Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (378)

Search Parameters:
Keywords = Reynold shear stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3763 KiB  
Article
Mathematical Study of Pulsatile Blood Flow in the Uterine and Umbilical Arteries During Pregnancy
by Anastasios Felias, Charikleia Skentou, Minas Paschopoulos, Petros Tzimas, Anastasia Vatopoulou, Fani Gkrozou and Michail Xenos
Fluids 2025, 10(8), 203; https://doi.org/10.3390/fluids10080203 - 1 Aug 2025
Viewed by 198
Abstract
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than [...] Read more.
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than 200 pregnant women (in the second and third trimesters) reveals significant increases in the umbilical arterial peak systolic velocity (PSV) between the 22nd and 30th weeks, while uterine artery velocities remain relatively stable, suggesting adaptations in vascular resistance during pregnancy. By combining the Navier–Stokes equations with Doppler ultrasound-derived inlet velocity profiles, we quantify several key fluid dynamics parameters, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), Reynolds number (Re), and Dean number (De), evaluating laminar flow stability in the uterine artery and secondary flow patterns in the umbilical artery. Since blood exhibits shear-dependent viscosity and complex rheological behavior, modeling it as a non-Newtonian fluid is essential to accurately capture pulsatile flow dynamics and wall shear stresses in these vessels. Unlike conventional imaging techniques, CFD offers enhanced visualization of blood flow characteristics such as streamlines, velocity distributions, and instantaneous particle motion, providing insights that are not easily captured by Doppler ultrasound alone. Specifically, CFD reveals secondary flow patterns in the umbilical artery, which interact with the primary flow, a phenomenon that is challenging to observe with ultrasound. These findings refine existing hemodynamic models, provide population-specific reference values for clinical assessments, and improve our understanding of the relationship between umbilical arterial flow dynamics and fetal growth restriction, with important implications for maternal and fetal health monitoring. Full article
Show Figures

Figure 1

25 pages, 5841 KiB  
Article
Creating Micro-Habitat in a Pool-Weir Fish Pass with Flexible Hydraulic Elements: Insights from Field Experiments
by Mehmet Salih Turker and Serhat Kucukali
Water 2025, 17(15), 2294; https://doi.org/10.3390/w17152294 - 1 Aug 2025
Viewed by 152
Abstract
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches [...] Read more.
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches were assessed at the Dagdelen hydropower plant in the Ceyhan River Basin, Türkiye. Three-dimensional velocity measurements were taken in the pool of the fishway using an Acoustic Doppler velocimeter. The measurements were taken with and without a brush block at two different vertical distances from the bottom, which were below and above the level of bristles tips. A computational fluid dynamics (CFD) analysis was conducted for the studied fishway. The numerical model utilized Large Eddy Simulation (LES) combined with the Darcy–Forchheimer law, wherein brush blocks were represented as homogenous porous media. Our results revealed that the relative submergence of bristles in the brush block plays a very important role in velocity and Reynolds shear stress (RSS) distributions. After the placement of the submerged brush block, flow velocity and the lateral RSS component were reduced, and a resting area was created behind the brush block below the bristles’ tips. Fish movements in the pool were recorded by underwater cameras under real-time operation conditions. The heatmap analysis, which is a 2-dimensional fish spatial presence visualization technique for a specific time period, showed that Capoeta damascina avoided the areas with high turbulent fluctuations during the tests, and 61.5% of the fish presence intensity was found to be in the low Reynolds shear regions in the pool. This provides a clear case for the real-world ecological benefits of retrofitting existing pool-weir fishways with such flexible hydraulic elements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 11770 KiB  
Article
Flow Dynamics and Local Scour Around Seabed-Mounted Artificial Reefs: A Case Study from Torbay, UK
by Amir Bordbar, Jakub Knir, Vasilios Kelefouras, Samuel John Stephen Hickling, Harrison Short and Yeaw Chu Lee
J. Mar. Sci. Eng. 2025, 13(8), 1425; https://doi.org/10.3390/jmse13081425 - 26 Jul 2025
Viewed by 288
Abstract
This study investigates the flow dynamics and local scour around a Reef Cube® artificial reef deployed in Torbay, UK, using computational fluid dynamics. The flow is modelled using Reynolds-Averaged Navier–Stokes (RANS) equations with a k-ω SST turbulence model. A novel hydro-morphodynamic model [...] Read more.
This study investigates the flow dynamics and local scour around a Reef Cube® artificial reef deployed in Torbay, UK, using computational fluid dynamics. The flow is modelled using Reynolds-Averaged Navier–Stokes (RANS) equations with a k-ω SST turbulence model. A novel hydro-morphodynamic model employing the generalized internal boundary method in HELYX (OpenFOAM-based) is used to simulate scour development. Model performance was validated against experimental data for flow fields, bed shear stress, and local scour. Flow simulations across various scenarios demonstrated that parameters such as the orientation angle and arrangement of Reef Cubes significantly influence flow patterns, bed shear stress, and habitat suitability. The hydro-morphodynamic model was used to simulate scouring around a reef cube in the Torbay marine environment. Results indicate that typical tidal flow velocity flow in the region is barely sufficient to initiate sediment motion, whereas extreme flow events, represented by doubling the mean flow velocity, significantly accelerate scour development, producing holes up to ten times deeper. These findings underscore the importance of considering extreme flow conditions in scour analyses due to their potential impact on the stability and failure risk of AR projects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4162 KiB  
Article
Evaluation of Wake Structure Induced by Helical Hydrokinetic Turbine
by Erkan Alkan, Mehmet Ishak Yuce and Gökmen Öztürkmen
Water 2025, 17(15), 2203; https://doi.org/10.3390/w17152203 - 23 Jul 2025
Viewed by 182
Abstract
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow [...] Read more.
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow rate of 180 m3/h, corresponding to a Reynolds number of approximately 90 × 103. Velocity measurements were collected at 13 downstream cross-sections using an Acoustic Doppler Velocimeter, with each point sampled repeatedly. Standard error analysis was applied to quantify measurement uncertainty. Complementary numerical simulations were conducted in ANSYS Fluent using a steady-state k-ω Shear Stress Transport (SST) turbulence model, with a mesh of 4.7 million elements and mesh independence confirmed. Velocity deficit and turbulence intensity were employed as primary parameters to characterize the wake structure, while the analysis also focused on the recovery of cross-sectional velocity profiles to validate the extent of wake influence. Experimental results revealed a maximum velocity deficit of over 40% in the near-wake region, which gradually decreased with downstream distance, while turbulence intensity exceeded 50% near the rotor and dropped below 10% beyond 4 m. In comparison, numerical findings showed a similar trend but with lower peak velocity deficits of 16.6%. The root mean square error (RMSE) and mean absolute error (MAE) between experimental and numerical mean velocity profiles were calculated as 0.04486 and 0.03241, respectively, demonstrating reasonable agreement between the datasets. Extended simulations up to 30 m indicated that flow profiles began to resemble ambient conditions around 18–20 m. The findings highlight the importance of accurately identifying the downstream distance at which the wake effect fully dissipates, as this is crucial for determining appropriate inter-turbine spacing. The study also discusses potential sources of discrepancies between experimental and numerical results, as well as the limitations of the modeling approach. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

23 pages, 9064 KiB  
Article
A Computational Thermo-Fluid Dynamics Simulation of Slot Jet Impingement Using a Generalized Two-Equation Turbulence Model
by Antonio Mezzacapo, Rossella D’Addio and Giuliano De Stefano
Energies 2025, 18(14), 3862; https://doi.org/10.3390/en18143862 - 20 Jul 2025
Viewed by 1007
Abstract
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional [...] Read more.
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional mean turbulent flow field is numerically predicted by solving Reynolds-averaged Navier–Stokes (RANS) equations, where the two-equation eddy viscosity k-ω model is utilized for turbulence closure. As the commonly used shear stress transport variant overpredicts heat transfer at the plate due to excessive turbulent diffusion, the recently developed generalized k-ω (GEKO) model is considered for the present analysis, where the primary model coefficients are suitably tuned. Through a comparative analysis of the various solutions against one another, in addition to reference experimental and numerical data, the effectiveness of the generalized procedure in predicting both the jet flow characteristics and the heat transfer at the plate is thoroughly evaluated, while determining the optimal set of model parameters. By improving accuracy within the RANS framework, the importance of model adaptability and parameter tuning for this specific fluid engineering application is demonstrated. This study offers valuable insights for improving predictive capability in turbulent jet simulations with broad engineering implications, particularly for industrial heating or cooling systems relying on wide-slot jet impingement. Full article
(This article belongs to the Special Issue Computational Fluids Dynamics in Energy Conversion and Heat Transfer)
Show Figures

Figure 1

22 pages, 6865 KiB  
Article
The Impact of Riblet Walls on the Structure of Liquid–Solid Two-Phase Turbulent Flow: Streak Structures and Burst Events
by Yuchen Zhao, Jiao Sun, Nan Jiang, Jingyu Niu, Jinghang Yang, Haoyang Li, Xiaolong Wang and Pengda Yuan
Appl. Sci. 2025, 15(14), 7977; https://doi.org/10.3390/app15147977 - 17 Jul 2025
Viewed by 205
Abstract
This study employs Particle Image Velocimetry (PIV) technology to investigate the statistical properties and flow structures of the turbulent boundary layer over smooth walls and riblet walls with yaw angles of 0, ±30° in both clear water and liquid–solid two-phase flow fields. The [...] Read more.
This study employs Particle Image Velocimetry (PIV) technology to investigate the statistical properties and flow structures of the turbulent boundary layer over smooth walls and riblet walls with yaw angles of 0, ±30° in both clear water and liquid–solid two-phase flow fields. The results indicate that, compared to the smooth wall, streamwise riblet walls and 30° divergent riblet walls can reduce the boundary layer thickness, wall friction force, comprehensive turbulence intensity, and Reynolds stress, with the divergent riblet wall being more effective. In contrast, convergent riblet walls have the opposite effect. The addition of particles leads to an increase in boundary layer thickness and a reduction in wall friction resistance, primarily by reducing turbulence fluctuations and Reynolds stress in the logarithmic region of the turbulent boundary layer. Moreover, the two types of drag-reduction riblet walls can decrease the energy content ratio of near-wall streak structures and suppress their motion in the spanwise direction. Their impact on burst events is mainly characterized by a reduction in the number of ejection events and their contribution to Reynolds shear stress. In comparison, convergent riblet walls have the complete opposite effect and also enhance the intensity of burst events. The addition of particles can fragment streak structures and suppress the intensity and number of burst events, acting similarly on drag-reduction riblet walls and further strengthening their drag reduction characteristics. Full article
Show Figures

Figure 1

19 pages, 2057 KiB  
Article
Corrected Correlation for Turbulent Convective Heat Transfer in Concentric Annular Pipes
by Jinping Xu, Zhiyun Wang and Mo Yang
Energies 2025, 18(14), 3643; https://doi.org/10.3390/en18143643 - 9 Jul 2025
Viewed by 303
Abstract
This paper addresses the errors that arise when calculating the convective heat transfer in concentric annular pipes by using the equivalent diameter and turbulent heat transfer formula for circular pipes. This approach employs numerical simulations to solve the Reynolds-averaged Navier–Stokes equations and uses [...] Read more.
This paper addresses the errors that arise when calculating the convective heat transfer in concentric annular pipes by using the equivalent diameter and turbulent heat transfer formula for circular pipes. This approach employs numerical simulations to solve the Reynolds-averaged Navier–Stokes equations and uses the realizable k–ε turbulence model and a low Reynolds number model near a wall. This study conducts numerical simulations of turbulent convective heat transfer within a concentric annular pipe. The results show that the shear stress on the inner wall surface of the concentric annular pipe and the heat transfer Nusselt number are significantly higher than those on the outer wall surface. At the same Reynolds number, both the entrance length and the peak velocity increase upon increasing the inner-to-outer diameter ratio. A correction factor for the inner-to-outer diameter ratio is proposed to achieve differentiated and accurate predictions for the inner and outer wall surfaces. The results clearly demonstrate the effect of the inner-to-outer diameter ratio on heat transfer. Full article
Show Figures

Figure 1

20 pages, 18025 KiB  
Article
Numerical Research on Pressure Fluctuation Characteristics of Small-Scale and High-Speed Automotive Pump
by Lulu Zheng, Xiaoping Chen, Jinglei Qu and Xiaojie Ma
Machines 2025, 13(7), 584; https://doi.org/10.3390/machines13070584 - 5 Jul 2025
Viewed by 245
Abstract
Rotor–stator interaction and the coupling between the clearance flow and main flow amplify the flow complexity in small-scale, high-speed automotive pumps. This degrades the pressure fluctuations, compromising the operational stability of these pumps. To better understand the pressure fluctuation distribution characteristics within such [...] Read more.
Rotor–stator interaction and the coupling between the clearance flow and main flow amplify the flow complexity in small-scale, high-speed automotive pumps. This degrades the pressure fluctuations, compromising the operational stability of these pumps. To better understand the pressure fluctuation distribution characteristics within such a pump, the Reynolds-averaged Navier–Stokes equations and the shear stress transport k-ω turbulence model were applied to numerically compute the pump. The simulation results were compared with experimental data, and good agreement was achieved. The results show that pressure fluctuations in the main flow region are mainly dominated by the blade passing frequency, and the intensity of pressure fluctuations in the near-field area of the tongue reaches its peak value, showing significant fluctuation characteristics. Significant peak signals are captured in the low-frequency band of pressure fluctuations in the clearance region. The pressure fluctuation characteristics are also affected by the rotor–stator interaction between the impeller front shroud and the volute casing, while the dominant frequency is still the blade passing frequency. In addition, the dominant frequencies of pressure fluctuations in the main and clearance flows show a similar distribution to the flow rate, but the minimum amplitude corresponds to different flow rates. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

18 pages, 3596 KiB  
Article
Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation
by Matthew R. McConnell, Jason Knight and James M. Buick
Fluids 2025, 10(6), 145; https://doi.org/10.3390/fluids10060145 - 31 May 2025
Viewed by 993
Abstract
Curved surfaces are a feature of many engineering applications, and as such, the accurate prediction of separation and reattachment from a curved surface is of great engineering importance. In this study, improved delayed detached eddy simulation (IDDES) is used, in conjunction with synthetic [...] Read more.
Curved surfaces are a feature of many engineering applications, and as such, the accurate prediction of separation and reattachment from a curved surface is of great engineering importance. In this study, improved delayed detached eddy simulation (IDDES) is used, in conjunction with synthetic turbulence injection using the synthetic eddy method (SEM), to investigate the boundary layer separation from a curved backward-facing step for which large eddy simulation (LES) results are available. The commercial code Star CCM+ was used with the k-ω shear stress transport (SST) variation of the IDDES model to assess the accuracy of the code for this class of problem. The IDDES model predicted the separation length within 10.4% of the LES value for the finest mesh and 25.5% for the coarsest mesh, compared to 36.2% for the RANS simulation. Good agreement between the IDDES and LES was also found in terms of the distribution of skin friction, velocity, and Reynolds stress, demonstrating an acceptable level of accuracy, as has the prediction of the separation and reattachment location. The model has, however, found it difficult to capture the pressure coefficient accurately in the region of separation and reattachment. Overall, the IDDES model has performed well against a type of geometry that is typically a challenge to the hybrid RANS-LES method (HRLM). Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 3rd Edition)
Show Figures

Figure 1

22 pages, 5672 KiB  
Article
A Comparative Study of RANS and PANS Turbulence Models for Flow Characterization Around the Joubert BB2 Submarine
by Changhun Lee, Hyeri Lee and Woochan Seok
J. Mar. Sci. Eng. 2025, 13(6), 1088; https://doi.org/10.3390/jmse13061088 - 29 May 2025
Viewed by 425
Abstract
This study presents a comparative numerical investigation of Reynolds-averaged Navier–Stokes (RANS) and partially averaged Navier–Stokes (PANS) turbulence models applied to the Joubert BB2 submarine geometry under steady, calm-water conditions. To assess the influence of turbulence resolution and grid density on hydrodynamic performance prediction, [...] Read more.
This study presents a comparative numerical investigation of Reynolds-averaged Navier–Stokes (RANS) and partially averaged Navier–Stokes (PANS) turbulence models applied to the Joubert BB2 submarine geometry under steady, calm-water conditions. To assess the influence of turbulence resolution and grid density on hydrodynamic performance prediction, simulations were conducted using three mesh resolutions—coarse, medium, and fine—based on unstructured hexahedral grids. The results were validated against international benchmark data, with emphasis placed on total resistance, pressure and shear stress distributions, wake development, and vortex structure. The PANS model consistently outperformed RANS in accurately predicting total resistance and resolving wake asymmetry, especially at medium grid resolution, due to its ability to partially resolve turbulence without full reliance on eddy viscosity assumptions. It demonstrated superior capability in capturing coherent vortex structures and preserving axial momentum in the stern region, resulting in more realistic surface pressure recovery and delayed boundary layer separation. Cross-sectional and circumferential velocity distributions in the propeller plane further highlighted PANS’s enhanced turbulence fidelity, which is essential for downstream propeller performance evaluation. Overall, the findings support the suitability of the PANS model as a practical and computationally efficient alternative to RANS for high-fidelity submarine flow simulations, particularly in wake-sensitive applications where LES remains computationally prohibitive. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 7959 KiB  
Article
Numerical Investigation of Transitional Oscillatory Boundary Layers: Turbulence Quantities
by Selman Baysal and V. S. Ozgur Kirca
Fluids 2025, 10(6), 143; https://doi.org/10.3390/fluids10060143 - 28 May 2025
Viewed by 886
Abstract
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous [...] Read more.
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous study involving a bypass transition mechanism in the intermittently turbulent regime. To trigger the initial perturbations, a roughness element was placed on the bed and removed at the very moment a two-dimensional vortex tube, caused by an inflectional-point shear-layer instability, was observed on it. Then, the turbulent spots where the flow experienced intense fluctuations in an otherwise laminar boundary layer were identified from the bed shear-stress distribution on the bed, which served as a reliable indicator of turbulence. These flow features emerged as the first sign of the initiation of turbulence. Several measurement points were selected to follow the bed shear-stress variations and to observe the spatial and temporal development of turbulent spots at a low-wave Reynolds number, Re=1.8×105. Along with these observations, phase-resolved turbulence quantities were also investigated over successive half-cycles for the first time in the literature to understand how turbulence develops and spreads over the flow domain. The results show that the turbulence generated in the near-bed region becomes stronger in the deceleration stage due to the adverse pressure gradient and diffuses away from the bed during the subsequent phases of the developing oscillatory boundary-layer flow. The findings related to the turbulence quantities also indicate that the turbulence gradually evolves and spreads into the fluid domain in successive half-cycles. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

20 pages, 918 KiB  
Article
The Linear Stability of a Power-Law Liquid Film Flowing Down an Inclined Deformable Plane
by Karim Ladjelate, Nadia Mehidi Bouam, Amar Djema, Abdelkader Belhenniche and Roman Chertovskih
Mathematics 2025, 13(9), 1533; https://doi.org/10.3390/math13091533 - 7 May 2025
Viewed by 472
Abstract
A linear stability analysis is performed for a power-law liquid film flowing down an inclined rigid plane over a deformable solid layer. The deformable solid is modeled using a neo-Hookean constitutive equation, characterized by a constant shear modulus and a nonzero first normal [...] Read more.
A linear stability analysis is performed for a power-law liquid film flowing down an inclined rigid plane over a deformable solid layer. The deformable solid is modeled using a neo-Hookean constitutive equation, characterized by a constant shear modulus and a nonzero first normal stress difference in the base state at the fluid–solid interface. To solve the linearized eigenvalue problem, the Riccati transformation method, which offers advantages over traditional techniques by avoiding the parasitic growth seen in the shooting method and eliminating the need for large-scale matrix eigenvalue computations, was used. This method enhances both analytical clarity and computational efficiency. Results show that increasing solid deformability destabilizes the flow at low Reynolds numbers by promoting short-wave modes, while its effect becomes negligible at high Reynolds numbers where inertia dominates. The fluid’s rheology also plays a key role: at low Reynolds numbers, shear-thinning fluids (n<1) are more prone to instability, whereas at high Reynolds numbers, shear-thickening fluids (n>1) exhibit a broader unstable regime. Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

30 pages, 11394 KiB  
Article
Gap Impact on Rigid Submerged Vegetated Flow and Its Induced Flow Turbulence
by Heba Mals, Jaan H. Pu, Prashanth Reddy Hanmaiahgari, Bimlesh Kumar, Ebrahim Hamid Hussein Al-Qadami and Mohd Adib Mohammad Razi
J. Mar. Sci. Eng. 2025, 13(5), 829; https://doi.org/10.3390/jmse13050829 - 22 Apr 2025
Viewed by 449
Abstract
Submerged vegetation plays a crucial role in influencing flow hydrodynamics, generating turbulence, and shaping velocity distributions in aquatic environments. This study investigates the hydrodynamic effects of submerged rigid vegetation, specifically focusing on the local flow and turbulence alterations resulting from the removal of [...] Read more.
Submerged vegetation plays a crucial role in influencing flow hydrodynamics, generating turbulence, and shaping velocity distributions in aquatic environments. This study investigates the hydrodynamic effects of submerged rigid vegetation, specifically focusing on the local flow and turbulence alterations resulting from the removal of a single stem from an otherwise uniform vegetation array under controlled laboratory conditions. Experiments were conducted in a flume using Acoustic Doppler Velocimetry (ADV) to measure 3D (three-dimensional) flow characteristics, turbulence intensities, Reynolds shear stress (RSS), and quadrant analysis. In the fully vegetated scenario, vegetation significantly modified flow conditions, creating inflexion points and distinct peaks in velocity profiles, turbulence intensity, and RSS—particularly near two-thirds of the vegetation height—due to wake vortices and flow separation. The removal of a single stem introduced a localised gap, which redistributed turbulent energy, increased RSS and near-bed turbulent interactions, and disrupted the organised vortex structures downstream. While sweep and ejection events near the gap reached magnitudes similar to those in the fully vegetated setup, they lacked the characteristic coherent peaks linked to vortex generation. Overall, turbulence intensities and RSS were reduced, indicating a smoother flow regime and weaker energy redistribution mechanisms. These findings critically impact river restoration, flood management, and habitat conservation. By understanding how vegetation gaps alter flow hydrodynamics, engineers and ecologists can optimise vegetation placement in waterways to enhance flow efficiency, sediment transport, and aquatic ecosystem stability. This study bridges fundamental fluid mechanics with real-world applications in environmental hydraulics. Full article
Show Figures

Figure 1

35 pages, 13648 KiB  
Article
Parameterizing the Tip Effects of Submerged Vegetation in a VARANS Solver
by Lai Jiang, Jisheng Zhang, Hao Chen, Chenglin Liu and Mingzong Zhang
J. Mar. Sci. Eng. 2025, 13(4), 785; https://doi.org/10.3390/jmse13040785 - 15 Apr 2025
Viewed by 384
Abstract
This paper presents an experimental and numerical investigation of submerged vegetation flow, with a particular focus on vegetation-related terms, especially in the vicinity of the free end. Experimental results indicate that substantial shear stress is observed near the top of vegetation, where the [...] Read more.
This paper presents an experimental and numerical investigation of submerged vegetation flow, with a particular focus on vegetation-related terms, especially in the vicinity of the free end. Experimental results indicate that substantial shear stress is observed near the top of vegetation, where the drag coefficient increases significantly due to the disturbance caused by the free end. Furthermore, wake generation is notably suppressed, particularly at heights where wake-generated turbulence dominates, leading to a reduction in turbulent kinetic energy (TKE). A numerical model based on the volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations was developed, incorporating a vertically varying drag coefficient. The two-scale kε turbulence model is further modified with the inclusion of a new damping function to capture the suppression of wake generation. The model accurately simulates both unidirectional and oscillatory flows, as well as the associated turbulence structures, with good agreement with experimental measurements. The influence of the tips on wave-induced currents, mass transport and TKE distribution is also investigated. It was found that the tip effects play a significant role in strengthening wave-induced currents at the top of loosely arranged, short, and sparse vegetation, with shear kinetic energy (SKE) serving as a critical component of TKE, contributing to the nonuniform distribution. Both Eulerian currents and Stokes drift contribute to streaming in the direction of wave propagation near the vegetation top, which intensifies with increasing solid volume fraction, while tip effects further enhance the onshore mass transport. Within the vegetation, mass transport is more sensitive to wave period and wave height, shifting from onshore to offshore as wavelength increases under constant water depth. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 6488 KiB  
Article
High y+ Shear-Stress Turbulence Implementation for High Flux Isotope Reactor Narrow Channel Flows
by Emilian Popov, Nicholas Mecham and Taylor Grubbs
Fluids 2025, 10(4), 85; https://doi.org/10.3390/fluids10040085 - 26 Mar 2025
Viewed by 463
Abstract
The research objective of this work was to improve the engineering predictions of the turbulence characteristics of flows in curved narrow channels. Such channel flows are commonly encountered in nuclear research and test reactors, with one of them being the high-flux isotope reactor [...] Read more.
The research objective of this work was to improve the engineering predictions of the turbulence characteristics of flows in curved narrow channels. Such channel flows are commonly encountered in nuclear research and test reactors, with one of them being the high-flux isotope reactor (HFIR). Research reactors bear high heat fluxes, and the proper computing of turbulence is paramount for safe and reliable reactor operation. The study builds on the results of a previous direct numerical simulation of turbulence to inform a well-known Reynolds-averaged Navier–Stokes shear-stress turbulence model and improves its accuracy in simulating parallel channel flows. A new formulation of the loss term in the dissipation conservation equation is suggested. Combined with high wall distance computational grids, the new implementation provides a fast-running flow solution, suitable for engineering purposes. Model generalization for parallel channel flows, in a broader range of frictional Reynolds numbers, is suggested by introducing a new form of the model constants. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

Back to TopTop