Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = RhB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3204 KiB  
Systematic Review
Association Between ABO or Rh Blood Groups and Chikungunya Virus Infection: A Systematic Review and Meta-Analysis
by Yanisa Rattanapan, Wanatsanan Chulrik, Karunaithas Rasaratnam and Thitinat Duangchan
Medicina 2025, 61(8), 1316; https://doi.org/10.3390/medicina61081316 - 22 Jul 2025
Viewed by 165
Abstract
Background and Objectives: The relationship between ABO or Rh blood groups and susceptibility to Chikungunya virus (CHIKV) infection remains unclear. This systematic review and meta-analysis aimed to synthesize available evidence on this association. Materials and Methods: Studies reporting ABO and/or Rh [...] Read more.
Background and Objectives: The relationship between ABO or Rh blood groups and susceptibility to Chikungunya virus (CHIKV) infection remains unclear. This systematic review and meta-analysis aimed to synthesize available evidence on this association. Materials and Methods: Studies reporting ABO and/or Rh blood groups and CHIKV infection were searched through PubMed, Scopus, EMBASE, MEDLINE, Ovid, ProQuest, and Google Scholar up to 8 July 2025. A random-effects meta-analysis was conducted to calculate pooled odds ratios (Ors) with 95% CIs. Heterogeneity was assessed using I2 statistics. Subgroup analyses were performed based on study design and study quality. Sensitivity analysis was conducted using a leave-one-out method. Publication bias was evaluated via funnel plots and Egger’s test. Results: Seven studies, including 24,828 participants, were included. No significant associations were observed between blood groups A, B, AB, or Rh(D) and CHIKV infection. However, blood group O was significantly associated with an increased risk of CHIKV infection (OR: 1.52, 95% CI: 1.01–2.29, p = 0.043, I2 = 95.38%) compared to non-O blood groups. Subgroup analyses showed stable results. Nevertheless, the sensitivity analysis indicated that certain studies had a greater influence on the overall results. In addition, significant publication bias was also detected. Conclusions: Current evidence indicates that blood group O is significantly associated with an increased susceptibility to CHIKV infection. In contrast, no consistent associations were observed for other ABO or Rh blood groups. Due to substantial heterogeneity and methodological limitations, these findings should be interpreted with caution. Further well-designed, large-scale studies with standardized diagnostics are needed to clarify these associations and underlying mechanisms. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

25 pages, 5169 KiB  
Article
Natural Sunlight Driven Photocatalytic Degradation of Methylene Blue and Rhodamine B over Nanocrystalline Zn2SnO4/SnO2
by Maria Vesna Nikolic, Zorka Z. Vasiljevic, Milena Dimitrijevic, Nadezda Radmilovic, Jelena Vujancevic, Marija Tanovic and Nenad B. Tadic
Nanomaterials 2025, 15(14), 1138; https://doi.org/10.3390/nano15141138 - 21 Jul 2025
Viewed by 298
Abstract
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the [...] Read more.
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the solid-state synthesis method was tested as a heterojunction photocatalyst material for the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes as single and multicomponent systems in natural sunlight. Characterization of the structure and morphology of the synthesized nanocomposite using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectroscopy confirmed the formation of Zn2SnO4/SnO2 and heterojunctions between Zn2SnO4 and the SnO2 nanoparticles. A photodegradation efficiency of 99.1% was achieved in 120 min with 50 mg of the photocatalyst for the degradation of MB and 70.6% for the degradation of RhB under the same conditions. In the multicomponent system, the degradation efficiency of 97.9% for MB and 53.2% for RhB was obtained with only 15 mg of the photocatalyst. The degradation of MB occurred through N-demethylation and the formation of azure intermediates and degradation of RhB occurred through sequential deethylation and fragmentation of the xanthene ring, both in single and multicomponent systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

14 pages, 1928 KiB  
Article
Ultraviolet Photocatalytic Performance of ZnO Nanorods Selectively Deposited with Bi2O3 Quantum Dots
by Baohui Lou, Chi Zhang, Xianhao Wu, Ying Liu, Xiangdong Feng, Feipeng Huang, Bowen Zhao and Zhengwang Zhu
Catalysts 2025, 15(7), 695; https://doi.org/10.3390/catal15070695 - 21 Jul 2025
Viewed by 199
Abstract
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance [...] Read more.
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance varied significantly, prompting the investigation of factors beyond particle size. The study revealed that the photochemical method selectively deposited Bi2O3 QDs onto electron-rich ZnO sites, providing a favorable pathway for efficient electron–hole separation and transfer. Consequently, abundant h+ and ·OH radicals were generated, which effectively degraded Rhodamine B (RhB). As demonstrated in the RhB degradation experiments, the Bi2O3/ZnO nanorod catalyst achieved an 89.3% degradation rate within 120 min, significantly outperforming catalysts with other morphologies. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results indicated that the Bi2O3/ZnO heterostructure constructed an effective interface to facilitate the spatial separation of photogenerated charge carriers, which effectively prolonged their lifetime. The electron paramagnetic resonance (EPR) results confirmed that the ·OH radicals played a key role in the degradation process. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

30 pages, 11312 KiB  
Article
Study on the Mechanism and Dose–Effect Relationship of Flavonoids in Different Extracts of Radix Hedysari Against Gastrointestinal Injury Induced by Chemotherapy
by Shasha Zhao, Miaomiao Yang, Zimu Yang, Hai He, Ziyang Wang, Xinyu Zhu, Zhijia Cui and Jing Shao
Pharmaceuticals 2025, 18(7), 1072; https://doi.org/10.3390/ph18071072 - 20 Jul 2025
Viewed by 219
Abstract
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified [...] Read more.
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified eight flavonoids via HPLC. Network pharmacology screened targets/pathways using TCMSP, GeneCards databases. In vivo validation employed cisplatin–induced injury models in Wistar rats (n = 10/group). Assessments included: behavioral monitoring; organ indices; ELISA (MTL, VIP, IFN–γ, IgG, IL–6, TNF–α etc.); H&E; and Western blot:(SCF, c–Kit, p65). Dose–effect correlations were analyzed by PLS–DA. Results: Content determination indicated that Calycosin–7–glucoside and Ononin were notably enriched on both the n–BuOH part and the EtOAc part. Network pharmacology identified 5 core flavonoids and 8 targets enriched in IL–17/TNF signaling pathways. n–BuOH treatment minimized weight loss vs. MCG, increased spleen/thymus indices. n–BuOH and HPS normalized gastrointestinal, immune, inflammatory biomarkers (p < 0.01 vs. MCG). Histopathology confirmed superior mucosal protection in n–BuOH group vs. MCG. Western blot revealed n–BuOH significantly downregulated SCF, c–kit, and p65 expressions in both gastric and intestinal tissues (p < 0.001 vs. MCG). PLS–DA demonstrated Calycosin–7–glucoside had the strongest dose–effect correlation (VIP > 1) with protective outcomes. Conclusions: The n–BuOH fraction of RH is the primary bioactive component against chemotherapy–induced gastrointestinal injury, with Calycosin–7–glucoside as its key effector. Protection is mediated through SCF/c–Kit/NF–κB pathway inhibition, demonstrating significant dose–dependent efficacy. These findings support RH’s potential as a complementary therapy during chemotherapy. Full article
Show Figures

Graphical abstract

16 pages, 2035 KiB  
Article
Optimizing Sunflower Cultivar Selection Under Climate Variability: Evidence from Coupled Meteorological-Growth Modeling in Arid Northwest China
by Jianguo Mu, Jianqin Wang, Ruiying Ma, Zengshuai Lv, Hongye Dong, Yantao Liu, Wei Duan, Shengli Liu, Peng Wang and Xuekun Zhang
Agronomy 2025, 15(7), 1724; https://doi.org/10.3390/agronomy15071724 - 17 Jul 2025
Viewed by 232
Abstract
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield [...] Read more.
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield and quality traits among sunflower cultivars with varying maturation periods. The main findings were: (1) Early-maturing cultivar B1 (RH3146) exhibited superior adaptation at low-temperature station A1, achieving 12% higher plant height and an 18% yield increase compared to regional averages. (2) At thermally variable station A2 (daily average temperature fluctuation ± 8 °C, precipitation CV = 25%), the late-maturing cultivar B3 showed enhanced stress resilience, achieving 35.6% grain crude fat content (15% greater than mid-maturing B2) along with 8–10% increases in seed setting rate and 100-grain weight. These improvements were potentially due to optimized photoassimilated allocation and activation of stress-responsive genes. (3) At station A3, characterized by high thermal-humidity variability (CV > 15%) during grain filling, B3 experienced a 15-day delay in maturation and a 3% reduction in ripeness. Two principal mitigation strategies are recommended: preferential selection of early-to-mid maturing cultivars in regions with thermal-humidity CV > 10%, improving yield stability by 23%, and optimization of sowing schedules based on accumulated temperature-precipitation modeling, reducing meteorological losses by 15%. These evidence-based recommendations provide critical insights for climate-resilient cultivar selection and precision agricultural management in meteorologically vulnerable agroecosystems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

13 pages, 1138 KiB  
Article
The Effects of Six Brassica napus Cultivars on the Life Table Parameters of the Green Peach Aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae)
by Mi Tian, Lin-Kui Li, Feng Zhu and Shi-Ze Zhang
Insects 2025, 16(7), 726; https://doi.org/10.3390/insects16070726 - 17 Jul 2025
Viewed by 268
Abstract
The contents of glucosinolates and erucic acid clearly vary in Brassica napus seeds, but a few studies still focus on the effects of B. napus cultivars on the life table parameters of Myzus persicae. In this study, the life history parameters of [...] Read more.
The contents of glucosinolates and erucic acid clearly vary in Brassica napus seeds, but a few studies still focus on the effects of B. napus cultivars on the life table parameters of Myzus persicae. In this study, the life history parameters of M. persicae in six B. napus cultivars were examined at 25 ± 1 °C, 50 ± 10% RH, and a photoperiod of 14 h of light/10 h of dark under laboratory conditions. The results showed that significant differences exist in the life table parameters of M. persicae in six B. napus cultivars. The female fecundity, net reproductive rate, intrinsic rate of increase, finite rate of increase, and total longevity of M. persicae were higher in Xinong 18, Aiganyou 558, and Aiyouku 999. However, the intrinsic rate of increase in M. persicae was significantly lower in Zhongshuang 11 (rm = 0.28 ± 0.006) and Mianxinyou 78 (rm = 0.23 ± 0.007), suggesting the host-induced suppression of M. persicae population growth. Among all the cultivars mentioned above, Zhongshuang 11 and Mianxinyou 78 were recommended for planting for decreasing M. persicae population numbers. Additionally, more attention should be paid to Xinong 18, Aiyouku 999, and Aiganyou 558 to control M. persicae populations, and we conclude that Brassica napus cultivars affect the developmental duration and the population dynamics of M. persicae. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

18 pages, 1467 KiB  
Article
Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage
by Maritza D. Ruiz Medina, Yadira Quimbita Yupangui and Jenny Ruales
Coatings 2025, 15(7), 812; https://doi.org/10.3390/coatings15070812 - 11 Jul 2025
Cited by 1 | Viewed by 436
Abstract
Banana (Musa paradisiaca) is a climacteric fruit with high postharvest perishability, limiting its export potential. This study evaluated the effectiveness of a natural protein–polysaccharide edible coating—comprising whey, agar, cassava starch, and glycerol—on maintaining the physicochemical quality of green bananas during 28 [...] Read more.
Banana (Musa paradisiaca) is a climacteric fruit with high postharvest perishability, limiting its export potential. This study evaluated the effectiveness of a natural protein–polysaccharide edible coating—comprising whey, agar, cassava starch, and glycerol—on maintaining the physicochemical quality of green bananas during 28 days of refrigerated storage (13 °C, 95% RH). Seven formulations were tested, including an uncoated control. Physicochemical parameters such as weight loss, firmness, fruit dimensions, peel color, titratable acidity, pH, and soluble solids (°Brix) were systematically monitored. Significant differences were observed among treatments (ANOVA, p < 0.001). The most effective coating (T5), composed of 16.7% whey, 16.7% agar, 33.3% cassava starch, and 33.3% glycerol (based on 30 g/L solids), reduced weight loss by 58.8%, improved firmness retention by 48.4%, and limited sugar accumulation by 17.0% compared to the control. It also stabilized pH and acidity, preserved peel thickness and color parameters (L*, a*, b*), and delayed ripening. These findings confirm the coating’s capacity to form a cohesive semipermeable barrier that modulates moisture loss and respiration, making it a functional and sustainable alternative for extending banana shelf life in tropical supply chains. Full article
Show Figures

Figure 1

24 pages, 4465 KiB  
Article
A Deep Learning-Based Echo Extrapolation Method by Fusing Radar Mosaic and RMAPS-NOW Data
by Shanhao Wang, Zhiqun Hu, Fuzeng Wang, Ruiting Liu, Lirong Wang and Jiexin Chen
Remote Sens. 2025, 17(14), 2356; https://doi.org/10.3390/rs17142356 - 9 Jul 2025
Viewed by 237
Abstract
Radar echo extrapolation is a critical forecasting tool in the field of meteorology, playing an especially vital role in nowcasting and weather modification operations. In recent years, spatiotemporal sequence prediction models based on deep learning have garnered significant attention and achieved notable progress [...] Read more.
Radar echo extrapolation is a critical forecasting tool in the field of meteorology, playing an especially vital role in nowcasting and weather modification operations. In recent years, spatiotemporal sequence prediction models based on deep learning have garnered significant attention and achieved notable progress in radar echo extrapolation. However, most of these extrapolation network architectures are built upon convolutional neural networks, using radar echo images as input. Typically, radar echo intensity values ranging from −5 to 70 dBZ with a resolution of 5 dBZ are converted into 0–255 grayscale images from pseudo-color representations, which inevitably results in the loss of important echo details. Furthermore, as the extrapolation time increases, the smoothing effect inherent to convolution operations leads to increasingly blurred predictions. To address the algorithmic limitations of deep learning-based echo extrapolation models, this study introduces three major improvements: (1) A Deep Convolutional Generative Adversarial Network (DCGAN) is integrated into the ConvLSTM-based extrapolation model to construct a DCGAN-enhanced architecture, significantly improving the quality of radar echo extrapolation; (2) Considering that the evolution of radar echoes is closely related to the surrounding meteorological environment, the study incorporates specific physical variable products from the initial zero-hour field of RMAPS-NOW (the Rapid-update Multiscale Analysis and Prediction System—NOWcasting subsystem), developed by the Institute of Urban Meteorology, China. These variables are encoded jointly with high-resolution (0.5 dB) radar mosaic data to form multiple radar cells as input. A multi-channel radar echo extrapolation network architecture (MR-DCGAN) is then designed based on the DCGAN framework; (3) Since radar echo decay becomes more prominent over longer extrapolation horizons, this study departs from previous approaches that use a single model to extrapolate 120 min. Instead, it customizes time-specific loss functions for spatiotemporal attenuation correction and independently trains 20 separate models to achieve the full 120 min extrapolation. The dataset consists of radar composite reflectivity mosaics over North China within the range of 116.10–117.50°E and 37.77–38.77°N, collected from June to September during 2018–2022. A total of 39,000 data samples were matched with the initial zero-hour fields from RMAPS-NOW, with 80% (31,200 samples) used for training and 20% (7800 samples) for testing. Based on the ConvLSTM and the proposed MR-DCGAN architecture, 20 extrapolation models were trained using four different input encoding strategies. The models were evaluated using the Critical Success Index (CSI), Probability of Detection (POD), and False Alarm Ratio (FAR). Compared to the baseline ConvLSTM-based extrapolation model without physical variables, the models trained with the MR-DCGAN architecture achieved, on average, 18.59%, 8.76%, and 11.28% higher CSI values, 19.46%, 19.21%, and 19.18% higher POD values, and 19.85%, 11.48%, and 9.88% lower FAR values under the 20 dBZ, 30 dBZ, and 35 dBZ reflectivity thresholds, respectively. Among all tested configurations, the model that incorporated three physical variables—relative humidity (rh), u-wind, and v-wind—demonstrated the best overall performance across various thresholds, with CSI and POD values improving by an average of 16.75% and 24.75%, respectively, and FAR reduced by 15.36%. Moreover, the SSIM of the MR-DCGAN models demonstrates a more gradual decline and maintains higher overall values, indicating superior capability in preserving echo structural features. Meanwhile, the comparative experiments demonstrate that the MR-DCGAN (u, v + rh) model outperforms the MR-ConvLSTM (u, v + rh) model in terms of evaluation metrics. In summary, the model trained with the MR-DCGAN architecture effectively enhances the accuracy of radar echo extrapolation. Full article
(This article belongs to the Special Issue Advance of Radar Meteorology and Hydrology II)
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 529
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

15 pages, 8861 KiB  
Article
The Complete Chloroplast Genome of Purdom’s Rhododendron (Rhododendron purdomii Rehder & E. H. Wilson): Genome Structure and Phylogenetic Analysis
by Lu Yuan, Ningning Zhang, Shixin Zhu and Yang Lu
Forests 2025, 16(7), 1120; https://doi.org/10.3390/f16071120 - 7 Jul 2025
Viewed by 290
Abstract
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, [...] Read more.
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, assembled, and characterized. The cp genome exhibited a typical quadripartite structure with a total length of 208,062 bp, comprising a large single copy (LSC) region of 110,618 bp, a small single copy (SSC) region of 2606 bp, and two inverted repeat (IR) regions of 47,419 bp each. The overall GC content was 35.81%. The genome contained 146 genes, including 96 protein-coding genes, 42 transfer RNA genes, and 8 ribosomal RNA genes. Structure analysis identified 67,354 codons, 96 long repetitive sequences, and 171 simple sequence repeats. Comparative genomic analysis across Rhododendron species revealed hypervariable coding regions (accD, rps9) and non-coding regions (trnK-UUU-ycf3, trnI-CAU-rpoB, trnT-GGU-accD, rpoA-psbL, rpl20-trnC-GCA, trnI-CAU-rrn16, and trnI-CAU-rps16), which may serve as potential molecular markers for genetic identification. Phylogenetic reconstruction confirmed the monophyly of Rhododendron species and highlighted a close relationship between Rh. purdomii and Rh. henanense subsp. lingbaoense. These results provide essential genomic resources for advancing taxonomic, evolutionary, conservation, and breeding studies of Rh. purdomii and other species within the genus Rhododendron. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 211 KiB  
Article
Gendered Dimensions of Menstrual Health: Lifestyle, Biology, and Coping Strategies Among Female Medical Students
by Nam Hoang Tran, Ngoc Bao Dang, Kien Trung Nguyen, Tien Minh Bui and Quang Ngoc Phan
Sexes 2025, 6(3), 35; https://doi.org/10.3390/sexes6030035 - 3 Jul 2025
Viewed by 216
Abstract
This study aims to explore the associations between menstrual health, lifestyle behaviors, biological traits, and coping strategies among female students at a Vietnamese medical university. A cross-sectional survey was conducted among 884 female students across five academic majors. Data on demographics, menstrual patterns, [...] Read more.
This study aims to explore the associations between menstrual health, lifestyle behaviors, biological traits, and coping strategies among female students at a Vietnamese medical university. A cross-sectional survey was conducted among 884 female students across five academic majors. Data on demographics, menstrual patterns, biological characteristics, lifestyle behaviors, and coping mechanisms were collected. Statistical analyses included descriptive statistics, correlation, and logistic regression to identify significant predictors of self-reported menstrual changes post university admission. Of the 884 participants, 49.8% reported menstrual changes after entering university. Among the lifestyle-related factors, increased daily electronic use (mean = 5.83 h) and later bedtimes (mean = 23:58) were associated with menstrual change (p < 0.01). Older age and higher academic year emerged as significant predictors of menstrual changes (p < 0.001). Additionally, students with blood groups A and B exhibited a higher risk compared to those with group O (p < 0.05), and Rh-positive status was also significantly associated with menstrual changes (p = 0.05). In terms of knowledge and coping practices, students who had premenstrual syndrome awareness since school were significantly less likely to report menstrual changes (p = 0.003). Although use of pain relief, particularly painkillers, correlated with higher reported pain severity, it was not directly linked to menstrual change. On the other hand, clinic consultations were positively associated with menstrual changes (p = 0.003), while students who relied on their mothers as counselors exhibited a protective association (p = 0.001). Menstrual health in university-aged women is influenced by a complex interplay of lifestyle behaviors, biological traits, and menstrual knowledge. Early education and structured coping support may serve as protective factors. The findings call for targeted menstrual health programs in university settings. Full article
12 pages, 4829 KiB  
Article
Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides
by Junyi Du, Weiguo Sun, Xiaofeng Li and Xinfang Su
Materials 2025, 18(13), 3125; https://doi.org/10.3390/ma18133125 - 1 Jul 2025
Viewed by 214
Abstract
Transition metal borides have garnered significant research interest due to their versatile properties, including superconductivity and exceptional hardness. This study examines the stable crystal structures of Rhodium-Boron (Rh-B) compounds under high pressure using first-principles structural searching. Beyond the previously known Rh2B, [...] Read more.
Transition metal borides have garnered significant research interest due to their versatile properties, including superconductivity and exceptional hardness. This study examines the stable crystal structures of Rhodium-Boron (Rh-B) compounds under high pressure using first-principles structural searching. Beyond the previously known Rh2B, RhB2, and RhB4 phases, three new boron-rich phases—C2/m-RhB6, Amm2-RhB6, and Cmca-RhB8—are identified, each characterized by three-dimensional covalent bonding networks. Their mechanical and thermodynamic stability is validated through elastic property assessments and phonon dispersion calculations. Surprisingly, these phases exhibit low bulk and shear moduli, ruling them out as candidates for hard materials. The metallic character of these borides is evident from their electronic density of states, which exhibits a sharp peak at the EF-a signature often associated with superconducting systems. Indeed, our calculations predict Tc values of 8.93 K and 9.36 K for Amm2-RhB6 and Cmca-RhB8, respectively, at 100 GPa. Full article
Show Figures

Graphical abstract

22 pages, 8657 KiB  
Article
Synergistic Enhancement of Rhodamine B Adsorption by Coffee Shell Biochar Through High-Temperature Pyrolysis and Water Washing
by Xurundong Kan, Yao Suo, Bingfei Shi, Yan Zheng, Zaiqiong Liu, Wenhui Ma, Xianghong Li and Jianqiang Zhang
Molecules 2025, 30(13), 2769; https://doi.org/10.3390/molecules30132769 - 27 Jun 2025
Viewed by 365
Abstract
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their [...] Read more.
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their potential for removing Rhodamine B (RhB) from aqueous solution. Structural and surface analyses indicated that a higher pyrolysis temperature enhanced pore development and aromaticity, whereas water washing effectively removed inorganic ash, thereby exposing additional active sites. Among all samples, water-washed biochar pyrolyzed at 700 °C (WCB700) exhibited the highest surface area (273.6 m2/g) and adsorption capacity (193.5 mg/g). The adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption, and the equilibrium data fit the Langmuir model, suggesting monolayer coverage. Mechanism analysis highlighted the roles of π–π stacking, hydrogen bonding, electrostatic interaction, and pore filling. Additionally, WCB700 retained more than 85% of its original capacity after five regeneration cycles, demonstrating excellent stability and reusability. This study presents an economical approach to valorizing coffee waste as well as provides mechanistic insights into optimizing biochar surface chemistry for enhanced dye removal. These findings support the application of engineered biochar in scalable and sustainable wastewater treatment technologies. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

28 pages, 939 KiB  
Review
Targets for CAR Therapy in Multiple Myeloma
by Olga A. Bezborodova, Galina V. Trunova, Elena R. Nemtsova, Varvara A. Khokhlova, Julia B. Venediktova, Natalia B. Morozova, Maria S. Vorontsova, Anna D. Plyutinskaya, Elena P. Zharova, Peter V. Shegai and Andrey D. Kaprin
Int. J. Mol. Sci. 2025, 26(13), 6051; https://doi.org/10.3390/ijms26136051 - 24 Jun 2025
Viewed by 533
Abstract
Multiple myeloma (MM or plasma cell myeloma) is a heterogenous B-cell malignant tumor that typically exhibits a high recurrence rate, resistance to drugs, and molecular diversity of tumor subclones. Given the limited efficacy of standard therapy options, cellular immunotherapy featuring a chimeric antigen [...] Read more.
Multiple myeloma (MM or plasma cell myeloma) is a heterogenous B-cell malignant tumor that typically exhibits a high recurrence rate, resistance to drugs, and molecular diversity of tumor subclones. Given the limited efficacy of standard therapy options, cellular immunotherapy featuring a chimeric antigen receptor (CAR) has proven tangible potential in treatment for relapsed and refractory forms of MM. The rational choice of a tumor target which shows high selectivity, stable expression, and biological significance is key to the successful implementation of CAR therapy. This review has summarized and analyzed data from the literature on biological properties, the features of expression, and the clinical development stages of CAR cell products for MM treatment which target BCMA, GPRC5D, FcRH5, SLAMF7, CD38, CD138, TACI, APRIL, CD19, TNFR2, CD44v6, CD70, NKG2D ligands, etc. Special focus is on strategic approaches to overcoming antigenic escape, such as multi-specific CAR constructs, logical activation sequences, and controlled safety systems. The analysis underscores the need for integrating the molecular selection of targets with cutting-edge bioengineering solutions as a key trend for raising the efficacy, stability, and safety of cellular therapy in the case of MM. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Graphical abstract

20 pages, 5668 KiB  
Article
A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness
by Xiaodong Zhai, Xingdan Ma, Yue Sun, Yuhong Xue, Wanwan Ban, Wenjun Song, Tingting Shen, Zhihua Li, Xiaowei Huang, Qing Sun, Kunlong Wu, Zhilong Chen, Wenwu Zou, Biao Liu, Liang Zhang and Jiaji Zhu
Foods 2025, 14(13), 2200; https://doi.org/10.3390/foods14132200 - 23 Jun 2025
Viewed by 414
Abstract
A ratiometric fluorescent film with high gas sensitivity and stability was developed using electrospinning technology for monitoring food spoilage. 5(6)-Carboxyfluorescein (5(6)-FAM) was used as the indicator, combined with the internal reference Rhodamine B (RHB), to establish a composite ratiometric fluorescent probe (FAM@RHB). The [...] Read more.
A ratiometric fluorescent film with high gas sensitivity and stability was developed using electrospinning technology for monitoring food spoilage. 5(6)-Carboxyfluorescein (5(6)-FAM) was used as the indicator, combined with the internal reference Rhodamine B (RHB), to establish a composite ratiometric fluorescent probe (FAM@RHB). The hydrophobic fluorescent films were fabricated by incorporating FAM@RHB probes into polyvinylidene fluoride (PVDF) at varying molar ratios through electrospinning. The FR-2 film with a 2:8 ratio of 5(6)-FAM to RHB exhibited the best performance, demonstrating excellent hydrophobicity with a water contact angle (WCA) of 113.45° and good color stability, with a ΔE value of 2.05 after 14 days of storage at 4 °C. Gas sensitivity tests indicated that FR-2 exhibited a limit of detection (LOD) of 0.54 μM for trimethylamine (TMA). In the application of monitoring the freshness of pork and beef at 4 °C, the fluorescence color of the FR-2 film significantly changed from orange–yellow to green, enabling the visual monitoring of meat freshness. Hence, this study provides a new approach for intelligent food packaging. Full article
(This article belongs to the Special Issue Novel Smart Packaging in Foods)
Show Figures

Figure 1

Back to TopTop