streams characterized by high environmental variability. We tagged 997 Mediterranean brown trout (Salmo trutta complex) and conducted an 11-month mark–recapture study using Passive Integrated Transponder (PIT) technology to assess movement behavior in the Flamisell River (Ebro Basin, northeastern Iberian Peninsula). Movements followed a leptokurtic distribution, with 81.8% of the individuals classified as sedentary (median movement = 24.9 m) and 18.2% as mobile (median movement = 376.2 m). Generalized linear models revealed distinct drivers of fish movement for each group. In sedentary trout, movement was mainly influenced by mesohabitat type, season, sex, and body size, with males and larger individuals moving farther. In mobile trout, mesohabitat type, density, and body size were key predictors. Movement patterns were repeatable over time, indicating consistent behavioral tendencies. These results support a bimodal movement strategy and highlight the importance of individual variation. Conservation planning should account for both sedentary and mobile groups to preserve functional and genetic connectivity and improve resilience of Mediterranean streams. Full article
Show Figures

Figure 1

19 pages, 4349 KiB  
Article
The Spatial and Temporal Heterogeneity of Ecosystem Service Trade-Offs and Synergies, and Their Implications for Spatial Planning and Management: A Case Study of the Tarim River Basin
by Zhigang Li, Yanyan Shen, Wenhui Fu, Yanbing Qi and Xin Wei
Forests 2025, 16(6), 1024; https://doi.org/10.3390/f16061024 - 19 Jun 2025
Viewed by 397
Abstract
Arid regions face multiple challenges such as population expansion, water scarcity, land degradation, and biodiversity reduction. Understanding temporal and spatial patterns of ecosystem service trade-offs and synergies is critical for sustainable development and effective ecosystem service management in arid regions under environmental stress. [...] Read more.
Arid regions face multiple challenges such as population expansion, water scarcity, land degradation, and biodiversity reduction. Understanding temporal and spatial patterns of ecosystem service trade-offs and synergies is critical for sustainable development and effective ecosystem service management in arid regions under environmental stress. Taking the Tarim River Basin in China as an example, five ecosystem services (carbon sequestration, water yield, sediment delivery ratio, habitat quality, and food production) were studied at different scales in 1990, 2000, 2010, and 2020 in the inland arid region. Spearman correlation, geographical weighted regression, and self-organizing mapping were used to analyze the ecosystem service trade-offs and synergies. The results showed that the ecosystem services in the basin increased gradually; in particular, the water yield increased from 15.38 × 109 m3 to 29.8 × 10 m3, and the food production increased from 11.03 × 106 t to 29.26 × 106 t. There was a significant positive correlation between carbon sequestration, water yield, and habitat quality, but a negative correlation between sediment delivery ratio and food production. The spatial distribution of trade-offs and synergies of ecosystem services varies in different years and on different scales. The area change in ecosystem service bundles at the pixel scale is relatively small, while the area change at the sub-basin scale is relatively large. This paper provides policy suggestions for the ecological management and sustainable development of the Tarim River Basin through the analysis of ecosystem service trade-offs and synergies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 2012 KiB  
Article
Flood Analysis in Lower Filyos Basin Using HEC-RAS and HEC-HMS Software
by Berna Aksoy
Sustainability 2025, 17(11), 5220; https://doi.org/10.3390/su17115220 - 5 Jun 2025
Viewed by 630
Abstract
Flood events have become more frequent as a result of seasonal changes, global warming, and changes in sea level. In terms of basin management, it is necessary to know the hydrodynamics of the basin in order to produce faster solutions in emergency action [...] Read more.
Flood events have become more frequent as a result of seasonal changes, global warming, and changes in sea level. In terms of basin management, it is necessary to know the hydrodynamics of the basin in order to produce faster solutions in emergency action plans. The Filyos River is one of the two most important floodplains in the western Black Sea basin and has so far only been analyzed to a limited extent using modern hydrological and hydraulic models. In order to analyze the flood dynamics and determine the flood risks in the Filyos River. In this context, flood hydrographs, rainfall depths, peak flows, and excess water volumes were calculated for different return periods (2, 5, 10, 20, 50, and 100 years) using HEC-RAS, HEC-HMS, and Hyfran Plus software. The analyses showed that the rainfall depth and peak flow rate increased significantly as the return period increased. It was also observed that although the volume of precipitation increased, the amount of water converted into surface runoff remained limited due to infiltration and other losses. The results of the study contribute to the identification of high flood-risk areas in the Filyos River basin, the improvement of flood prevention infrastructure, and the development of sustainable water management policies. Analyses using modeling tools such as HEC-RAS and HEC-HMS provide a scientific basis to help local governments and decision makers strengthen flood prevention strategies, update risk maps, and make emergency response plans more effective while making flood scenarios more reliable. Full article
Show Figures

Figure 1

25 pages, 4968 KiB  
Article
Impact of Precipitation Uncertainty on Flood Hazard Assessment in the Oueme River Basin
by Dognon Jules Afféwé, Fabian Merk, Marleine Bodjrènou, Manuel Rauch, Muhammad Nabeel Usman, Jean Hounkpè, Jan-Geert Bliefernicht, Aristide B. Akpo, Markus Disse and Julien Adounkpè
Hydrology 2025, 12(6), 138; https://doi.org/10.3390/hydrology12060138 - 4 Jun 2025
Viewed by 1634
Abstract
This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 [...] Read more.
This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 to 2016, along with flood maps and DEM are used. Evapotranspiration data are calculated using Hargreaves–Samani formula. The coupling HBV–HEC–RAS models enabled the generation of ensemble hydrographs, flood maps, flood probability maps and additional statistics in West Africa for the first time, offering a comprehensive understanding of flood dynamics under uncertainty. Ensemble hydrographs and maps obtained enhance decision-making by showing discharge scenarios, spatial flood variability, prediction reliability, and probabilities, supporting targeted flood management and resource planning under uncertainty. The findings underline the need for a comprehensive strategy to mitigate both common and rare flood events while accounting for spatial uncertainties inherent in hydrological and hydraulic modeling. Full article
Show Figures

Figure 1

23 pages, 36340 KiB  
Article
Understanding Unsustainable Irrigation Practices in a Regionally Contested Large River Basin in Peninsular India Through the Lens of the Water–Energy–Food–Environment (WEFE) Nexus
by Bhawana Gupta and John S. Rowan
Water 2025, 17(11), 1644; https://doi.org/10.3390/w17111644 - 29 May 2025
Viewed by 817
Abstract
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between [...] Read more.
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between state actors and limited access to reliable hydrometric data have led to a fragmented regulatory regime, allowing unchecked exploitation of surface and groundwater resources. Meanwhile, subsidised energy for groundwater pumping incentivises the unsustainable irrigation of high-value, water-intensive crops, resulting in overextraction and harm to aquatic ecosystems. Here, we employ a water–energy–food–environment (WEFE) nexus approach to examine the socio-political, economic, and environmental factors driving unsustainable irrigation practices in the Cauvery River Basin (CRB) of Southern India. Our methodology integrates spatially explicit analysis using digitised irrigation census data, theoretical energy modelling, and crop water demand simulations to assess groundwater use patterns and energy consumption for irrigation and their links with governance and economic growth. We analyse spatio-temporal irrigation patterns across the whole basin (about 85,000 km2) and reveal the correlation between energy access and groundwater extraction. Our study highlights four key findings. First, groundwater pumping during the Rabi (short-rain) season consumes 24 times more energy than during the Kharif (long-rain) season, despite irrigating 40% less land. Second, the increasing depth of borewells, driven by falling water table levels, is a major factor in rising energy consumption. Third, energy input is highest in regions dominated by paddy cultivation. Fourth, water pumping in the Cauvery region accounts for about 16% of India’s agricultural energy use, despite covering only 4% of the country’s net irrigated area. Our study reinforces the existing literature advocating for holistic, catchment-wide planning, aligned with all UN Sustainable Development Goals. Full article
Show Figures

Figure 1

18 pages, 947 KiB  
Article
Integrating Spatial Concerns into Water Reuse Regulations: Insights from the European Union and the Iberian Peninsula
by Teresa Fidélis, Arsham Afyouni and Fayaz Riazi
Water 2025, 17(11), 1625; https://doi.org/10.3390/w17111625 - 27 May 2025
Cited by 1 | Viewed by 494
Abstract
Water scarcity in Southern Europe, driven by climate conditions and water-intensive land use, is promoting water reuse adoption. Water reuse regulations are emerging, but little is known about integrating spatial concerns into their contents. This study examines how spatial issues are addressed within [...] Read more.
Water scarcity in Southern Europe, driven by climate conditions and water-intensive land use, is promoting water reuse adoption. Water reuse regulations are emerging, but little is known about integrating spatial concerns into their contents. This study examines how spatial issues are addressed within water reuse regulations adopted by the European Union (EU), Portugal, and Spain. Through a comparative content analysis, this research explores the inclusion and distribution of key terms related to water drivers, spatial concepts, and land use types within key sections, preamble, objectives, permitting, risk assessment, monitoring, and governance. The findings show that Portugal and Spain exhibit poorer integration of water scarcity compared to the EU, and Portugal does not address it in its objectives. In contrast, broad spatial terms are more prominent in Portugal, while Spain emphasises conservation and environmental areas more. Spatial terms are distributed differently across sections, reflecting different regulatory approaches. Surprisingly, none of the regulations link to plans. They mention risk management plans and, occasionally, circular economy and river basin management plans. Agriculture and urban activities dominate, although Portugal emphasises industry and green areas. This study highlights the need for more spatially informed water reuse regulations. Full article
Show Figures

Figure 1

17 pages, 2203 KiB  
Article
Assessing the Sustainability of Instream Flow Under Climate Change Considering Reservoir Operation in a Multi-Dam Watershed
by Wonjin Kim, Sijung Choi, Seongkyu Kang and Soyoung Woo
Water 2025, 17(11), 1610; https://doi.org/10.3390/w17111610 - 26 May 2025
Viewed by 398
Abstract
Sustaining instream flows is becoming increasingly critical due to the combined pressure of climate change and intensive reservoir operations in multi-dam watersheds. This study evaluates instream flow sustainability in the Seomjin River basin by integrating the SWAT and K-WEAP models with CMIP6-based climate [...] Read more.
Sustaining instream flows is becoming increasingly critical due to the combined pressure of climate change and intensive reservoir operations in multi-dam watersheds. This study evaluates instream flow sustainability in the Seomjin River basin by integrating the SWAT and K-WEAP models with CMIP6-based climate scenarios. Two contrasting dam operation strategies—firm and deficit supply—were assessed over multiple temporal scales, including hydrological seasons and agricultural activity. Sustainability was quantified using the Sustainability Index (SI), which integrates reliability, resilience, and vulnerability. The probabilistic assessment revealed that the relative performance of the two strategies varied depending on the season and flow conditions. The firm supply generally exhibited higher sustainability under drought and low-demand periods, effectively reducing the probability of unsustainable outcomes. In contrast, the deficit supply often achieved higher sustainability under wet conditions or peak agricultural demand, although it was occasionally linked to extremely low SI values. These findings underscore the importance of season-specific, risk-informed dam operation planning over reliance on a single strategy and emphasize the need for flexible management frameworks capable of responding to diverse hydrological futures. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 3757 KiB  
Article
Impact of Climate Conditions on the Sensitivity of Long-Term Annual River Flow in a Cascade-Dammed River System: The Brda River Case Study (Poland)
by Dawid Szatten, Edward Zbigniew Łaszyca, Alberto Bosino, Mattia De Amicis and Oleksandr Obodovskyi
Geosciences 2025, 15(6), 197; https://doi.org/10.3390/geosciences15060197 - 23 May 2025
Viewed by 547
Abstract
Maintaining the sustainable quantity and quality of water resources is crucial for fluvial systems, as well as for human life. This study describes the long-term annual river flow within the Brda River catchment of Poland, a fluvial system subjected to the strong hydrotechnical [...] Read more.
Maintaining the sustainable quantity and quality of water resources is crucial for fluvial systems, as well as for human life. This study describes the long-term annual river flow within the Brda River catchment of Poland, a fluvial system subjected to the strong hydrotechnical transformations of a cascade of dams. Our research was based on the following hydrological data (1951–2021), meteorological data (1971–2021), and climate scenarios (2022–50) to determine observed and simulated annual river flows. In this research, rising trends in the mean annual temperature and in the annual precipitation in the Brda River basin have been observed. In addition, significant research findings were the three complete river flow oscillations observed to date, and the further predicted river flow oscillations that have been projected by 2050. We modified the Turc model by linking the forecast of river flow patterns to the precipitation factor. Moreover, we predict a decrease in the river flow in the Brda River catchment of up to 10%. These studies, integrated with river flow scenarios, explicitly indicate that a river flow crisis will occur by 2050. However, it can be reduced through dam operation systems and good environmental practices in river basin management plans. This research contributes to the formulation of a sustainable management model for a cascade-dammed river that considers climate challenges. Full article
(This article belongs to the Topic Basin Analysis and Modelling)
Show Figures

Figure 1

Back to TopTop