Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Rhodopsin P23H

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8370 KiB  
Article
High-Fructose High-Fat Diet Renders the Retina More Susceptible to Blue Light Photodamage in Mice
by Meng-Wei Kao, Wan-Ju Yeh, Hsin-Yi Yang and Chi-Hao Wu
Antioxidants 2025, 14(8), 898; https://doi.org/10.3390/antiox14080898 - 22 Jul 2025
Viewed by 352
Abstract
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL [...] Read more.
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL plus HFHF diet (BL + HFHF). The BL + HFHF group consumed the HFHF diet for 40 weeks, followed by 8 weeks of low-intensity BL exposure (465 nm, 37.7 lux, 0.8 μW/cm2) for 6 h daily. The BL group underwent the same BL exposure while kept on a standard diet. Histopathological analysis showed that, under BL exposure, the HFHF diet significantly reduced the number of photoreceptor nuclei and the thickness of the outer nuclear layer and inner/outer segments compared to the BL group (p < 0.05). While BL exposure alone caused oxidative DNA damage, rhodopsin loss, and Müller cell activation, the combination with an HFHF diet significantly amplified the oxidative DNA damage and Müller cell activation. Moreover, the HFHF diet increased blood–retinal barrier permeability and triggered apoptosis under BL exposure. Mechanistically, the BL + HFHF group exhibited increased retinal advanced glycated end product (AGE) deposition, accompanied by the activation of the receptor for AGE (RAGE), NFκB, and the NLRP3 inflammasome-dependent IL-1β pathway. In conclusion, this study underscores that unhealthy dietary factors, particularly those high in fructose and fat, may intensify the hazard of BL and adversely impact visual health. Full article
(This article belongs to the Special Issue Oxidative Stress in Eye Diseases)
Show Figures

Graphical abstract

13 pages, 1784 KiB  
Article
Dark Rearing Does Not Alter Developmental Retinoschisis Cavity Formation in Rs1 Gene Knockout Rat Model of X-Linked Retinoschisis
by Zeljka Smit-McBride, In Hwan Cho, Ning Sun, Serafina Thomas and Paul A. Sieving
Genes 2025, 16(7), 815; https://doi.org/10.3390/genes16070815 - 11 Jul 2025
Viewed by 303
Abstract
Background/Objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These enlarge rapidly, peak at P15, and then collapse by P19. These events overlap [...] Read more.
Background/Objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These enlarge rapidly, peak at P15, and then collapse by P19. These events overlap with eye opening at P12–P15. We investigated whether new light-driven retinal activity could contribute to the appearance and progression of schisis cavities in this rat model of XLRS disease. Methods: For dark rearing (D/D), mating pairs of Rs1KO strain were raised in total darkness in a special vivarium at UC Davis. When pups were born, they were maintained in total darkness, and eyes were collected at P12, P15, and P30 (n = 3/group) for each of the D/D and cyclic light-reared 12 h light–12 h dark (L/D) Rs1KO and wild-type (WT) littermates. Eyes were fixed, paraffin-embedded, and sectioned. Tissue morphology was examined by H&E and marker expression of retinoschisin1 (Rs1), rhodopsin (Rho), and postsynaptic protein 95 (Psd95) by fluorescent immunohistochemistry. H&E-stained images were analyzed with ImageJ version 1.54h to quantify cavity size using the “Analyze Particles” function. Results: Small intra-retinal schisis cavities begin to form by P12 in the inner retina of both D/D and L/D animals. Cavity formation was equivalent or more pronounced in D/D animals than in L/D animals. We compared Iba1 (activation marker of immune cells) distribution and found that by P12, when schisis appeared, Iba1+ cells had accumulated in regions of schisis. Iba1+ cells were more abundant in Rs1KO animals than WT animals and appeared slightly more prevalent in D/D- than L/D-reared Rs1KO animals. We compared photoreceptor development using Rho, Rs1, and Psd95 expression, and these were similar; however, the outer segments (OSs) of D/D animals with Rho labeling at P12 were longer than L/D animals. Conclusions: The results showed that cavities formed at the same time in D/D and L/D XLRS rat pups, indicating that the timing of schisis formation is not light stimulus-driven but rather appears to be a result of developmental events. Cavity size tended to be larger under dark-rearing conditions in D/D animals, which could be due to the decreased rate of phagocytosis by the RPE in the dark, allowing for continued growth of the OSs without the usual shedding of the distal tip, a key mechanism behind dark adaptation in the retina. These results highlight the complexity of XLRS pathology; however, we found no evidence that light-driven metabolic activity accounted for schisis cavity formation. Full article
(This article belongs to the Special Issue Current Advances in Inherited Retinal Disease)
Show Figures

Figure 1

21 pages, 6432 KiB  
Article
Elucidation of Expression Patterns and Functional Properties of Archaerhodopsin Derived from Halorubrum sp. Ejinoor
by Luomeng Chao and Yuxia Yang
Biology 2025, 14(4), 360; https://doi.org/10.3390/biology14040360 - 31 Mar 2025
Viewed by 620
Abstract
This study elucidates the structural determinants and optogenetic potential of Archaerhodopsin HeAR, a proton pump from Halorubrum sp. Ejinoor isolated from Inner Mongolian salt lakes. Through heterologous expression in E. coli BL21 (DE3) and integrative biophysical analyses, we demonstrate that HeAR [...] Read more.
This study elucidates the structural determinants and optogenetic potential of Archaerhodopsin HeAR, a proton pump from Halorubrum sp. Ejinoor isolated from Inner Mongolian salt lakes. Through heterologous expression in E. coli BL21 (DE3) and integrative biophysical analyses, we demonstrate that HeAR adopts a stable trimeric architecture (129 kDa) with detergent-binding characteristics mirroring bacteriorhodopsin (BR); however, it exhibits a 10 nm bathochromic spectral shift (λmax = 550 nm) and elevated proton affinity (Asp-95 pKa = 3.5 vs. BR Asp-85 pKa = 2.6), indicative of evolutionary optimization in its retinal-binding electrostatic microenvironment. Kinetic profiling reveals HeAR’s prolonged photocycle (100 ms vs. BR’s 11 ms), marked by rapid M-state decay (3.3 ms) and extended dark-adaptation half-life (160 min), a bistable behavior attributed to enhanced hydrogen bond persistence (80%) and reduced conformational entropy (RMSD = 2.0 Å). Functional assays confirm light-driven proton extrusion (0.1 ng H⁺/mg·s) with DCCD-amplified flux (0.3 ng H⁺/mg·s) and ATP synthesis (0.3 nmol/mg·s), underscoring its synergy with H⁺-ATPase. Phylogenetic and structural analyses reveal 95% homology with Halorubrum AR4 and conservation of 11 proton-wire residues, despite divergent Trp/Tyr/Ser networks that redefine chromophore stabilization. AlphaFold-predicted models (TM-score > 0.92) and molecular docking identify superior retinoid-binding affinity (ΔG = −12.27 kcal/mol), while spectral specificity (550–560 nm) and acid-stable photoresponse highlight its adaptability for low-irradiance neuromodulation. These findings position HeAR as a precision optogenetic tool, circumventing spectral overlap with excitatory opsins and enabling sustained hyperpolarization with minimized phototoxicity. By bridging microbial energetics and optobioengineering, this work expands the archaeal rhodopsin toolkit and provides a blueprint for designing wavelength-optimized photoregulatory systems. Full article
(This article belongs to the Section Biophysics)
Show Figures

Figure 1

17 pages, 2475 KiB  
Article
K+-Dependent Photocycle and Photocurrent Reveal the Uptake of K+ in Light-Driven Sodium Pump
by Jikang Xu, Qifan Yang, Baofu Ma, Longjie Li, Fei Kong, Lan Xiao and Deliang Chen
Int. J. Mol. Sci. 2023, 24(19), 14414; https://doi.org/10.3390/ijms241914414 - 22 Sep 2023
Cited by 2 | Viewed by 1695
Abstract
Engineering light-controlled K+ pumps from Na+-pumping rhodopsins (NaR) greatly expands the scope of optogenetic applications. However, the limited knowledge regarding the kinetic and selective mechanism of K+ uptake has significantly impeded the modification and design of light-controlled K+ [...] Read more.
Engineering light-controlled K+ pumps from Na+-pumping rhodopsins (NaR) greatly expands the scope of optogenetic applications. However, the limited knowledge regarding the kinetic and selective mechanism of K+ uptake has significantly impeded the modification and design of light-controlled K+ pumps, as well as their practical applications in various fields, including neuroscience. In this study, we presented K+-dependent photocycle kinetics and photocurrent of a light-driven Na+ pump called Nonlabens dokdonensis rhodopsin 2 (NdR2). As the concentration of K+ increased, we observed the accelerated decay of M intermediate in the wild type (WT) through flash photolysis. In 100 mM KCl, the lifetime of the M decay was approximately 1.0 s, which shortened to around 0.6 s in 1 M KCl. Additionally, the K+-dependent M decay kinetics were also observed in the G263W/N61P mutant, which transports K+. In 100 mM KCl, the lifetime of the M decay was approximately 2.5 s, which shortened to around 0.2 s in 1 M KCl. According to the competitive model, in high KCl, K+ may be taken up from the cytoplasmic surface, competing with Na+ or H+ during M decay. This was further confirmed by the K+-dependent photocurrent of WT liposome. As the concentration of K+ increased to 500 mM, the amplitude of peak current significantly dropped to approximately ~60%. Titration experiments revealed that the ratio of the rate constant of H+ uptake (kH) to that of K+ uptake (kK) is >108. Compared to the WT, the G263W/N61P mutant exhibited a decrease of approximately 40-fold in kH/kK. Previous studies focused on transforming NaR into K+ pumps have primarily targeted the intracellular ion uptake region of Krokinobacter eikastus rhodopsin 2 (KR2) to enhance K+ uptake. However, our results demonstrate that the naturally occurring WT NdR2 is capable of intracellular K+ uptake without requiring structural modifications on the intracellular region. This discovery provides diverse options for future K+ pump designs. Furthermore, we propose a novel photocurrent-based approach to evaluate K+ uptake, which can serve as a reference for similar studies on other ion pumps. In conclusion, our research not only provides new insights into the mechanism of K+ uptake but also offers a valuable point of reference for the development of optogenetic tools and other applications in this field. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

14 pages, 2382 KiB  
Article
Comprehensive Analysis of Photoreceptor Outer Segments: Flow Cytometry Characterization and Stress-Driven Impact on Retinal Pigment Epithelium Phagocytosis
by Haoqian Liang, Qiang Wu, Xinzheng Victor Guo, Linda Chan, Tin Mao, Cinzia Stella, Axel Guilbaud and Julien Camperi
Int. J. Mol. Sci. 2023, 24(16), 12889; https://doi.org/10.3390/ijms241612889 - 17 Aug 2023
Cited by 1 | Viewed by 2470
Abstract
Phagocytosis is one of the key functions of retinal pigment epithelium (RPE) cells, which maintain photoreceptor health by removing photoreceptor outer segments (POSs) that are regularly shed. A deficiency in RPE function to phagocytose POSs may lead to vision loss in inherited retinal [...] Read more.
Phagocytosis is one of the key functions of retinal pigment epithelium (RPE) cells, which maintain photoreceptor health by removing photoreceptor outer segments (POSs) that are regularly shed. A deficiency in RPE function to phagocytose POSs may lead to vision loss in inherited retinal diseases and eventually to age-related macular degeneration (AMD) with geographic atrophy. Significant progress has been made in the field of cell replacement therapy for AMD using stem-cell-derived RPE. To test their function, RPE cells are incubated with purified bovine POSs for the demonstration of efficient binding, internalization, and digestion of POSs. Here, we present an image-based method to measure phagocytosis activity by using POSs labeled with a pH-sensitive fluorescent dye, which has low fluorescence at neutral pH outside of the cell and high fluorescence at low pH inside the phagosome. Further, we introduce a unique flow-cytometry-based method for the characterization of POSs by measuring specific markers for POSs such as rhodopsin and opsin. Using this method, we demonstrated a comparable quality of several bovine POS isolation batches and a reliable assessment of POS quality on RPE phagocytosis assay performance when subjected to different stress conditions. This work provides new tools to characterize POSs and insight into RPE phagocytosis assay development for the functional evaluation of RPE cells in the field of cell replacement therapy. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3161 KiB  
Article
PEDF Deletion Induces Senescence and Defects in Phagocytosis in the RPE
by Ivan T. Rebustini, Susan E. Crawford and S. Patricia Becerra
Int. J. Mol. Sci. 2022, 23(14), 7745; https://doi.org/10.3390/ijms23147745 - 13 Jul 2022
Cited by 10 | Viewed by 8667
Abstract
The retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack [...] Read more.
The retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack the Serpinf1 gene and found that Serpinf1 deletion induced H2ax for histone H2AX protein, Cdkn1a for p21 protein, and Glb1 gene for β-galactosidase. Senescence-associated β-galactosidase activity increased in the Serpinf1 null RPE when compared with wild-type RPE. We evaluated the subcellular morphology of the RPE and found that ablation of Serpinf1 increased the volume of the nuclei and the nucleoli number of RPE cells, implying chromatin reorganization. Given that the RPE phagocytic function declines with aging, we assessed the expression of the Pnpla2 gene, which is required for the degradation of photoreceptor outer segments by the RPE. We found that both the Pnpla2 gene and its protein PEDF-R declined with the Serpinf1 gene ablation. Moreover, we determined the levels of phagocytosed rhodopsin and lipids in the RPE of the Serpinf1 null mice. The RPE of the Serpinf1 null mice accumulated rhodopsin and lipids compared to littermate controls, implying an association of PEDF deficiency with RPE phagocytosis dysfunction. Our findings establish PEDF loss as a cause of senescence-like changes in the RPE, highlighting PEDF as both a retinoprotective and a regulatory protein of aging-like changes associated with defective degradation of the photoreceptor outer segment in the RPE. Full article
Show Figures

Figure 1

27 pages, 8226 KiB  
Review
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior
by Anna C. Croce and Francesca Scolari
Molecules 2022, 27(14), 4458; https://doi.org/10.3390/molecules27144458 - 12 Jul 2022
Cited by 6 | Viewed by 4566
Abstract
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based [...] Read more.
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites’ leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control. Full article
(This article belongs to the Special Issue Autofluorescence Spectroscopy and Imaging II)
Show Figures

Graphical abstract

16 pages, 4020 KiB  
Article
Effects of Epigenetic Modification of PGC-1α by a Chemical Chaperon on Mitochondria Biogenesis and Visual Function in Retinitis Pigmentosa
by Yoko Ozawa, Eriko Toda, Kohei Homma, Hideto Osada, Norihiro Nagai, Kazuo Tsubota and Hideyuki Okano
Cells 2022, 11(9), 1497; https://doi.org/10.3390/cells11091497 - 29 Apr 2022
Cited by 12 | Viewed by 3425
Abstract
Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by gradual photoreceptor death, which lacks a definitive treatment. Here, we demonstrated the effect of 4-phenylbutyric acid (PBA), a chemical chaperon that can suppress endoplasmic reticulum (ER) stress, in P23H mutant rhodopsin knock-in RP [...] Read more.
Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by gradual photoreceptor death, which lacks a definitive treatment. Here, we demonstrated the effect of 4-phenylbutyric acid (PBA), a chemical chaperon that can suppress endoplasmic reticulum (ER) stress, in P23H mutant rhodopsin knock-in RP models. In the RP models, constant PBA treatment led to the retention of a greater number of photoreceptors, preserving the inner segment (IS), a mitochondrial- and ER-rich part of the photoreceptors. Electroretinography showed that PBA treatment preserved photoreceptor function. At the early point, ER-associated degradation markers, xbp1s, vcp, and derl1, mitochondrial kinetic-related markers, fis1, lc3, and mfn1 and mfn2, as well as key mitochondrial regulators, pgc-1α and tfam, were upregulated in the retina of the models treated with PBA. In vitro analyses showed that PBA upregulated pgc-1α and tfam transcription, leading to an increase in the mitochondrial membrane potential, cytochrome c oxidase activity, and ATP levels. Histone acetylation of the PGC-1α promoter was increased by PBA, indicating that PBA affected the mitochondrial condition through epigenetic changes. Our findings constituted proof of concept for the treatment of ER stress-related RP using PBA and revealed PBA’s neuroprotective effects, paving the way for its future clinical application. Full article
(This article belongs to the Special Issue Neurodegenerative Diseases: Updates and Challenges)
Show Figures

Graphical abstract

18 pages, 8928 KiB  
Article
AAV-CRISPR/Cas9 Gene Editing Preserves Long-Term Vision in the P23H Rat Model of Autosomal Dominant Retinitis Pigmentosa
by Saba Shahin, Hui Xu, Bin Lu, Augustus Mercado, Melissa K. Jones, Benjamin Bakondi and Shaomei Wang
Pharmaceutics 2022, 14(4), 824; https://doi.org/10.3390/pharmaceutics14040824 - 9 Apr 2022
Cited by 11 | Viewed by 4086
Abstract
Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating autosomal [...] Read more.
Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating autosomal recessive RP (arRP). However, limited options are available for patients with autosomal dominant RP (adRP). In vivo gene editing may be a therapeutic option to treat adRP. We previously rescued vision in neonatal adRP rats by the selective ablation of the Rhodopsin S334ter transgene following electroporation of a CRISPR/Cas9 vector. However, the translational feasibility and long-term safety and efficacy of ablation therapy is unclear. To this end, we show that AAV delivery of a CRISPR/Cas9 construct disrupted the Rhodopsin P23H transgene in postnatal rats, which rescued long-term vision and retinal morphology. Full article
(This article belongs to the Special Issue Drug Delivery in Ophthalmology)
Show Figures

Graphical abstract

15 pages, 3225 KiB  
Article
Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation
by Jin Song, Julia A. VanBuskirk and Shannath L. Merbs
Int. J. Mol. Sci. 2022, 23(3), 1408; https://doi.org/10.3390/ijms23031408 - 26 Jan 2022
Cited by 14 | Viewed by 3641
Abstract
One important role of epigenetic regulation is controlling gene expression in development and homeostasis. However, little is known about epigenetics’ role in regulating opsin expression. Cell cultures (HEK 293, Y79, and WERI) producing different levels of opsins were treated with 5-aza-2’-deoxycytidine (5-Aza-dc) and/or [...] Read more.
One important role of epigenetic regulation is controlling gene expression in development and homeostasis. However, little is known about epigenetics’ role in regulating opsin expression. Cell cultures (HEK 293, Y79, and WERI) producing different levels of opsins were treated with 5-aza-2’-deoxycytidine (5-Aza-dc) and/or sodium butyrate (SB) or suberoylanilide hydroxamic acid (SAHA) for 72 h. Global DNA methylation, site-specific methylation, and expressions of opsins were measured by LUMA assay, bisulfite pyrosequencing, and qPCR, respectively. Mouse retinal explants from wild-type P0/P1 pups were ex vivo cultured with/without 5-Aza-dc or SAHA for 6 days. The morphology of explants, DNA methylation, and expressions of opsins was examined. The drugs induced global DNA hypomethylation or increased histone acetylation in cells, including DNA hypomethylation of rhodopsin (RHO) and L-opsin (OPN1LW) and a concomitant increase in their expression. Further upregulation of RHO and/or OPN1LW in HEK 293 or WERI cells was observed with 5-Aza-dc and either SB or SAHA combination treatment. Mouse retinal explants developed normally but had drug-dependent differential DNA methylation and expression patterns of opsins. DNA methylation and histone acetylation directly regulate opsin expression both in vitro and ex vivo. The ability to manipulate opsin expression using epigenetic modifiers enables further study into the role of epigenetics in eye development and disease. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Eye Diseases)
Show Figures

Figure 1

16 pages, 5857 KiB  
Article
Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa
by Tiantian Wang, Jingyu Yao, Lin Jia, Patrice E. Fort and David N. Zacks
Int. J. Mol. Sci. 2022, 23(1), 70; https://doi.org/10.3390/ijms23010070 - 22 Dec 2021
Cited by 9 | Viewed by 3908
Abstract
Inherited retinal degenerations (IRD) are a leading cause of visual impairment and can result from mutations in any one of a multitude of genes. Mutations in the light-sensing protein rhodopsin (RHO) is a leading cause of IRD with the most common of those [...] Read more.
Inherited retinal degenerations (IRD) are a leading cause of visual impairment and can result from mutations in any one of a multitude of genes. Mutations in the light-sensing protein rhodopsin (RHO) is a leading cause of IRD with the most common of those being a missense mutation that results in substitution of proline-23 with histidine. This variant, also known as P23H-RHO, results in rhodopsin misfolding, initiation of endoplasmic reticulum stress, the unfolded protein response, and activation of cell death pathways. In this study, we investigate the effect of α-crystallins on photoreceptor survival in a mouse model of IRD secondary to P23H-RHO. We find that knockout of either αA- or αB-crystallin results in increased intraretinal inflammation, activation of apoptosis and necroptosis, and photoreceptor death. Our data suggest an important role for the ⍺-crystallins in regulating photoreceptor survival in the P23H-RHO mouse model of IRD. Full article
Show Figures

Figure 1

18 pages, 3833 KiB  
Review
Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers
by Md. Sirajul Islam, James P. Gaston and Matthew A. B. Baker
Membranes 2021, 11(11), 857; https://doi.org/10.3390/membranes11110857 - 4 Nov 2021
Cited by 5 | Viewed by 6843
Abstract
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins [...] Read more.
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins into model lipid membranes. Such simpler, in vitro, systems offer the advantage of control over the membrane and protein composition and the lipid environment. Rhodopsin and rhodopsin-like ion channels are widely studied due to their light-interacting properties and are a natural candidate for investigation with fluorescence methods. Here we review techniques for synthesizing liposomes and for reconstituting membrane proteins into lipid bilayers. We then summarize fluorescence assays which can be used to verify the functionality of reconstituted membrane proteins in synthetic liposomes. Full article
(This article belongs to the Special Issue Lipid Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

16 pages, 4012 KiB  
Article
Pharmacological Inhibition of the VCP/Proteasome Axis Rescues Photoreceptor Degeneration in RHOP23H Rat Retinal Explants
by Merve Sen, Oksana Kutsyr, Bowen Cao, Sylvia Bolz, Blanca Arango-Gonzalez and Marius Ueffing
Biomolecules 2021, 11(10), 1528; https://doi.org/10.3390/biom11101528 - 16 Oct 2021
Cited by 12 | Viewed by 3343
Abstract
Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are [...] Read more.
Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP. Full article
(This article belongs to the Special Issue Ocular Diseases and Therapeutics)
Show Figures

Figure 1

22 pages, 21561 KiB  
Article
Transcriptional Profiling Identifies Upregulation of Neuroprotective Pathways in Retinitis Pigmentosa
by Christina B. Bielmeier, Saskia Roth, Sabrina I. Schmitt, Stefaniya K. Boneva, Anja Schlecht, Mario Vallon, Ernst R. Tamm, Süleyman Ergün, Andreas Neueder and Barbara M. Braunger
Int. J. Mol. Sci. 2021, 22(12), 6307; https://doi.org/10.3390/ijms22126307 - 11 Jun 2021
Cited by 6 | Viewed by 3718
Abstract
Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal [...] Read more.
Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP. Full article
Show Figures

Figure 1

22 pages, 10802 KiB  
Article
Retbindin: A riboflavin Binding Protein, Is Critical for Photoreceptor Homeostasis and Survival in Models of Retinal Degeneration
by Ayse M. Genc, Mustafa S. Makia, Tirthankar Sinha, Shannon M. Conley, Muayyad R. Al-Ubaidi and Muna I. Naash
Int. J. Mol. Sci. 2020, 21(21), 8083; https://doi.org/10.3390/ijms21218083 - 29 Oct 2020
Cited by 6 | Viewed by 2749
Abstract
The large number of inherited retinal disease genes (IRD), including the photopigment rhodopsin and the photoreceptor outer segment (OS) structural component peripherin 2 (PRPH2), has prompted interest in identifying common cellular mechanisms involved in degeneration. Although metabolic dysregulation has been shown to play [...] Read more.
The large number of inherited retinal disease genes (IRD), including the photopigment rhodopsin and the photoreceptor outer segment (OS) structural component peripherin 2 (PRPH2), has prompted interest in identifying common cellular mechanisms involved in degeneration. Although metabolic dysregulation has been shown to play an important role in the progression of the disease etiology, identifying a common regulator that can preserve the metabolic ecosystem is needed for future development of neuroprotective treatments. Here, we investigated whether retbindin (RTBDN), a rod-specific protein with riboflavin binding capability, and a regulator of riboflavin-derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is protective to the retina in different IRD models; one carrying the P23H mutation in rhodopsin (which causes retinitis pigmentosa) and one carrying the Y141C mutation in Prph2 (which causes a blended cone-rod dystrophy). RTBDN levels are significantly upregulated in both the rhodopsin (Rho)P23H/+ and Prph2Y141C/+ retinas. Rod and cone structural and functional degeneration worsened in models lacking RTBDN. In addition, removing Rtbdn worsened other phenotypes, such as fundus flecking. Retinal flavin levels were reduced in RhoP23H/+/Rtbdn−/− and Prph2Y141C/+/Rtbdn−/− retinas. Overall, these findings suggest that RTBDN may play a protective role during retinal degenerations that occur at varying rates and due to varying disease mechanisms. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop