Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,575)

Search Parameters:
Keywords = RNA repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 426 KB  
Review
Genetic Basis of Familial Cancer Risk: A Narrative Review
by Eman Fares Sabik
DNA 2026, 6(1), 5; https://doi.org/10.3390/dna6010005 - 13 Jan 2026
Abstract
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories [...] Read more.
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories of genes are involved in cancer development: tumour suppressor genes and oncogenes. Both play critical roles in regulating normal cell behaviour, and when mutated, they can contribute to uncontrolled cell proliferation and tumour formation. In addition to genetic mutations, epigenetic alterations also play a significant role in familial cancer. Epigenetics refers to changes in gene expression due to DNA methylation, histone modifications, and the dysregulation of non-coding RNAs without alter the underlying DNA sequence. Familial cancer syndromes follow various inheritance patterns, including autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance, each with distinct characteristics. Identifying genetic mutations associated with familial cancers is a cornerstone of genetic counselling, which helps individuals and families navigate the complex intersection of genetics, cancer risk, and prevention. Early identification of mutations enables personalized strategies for risk reduction, early detection, and, when applicable, targeted treatment options, ultimately improving patient outcomes. Full article
Show Figures

Figure 1

28 pages, 3242 KB  
Review
Comprehensive Landscape of Diagnostic, Prognostic and Predictive Biomarkers in Colorectal Cancer: From Genomics to Multi-Omics Integration in Precision Medicine
by Alfonso Agüera-Sánchez, Emilio Peña-Ros, Irene Martínez-Martínez and Francisco García-Molina
J. Pers. Med. 2026, 16(1), 48; https://doi.org/10.3390/jpm16010048 - 12 Jan 2026
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. Despite advances in screening and therapeutic strategies, early detection and individualized treatment remain major challenges. In recent years, an expanding repertoire of biomarkers has emerged, spanning genomic, transcriptomic, [...] Read more.
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. Despite advances in screening and therapeutic strategies, early detection and individualized treatment remain major challenges. In recent years, an expanding repertoire of biomarkers has emerged, spanning genomic, transcriptomic, proteomic, and metabolomic signatures. Epigenetic features, such as DNA methylation panels, as well as non-coding RNAs and the gut microbiome, hold potential not only for improving early diagnosis but also for refining prognosis and predicting therapeutic responses within the framework of precision oncology. This narrative review provides an updated, integrative overview of CRC diagnostic, prognostic, and predictive biomarkers. We distinguish established markers already in clinical practice, such as RAS and BRAF mutations, HER2 amplification, microsatellite instability/mismatch repair deficiency (MSI/dMMR), and widely investigated molecular alterations including TP53 mutations and immune-checkpoint-related markers, from novel biomarkers with growing translational potential. We also discuss the implementation challenges of these biomarkers in clinical practice, including issues related to validation, standardization, and cost-effectiveness, as well as the multi-modal approach for the development of composite diagnostic panels. Full article
(This article belongs to the Special Issue Advances in Colorectal Cancer: Diagnosis and Personalized Treatment)
Show Figures

Figure 1

23 pages, 10024 KB  
Article
Investigating the Protective Mechanisms of Ginseng-Natto Composite Fermentation Products in Alzheimer’s Disease: A Gut Microbiota and Metabolomic Approach
by Zhimeng Li, He Wang, Huiyang Yuan, Yue Zhang, Bo Yang, Guoxin Ji, Zhuangzhuang Yao, Mingfang Kuang, Xian Wu, Shumin Wang and Huan Wang
Pharmaceuticals 2026, 19(1), 123; https://doi.org/10.3390/ph19010123 - 10 Jan 2026
Viewed by 79
Abstract
Background: Alzheimer’s disease (AD), a progressive brain disorder, is the most common form of dementia and necessitates the development of effective intervention strategies. Ginseng-Natto composite fermentation products (GN) have demonstrated beneficial bioactivities in mouse models of AD; however, the underlying mechanism of action [...] Read more.
Background: Alzheimer’s disease (AD), a progressive brain disorder, is the most common form of dementia and necessitates the development of effective intervention strategies. Ginseng-Natto composite fermentation products (GN) have demonstrated beneficial bioactivities in mouse models of AD; however, the underlying mechanism of action through which GN ameliorates AD requires further elucidation. Methods: Mice received daily intragastric administration of low- or high-dose GN for 4 weeks, followed by intraperitoneal injection of scopolamine to induce the AD model. The pharmacological effects of GN were systematically evaluated using the Morris water maze test, ELISA, and H&E staining. To further investigate the underlying mechanisms, 16S rRNA gene sequencing and metabolomics were employed to analyze the regulatory effects of GN on the gut–brain axis. Additionally, Western blotting was performed to assess the impact of GN on blood–brain barrier (BBB) integrity. Results: GN intervention significantly ameliorated cognitive deficits and attenuated neuropathological injury in AD mice, restoring the brain levels of acetylcholine (ACh), acetylcholinesterase (AChE), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) to normal ranges. GN reshaped the gut microbiota by promoting beneficial bacteria and inhibiting pro-inflammatory strains. It also regulated key metabolic pathways related to amino acid and unsaturated fatty acid metabolism. This metabolic remodeling restored the compromised BBB integrity by upregulating tight junction proteins (ZO-1, Occludin and Claudin-1). Conclusions: Our findings demonstrate that GN ameliorates AD through a gut-to-brain pathway, mediated by reshaping the microbiota-metabolite axis and repairing the BBB. Thus, GN may represent a promising intervention candidate for AD. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

23 pages, 18920 KB  
Article
Integrated Analyses Identify CDH2 as a Hub Gene Associated with Cisplatin Resistance and Prognosis in Ovarian Cancer
by Jun-Yi Xu, Mao-Qi Tian, Rui Yang, Zi-Xuan Li, Zi-Heng Lin, Yu-Fei Wang, Yu-Hang Chu, Wei-Ning Sun and Ya-Mei Wang
Int. J. Mol. Sci. 2026, 27(2), 713; https://doi.org/10.3390/ijms27020713 - 10 Jan 2026
Viewed by 144
Abstract
Ovarian cancer (OC), the third most common gynecologic malignancy, is characterized by high mortality largely driven by chemotherapy resistance, leading to recurrence and metastasis. Using transcriptomic data from GSE73935, we constructed a weighted gene co-expression network and identified eight hub genes (IGF1R [...] Read more.
Ovarian cancer (OC), the third most common gynecologic malignancy, is characterized by high mortality largely driven by chemotherapy resistance, leading to recurrence and metastasis. Using transcriptomic data from GSE73935, we constructed a weighted gene co-expression network and identified eight hub genes (IGF1R, CDH2, PDGFRA, CDKN1A, SHC1, SPP1, CAV1 and FGF18) associated with cisplatin resistance, among which CDH2 emerged as the most clinically relevant candidate. CDH2 demonstrated moderate diagnostic potential (AUC = 0.792) and was markedly upregulated in cisplatin-resistant A2780/CP70 cells. Independent validation using clinical single-cell RNA-seq data (GSE211956) confirmed its selective enrichment in resistant tumor cell subpopulations. Gene set enrichment analysis linked elevated CDH2 expression to p53 signaling, DNA replication, nucleotide excision repair, and Toll-like receptor pathways, with qPCR supporting upregulation of key downstream genes in resistant cells. Immune deconvolution further indicated that high CDH2 expression correlated with increased infiltration of NK cells, Tregs, macrophages, and neutrophils, and immunohistochemistry verified CDH2 overexpression in cisplatin-resistant tissues. In addition, virtual screening and drug sensitivity profiling identified several FDA-approved agents with potential relevance to CDH2-associated drug response. These findings indicate that CDH2 may serve as a candidate marker associated with cisplatin response in OC, and its association with immune cell infiltration provides further insight into mechanisms potentially underlying chemoresistance. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

36 pages, 1741 KB  
Review
Extracellular Vesicles as Biological Templates for Next-Generation Drug-Coated Cardiovascular Devices: Cellular Mechanisms of Vascular Healing, Inflammation, and Restenosis
by Rasit Dinc and Nurittin Ardic
Cells 2026, 15(2), 121; https://doi.org/10.3390/cells15020121 - 9 Jan 2026
Viewed by 98
Abstract
While drug-eluting cardiovascular devices, including drug-eluting stents and drug-coated balloons, have significantly reduced restenosis rates, they remain limited by delayed vascular healing, chronic inflammation, and late adverse events. These limitations reflect a fundamental mismatch between current device pharmacology, which relies on nonselective antiproliferative [...] Read more.
While drug-eluting cardiovascular devices, including drug-eluting stents and drug-coated balloons, have significantly reduced restenosis rates, they remain limited by delayed vascular healing, chronic inflammation, and late adverse events. These limitations reflect a fundamental mismatch between current device pharmacology, which relies on nonselective antiproliferative drugs, and the highly coordinated, cell-specific programs that orchestrate vascular repair. Extracellular vesicles (EVs), nanometer-scale membrane-bound particles secreted by virtually all cell types, provide a biologically evolved platform for intercellular communication and cargo delivery. In the cardiovascular system, EVs regulate endothelial regeneration, smooth muscle cell phenotype, extracellular matrix remodeling, and macrophage polarization through precisely orchestrated combinations of miRNA, proteins, and lipids. Here, we synthesize mechanistic insights into EV biogenesis, cargo selection, recruitment, and functional effects in vascular healing and inflammation and translate these into a formal framework for EV-inspired device engineering. We discuss how EV-based or EV-mimetic coatings can be designed to sense the local microenvironment, deliver encoded biological “instruction sets,” and function within ECM-mimetic scaffolds to couple local stent healing with systemic tissue repair. Finally, we outline the manufacturing, regulatory, and clinical trial issues that must be addressed for EV-inspired cardiovascular devices to transition from proof of concept to clinical reality. By shifting the focus from pharmacological suppression to biological regulation of healing, EV-based strategies offer a path to resolve the long-standing tradeoff between restenosis prevention and durable vascular healing. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cardiac Repair and Regeneration)
14 pages, 1469 KB  
Article
Therapeutic Effect of Arginine, Glutamine and β-Hydroxy β-Methyl Butyrate Mixture as Nutritional Support on DSS-Induced Ulcerative Colitis in Rats
by Elvan Yılmaz Akyüz, Cebrail Akyüz, Ezgi Nurdan Yenilmez Tunoglu, Meryem Dogan, Banu Bayram and Yusuf Tutar
Nutrients 2026, 18(2), 208; https://doi.org/10.3390/nu18020208 - 9 Jan 2026
Viewed by 203
Abstract
Background: Ulcerative colitis (UC) is characterized by chronic mucosal inflammation, oxidative stress, and disruption of intestinal metabolic homeostasis. Immunomodulatory nutrients such as arginine, glutamine, and β-hydroxy β-methylbutyrate (HMB) have shown potential benefits; however, their combined molecular effects on UC remain insufficiently defined. Objective: [...] Read more.
Background: Ulcerative colitis (UC) is characterized by chronic mucosal inflammation, oxidative stress, and disruption of intestinal metabolic homeostasis. Immunomodulatory nutrients such as arginine, glutamine, and β-hydroxy β-methylbutyrate (HMB) have shown potential benefits; however, their combined molecular effects on UC remain insufficiently defined. Objective: To investigate the individual and combined effects of arginine, glutamine, and HMB on inflammatory and metabolic gene expression, oxidative stress markers, and histopathological outcomes in a dextran sulfate sodium (DSS)-induced colitis model. Methods: Female Sprague Dawley rats were assigned to six groups: control, DSS, DSS + arginine, DSS + glutamine, DSS + HMB, and DSS + mixture. Colitis was induced using 3% DSS. Colon tissues were examined histologically, serum MDA, MPO, and GSH levels were quantified, and mRNA expression of IL6, IL10, COX2, NOS2, ARG2, CCR1, and ALDH4A1 was measured by RT-qPCR. Pathway enrichment analyses were performed to interpret cytokine and metabolic network regulation. Results: DSS induced severe mucosal injury, elevated MDA and MPO, reduced GSH, and significantly increased IL6, COX2, NOS2, ARG2, and CCR1 expression. Glutamine demonstrated the strongest anti-inflammatory and antioxidant effects by decreasing IL6 and COX2 and restoring GSH. Arginine primarily modulated nitric oxide–related pathways, whereas HMB increased ALDH4A1 expression and metabolic adaptation. The combination treatment produced more balanced modulation across inflammatory, chemokine, and metabolic pathways, consistent with enrichment results highlighting cytokine signaling and amino acid metabolism. Histopathological improvement was greatest in the mixture group. Conclusions: Arginine, glutamine, and HMB ameliorate DSS-induced colitis through coordinated regulation of cytokine networks, oxidative stress responses, and metabolic pathways. Their combined use yields broader and more harmonized therapeutic effects than individual administration, supporting their potential as targeted immunonutritional strategies for UC. Rather than targeting a single inflammatory mediator, this study was designed to test whether combined immunonutrient supplementation could promote coordinated regulation of cytokine signaling, oxidative stress responses, and metabolic adaptation, thereby facilitating mucosal repair in experimental colitis. Full article
(This article belongs to the Special Issue Dietary Interventions for Functional Gastrointestinal Disorders)
Show Figures

Figure 1

11 pages, 2125 KB  
Article
Thyroid Hormone T3 Induces DNA Damage Response in Breast Cancer Cells
by Sahar Movshovitz, Liat Anabel Sinberger, Keren Trabelsi, Amit Bar-on, Amir Sonnenblick, Mali Salmon-Divon and Tamar Listovsky
Int. J. Mol. Sci. 2026, 27(2), 668; https://doi.org/10.3390/ijms27020668 - 9 Jan 2026
Viewed by 110
Abstract
Thyroid hormones (THs) regulate metabolism, proliferation, and genomic stability. Clinical studies have linked levothyroxine therapy with higher Oncotype DX Recurrence Scores in breast cancer (BC), suggesting a potential effect of thyroid hormone signaling on genomic risk. Here, we investigated the impact of triiodothyronine [...] Read more.
Thyroid hormones (THs) regulate metabolism, proliferation, and genomic stability. Clinical studies have linked levothyroxine therapy with higher Oncotype DX Recurrence Scores in breast cancer (BC), suggesting a potential effect of thyroid hormone signaling on genomic risk. Here, we investigated the impact of triiodothyronine (T3) on DNA damage and repair pathways in estrogen receptor-positive T47D breast cancer and non-tumorigenic MCF10A cells. RNA sequencing revealed significant upregulation of RAD51 and enrichment of DNA repair pathways following 24 h T3 exposure. Consistently, T3 increased γH2AX and 53BP1 nuclear foci, indicating transient activation of the DNA damage response (DDR). These effects were transient, returning to baseline after 48 h, suggesting cellular adaptation. T3 also enhanced proliferation at 10 μM but inhibited growth at higher concentrations. Our findings indicate that acute exposure to T3 induces transient genomic stress, providing a potential mechanistic basis for the observed association between thyroid hormone therapy and increased BC recurrence risk. Full article
Show Figures

Graphical abstract

17 pages, 1005 KB  
Article
Microbial Community Profiling of Concrete
by Caroline Danner, Julien Charest, Carlijn Borghuis, Philipp Aschenbrenner, Jakob Lederer, Robert L. Mach and Astrid R. Mach-Aigner
Microorganisms 2026, 14(1), 131; https://doi.org/10.3390/microorganisms14010131 - 7 Jan 2026
Viewed by 121
Abstract
Concrete is the most widely used construction material worldwide, yet its production and disposal pose significant environmental challenges due to high carbon emissions and limited recyclability. While microbial colonization of concrete is often associated with structural deterioration, recent research has highlighted the potential [...] Read more.
Concrete is the most widely used construction material worldwide, yet its production and disposal pose significant environmental challenges due to high carbon emissions and limited recyclability. While microbial colonization of concrete is often associated with structural deterioration, recent research has highlighted the potential of microorganisms to contribute positively to concrete recycling and self-healing. In this study, we investigated the bacterial and fungal communities inhabiting urban concrete samples using amplicon-based taxonomic profiling targeting the 16S rRNA gene and internal transcribed spacer (ITS) region. Our analyses revealed a diverse assemblage of microbial taxa capable of surviving the extreme physicochemical conditions of concrete. Several taxa were associated with known metabolic functions relevant to concrete degradation, such as acid and sulphate production, as well as biomineralization processes that may support crack repair and surface sealing. These findings suggest that concrete-associated microbiomes may serve as a reservoir of biological functions with potential applications in sustainable construction, including targeted biodegradation for recycling and biogenic mineral formation for structural healing. This work provides a foundation for developing microbial solutions to reduce the environmental footprint of concrete infrastructure. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

27 pages, 9742 KB  
Article
The Mechanism of Ultrasonic Lysis of Enterococcus faecium F11.1G in Repairing LPS-Induced Inflammatory Damage in IECs via RNA-seq and LC-MS
by Tiantian Bai, Yanlong Zhang, Guangxu E, Meng Zhang, Xuefeng Guo and Junfeng Liu
Cells 2026, 15(2), 103; https://doi.org/10.3390/cells15020103 - 6 Jan 2026
Viewed by 215
Abstract
Lipopolysaccharide (LPS)-induced damage to the intestinal epithelial barrier leads to gut inflammation, and intracellular metabolites of lactic acid bacteria may participate in regulating this process to exert probiotic effects. This study aimed to investigate the repair effects and molecular mechanisms of ultrasonic disruption-treated [...] Read more.
Lipopolysaccharide (LPS)-induced damage to the intestinal epithelial barrier leads to gut inflammation, and intracellular metabolites of lactic acid bacteria may participate in regulating this process to exert probiotic effects. This study aimed to investigate the repair effects and molecular mechanisms of ultrasonic disruption-treated Enterococcus faecium F11.1G (F11.1G) on the model (primary lamb IECs + 5 μg/mL LPS for 6 h). Then, results demonstrated that 108 CFU/mL F11.1G significantly suppressed the excessive secretion of pro-inflammatory factors (IL-6, IL-8, IL-1β, TNF-α) induced by LPS. Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) were primarily enriched in cellular response to lipopolysaccharide, inflammatory response, and canonical NF-κB signaling pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment in NF-κB signaling pathway and MAPK signaling pathway. PPI network identified key genes including IL-1β, TNF, IL-8, RELB, FOS, TNFAIP3, NFKBIA, and MMP9. KEGG analysis indicated differentially abundant metabolites (DAMs) enrichment in purine metabolism and the endocannabinoid system. Spearman correlation analysis revealed positive correlations between pro-inflammatory genes and endogenous protective metabolites, such as adenosine and PEA, while showing negative correlations with multiple purine metabolites. Correlational analysis indicates that F11.1G alleviates intestinal inflammatory damage primarily by suppressing NF-κB/MAPK pathway activation and may synergistically regulate purine and endocannabinoid metabolism. Full article
Show Figures

Figure 1

31 pages, 1879 KB  
Review
Stem Cell-Derived Exosomes for Diabetic Wound Healing: Mechanisms, Nano-Delivery Systems, and Translational Perspectives
by Sumsuddin Chowdhury, Aman Kumar, Preeti Patel, Balak Das Kurmi, Shweta Jain, Banty Kumar and Ankur Vaidya
J. Nanotheranostics 2026, 7(1), 1; https://doi.org/10.3390/jnt7010001 - 6 Jan 2026
Viewed by 339
Abstract
Diabetic wounds remain chronically non-healing due to impaired angiogenesis, persistent inflammation, and defective extracellular matrix remodelling. In recent years, stem cell-derived exosomes have emerged as a potent cell-free regenerative strategy capable of recapitulating the therapeutic benefits of mesenchymal stem cells while avoiding risks [...] Read more.
Diabetic wounds remain chronically non-healing due to impaired angiogenesis, persistent inflammation, and defective extracellular matrix remodelling. In recent years, stem cell-derived exosomes have emerged as a potent cell-free regenerative strategy capable of recapitulating the therapeutic benefits of mesenchymal stem cells while avoiding risks associated with direct cell transplantation. This review critically evaluates the preclinical evidence supporting the use of exosomes derived from adipose tissue, bone marrow, umbilical cord, and induced pluripotent stem cells for diabetic wound repair. These exosomes deliver bioactive cargos such as microRNAs, proteins, lipids, and cytokines that modulate key signalling pathways, including Phosphatidylinositol 3-kinase/Protein kinase (PI3K/Akt), Nuclear factor kappa B (NF-κB), Mitogen-activated protein kinase (MAPK), Transforming growth factor-beta (TGF-β/Smad), and Hypoxia inducible factor-1α/Vascular endothelial growth factor (HIF-1α/VEGF), thereby promoting angiogenesis, accelerating fibroblast and keratinocyte proliferation, facilitating re-epithelialization, and restoring immune balance through M2 macrophage polarization. A central focus of this review is the recent advances in exosome-based delivery systems, including hydrogels, microneedles, 3D scaffolds, and decellularized extracellular matrix composites, which significantly enhance exosome stability, retention, and targeted release at wound sites. Comparative insights between stem cell therapy and exosome therapy highlight the superior safety, scalability, and regulatory advantages of exosome-based approaches. We also summarize progress in exosome engineering, manufacturing, quality control, and ongoing clinical investigations, along with challenges related to standardization, dosage, and translational readiness. Collectively, this review provides a comprehensive mechanistic and translational framework that positions stem cell-derived exosomes as a next-generation, cell-free regenerative strategy with the potential to overcome current therapeutic limitations and redefine clinical management of diabetic wound healing. Full article
(This article belongs to the Special Issue Feature Review Papers in Nanotheranostics)
Show Figures

Graphical abstract

27 pages, 3940 KB  
Article
Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Pro-Inflammatory Macrophage Polarization: Comparison of Matrix-Bound and Small Extracellular Vesicles
by Timofey O. Klyucherev, Maria D. Yurkanova, Daria P. Revokatova, Dmitriy A. Chevalier, Vsevolod V. Shishkov, Irina I. Vlasova, Nastasia V. Kosheleva and Peter S. Timashev
Cells 2026, 15(2), 93; https://doi.org/10.3390/cells15020093 - 6 Jan 2026
Viewed by 320
Abstract
Macrophages play a crucial role in regulating immune responses, inflammation, and tissue repair. Depending on environmental cues, they polarize into pro-inflammatory M1 or anti-inflammatory, pro-regenerative M2 phenotypes. Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have emerged as key mediators of intercellular [...] Read more.
Macrophages play a crucial role in regulating immune responses, inflammation, and tissue repair. Depending on environmental cues, they polarize into pro-inflammatory M1 or anti-inflammatory, pro-regenerative M2 phenotypes. Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have emerged as key mediators of intercellular communication and immune modulation. This study investigates the effects of matrix-bound vesicles (MBVs) and small extracellular vesicles (sEVs) derived from human umbilical cord MSCs (UC-MSCs) on human monocyte-derived macrophages (MDMs) in vitro. Both MBVs and sEVs reduced pro-inflammatory activation of M1 macrophages, downregulating the expression of CXCL10 and CD86 while increasing the M2 marker CD206. MBVs exerted a stronger suppressive effect on M1 MDM phenotype markers as well as on STAT1, STAT2, and IRF9 mRNA levels in M1 macrophages, indicating the inhibition of the JAK/STAT1 signaling pathway involved in the pro-inflammatory activation of macrophages. Functionally, both vesicle types enhanced phagocytosis of FITC-labeled E. coli by M1 and M0_GM macrophages, promoting a shift toward an M2-like phenotype. Moreover, MBVs and sEVs attenuated reactive oxygen species (ROS) production, with sEVs showing a more pronounced effect both on ROS generation and on the expression of NOX2 complex subunits (p47^phox, p67^phox) in M1 macrophages. These findings demonstrate that MBVs and sEVs from UC-MSCs possess distinct yet complementary immunomodulatory and antioxidant properties on MDMs, suggesting their potential as promising cell-free therapeutic agents for inflammatory and degenerative diseases. Full article
(This article belongs to the Special Issue Immunoregulatory Functions of Mesenchymal Stem Cells (MSCs))
Show Figures

Figure 1

29 pages, 5336 KB  
Review
Lipid-Based Colloidal Nanocarriers for Site-Specific Drug Delivery
by Kamyar Shameli, Behnam Kalali, Hassan Moeini and Aras Kartouzian
Colloids Interfaces 2026, 10(1), 7; https://doi.org/10.3390/colloids10010007 - 4 Jan 2026
Viewed by 466
Abstract
Lipid nanoparticles (LNPs) are now the go-to method for delivering genetic medicines, backed by real-world use in patients. Things like which fats they are made of, their shape at the molecular level, how ingredients mix, and how they are built, matter a lot. [...] Read more.
Lipid nanoparticles (LNPs) are now the go-to method for delivering genetic medicines, backed by real-world use in patients. Things like which fats they are made of, their shape at the molecular level, how ingredients mix, and how they are built, matter a lot. This review attempts to take a close look at how different components, such as ionizable lipids, auxiliary lipids (DSPC, DOPE), cholesterol, and PEG-based lipids, affect the bioavailability of LNPs. It also focuses on key functions of LNPs, including packaging genetic material, escaping cellular traps, spreading in the body, and remaining active in the blood. New data show that lipids with the right handedness and highly sensitive chiroptical quality control can sharpen delivery accuracy and boost transport rates, turning stereochemistry into a practical design knob. Rather than simply listing results, we examine real-world examples that are already used to regulate gene expression, enhance mRNA expression, splenic targeting, and show great potential for gene repair, protein replacement, and DNA base-editing applications. Also, recent advances in AI-based designs for LNPs that take molecular shape into account and help speed up modifications to lipid arrangements and mixture configurations are highlighted. In summary, this paper presents a practical and scientific blueprint to support smarter production of advanced LNPs used in genetic medicine, addressing existing obstacles, balanced with future opportunities. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids and Interfaces)
Show Figures

Figure 1

23 pages, 610 KB  
Review
Optimizing Extracellular Vesicles for Cardiac Repair Post-Myocardial Infarction: Approaches and Challenges
by Yanling Huang, Han Li, Jinjie Xiong, Xvehua Wang, Jiaxi Lv, Ni Xiong, Qianyi Liu, Lihui Yin, Zhaohui Wang and Yan Wang
Biomolecules 2026, 16(1), 58; https://doi.org/10.3390/biom16010058 - 30 Dec 2025
Viewed by 346
Abstract
Ischemic heart disease remains the leading cause of cardiovascular mortality worldwide. In myocardial infarction (MI), extracellular vesicles (EVs)—particularly small EVs (sEVs)—transport therapeutic cargo such as miR-21-5p, which suppresses apoptosis, and other proteins, lipids, and RNAs that can modulate cell death, inflammation, angiogenesis, and [...] Read more.
Ischemic heart disease remains the leading cause of cardiovascular mortality worldwide. In myocardial infarction (MI), extracellular vesicles (EVs)—particularly small EVs (sEVs)—transport therapeutic cargo such as miR-21-5p, which suppresses apoptosis, and other proteins, lipids, and RNAs that can modulate cell death, inflammation, angiogenesis, and remodeling. This review synthesizes recent mechanistic and preclinical evidence on native and engineered EVs for post-MI repair, mapping therapeutic entry points across the MI timeline (acute injury, inflammation, and healing) and comparing EV sources (stem-cell and non-stem-cell), administration routes, and dosing strategies. We highlight engineering approaches—including surface ligands for cardiac homing, rational cargo loading to enhance potency, and biomaterial depots to prolong myocardial residence—that aim to improve tropism, durability, and efficacy. Manufacturing and analytical considerations are discussed in the context of contemporary guidance, with emphasis on identity, purity, and potency assays, as well as safety, immunogenicity, and pharmacology relevant to cardiac populations. Across small- and large-animal models, EV-based interventions have been associated with reduced infarct/scar burden, enhanced vascularization, and improved ventricular function, with representative preclinical studies reporting approximately 25–45% relative reductions in infarct size in rodent and porcine MI models, despite substantial heterogeneity in EV sources, formulations, and outcome reporting that limits cross-study comparability. We conclude that achieving clinical translation will require standardized cardiac-targeting strategies, validated good manufacturing practice (GMP)-compatible manufacturing platforms, and harmonized potency assays, alongside rigorous, head-to-head preclinical designs, to advance EV-based cardiorepair toward clinical testing. Full article
(This article belongs to the Special Issue Advances in Nano-Based Drug Delivery: Unveiling the Next Frontier)
Show Figures

Figure 1

25 pages, 3326 KB  
Article
Temporal Dynamics of Gene Expression and Metabolic Rewiring in Wild Barley (Hordeum spontaneum) Under Salt Stress
by Aala A. Abulfaraj and Lina Baz
Int. J. Mol. Sci. 2026, 27(1), 358; https://doi.org/10.3390/ijms27010358 - 29 Dec 2025
Viewed by 226
Abstract
This study investigates the adaptive mechanisms that enable a single wild barley (Hordeum spontaneum) accession to withstand extreme salinity. Salt stress reshapes plant metabolism and gene expression, offering targets for breeding salt-tolerant cereals. A time-course RNA-Seq experiment was conducted on leaves [...] Read more.
This study investigates the adaptive mechanisms that enable a single wild barley (Hordeum spontaneum) accession to withstand extreme salinity. Salt stress reshapes plant metabolism and gene expression, offering targets for breeding salt-tolerant cereals. A time-course RNA-Seq experiment was conducted on leaves exposed to 500 mM NaCl, followed by differential expression and functional annotations to characterize transcriptomic responses. Transcriptomic profiling identified 140 dynamically upregulated genes distributed across 19 interconnected metabolic pathways, with phased activation of oxidative phosphorylation, nitrogen assimilation, lipid remodeling, and glutathione metabolism. Central metabolic nodes, including acetyl-CoA, hexadecanoyl-CoA, and ubiquinone, coordinated bioenergetic output, membrane stabilization, and redox homeostasis. Ribose-5-phosphate and ribulose-5-phosphate linked glycolysis and the pentose phosphate pathway, supplying NADPH for antioxidant defense and nucleotide repair, while riboflavin derived from Ru5P enhanced flavoprotein activity. In parallel, glucose and fructose-6-phosphate supported osmotic adjustment and glycolytic flux, and increased sterol and cuticular lipid biosynthesis, including cholesterol-like compounds, reinforced membrane integrity and calcium signaling. Glutathione and N-acetyl-glutamate together mitigated oxidative stress and modulated polyamine metabolism, strengthening cellular resilience under salt stress. These findings outline a coordinated network of metabolic and redox pathways that can guide the engineering of salt-tolerant cereals for sustainable production in saline agroecosystems. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 6755 KB  
Article
Weight-Bearing Ladder Climbing Exercise Improves Bone Loss and Bone Microstructural Damage While Promoting Bone Injury Healing in OVX Rats
by Yiting Kang, Nan Li, Yanan Yu, Dingkang Wang, Tingting Zhao, Lijun Sun, Changjiang Liu and Liang Tang
Biology 2026, 15(1), 55; https://doi.org/10.3390/biology15010055 - 28 Dec 2025
Viewed by 259
Abstract
Osteoporosis is highly prevalent in postmenopausal women, causing chronic pain, fractures, and limited mobility that burden individuals and society. While resistance exercise benefits bone health, its role in osteoporotic bone injury healing and underlying mechanisms remain unclear. This study aimed to explore the [...] Read more.
Osteoporosis is highly prevalent in postmenopausal women, causing chronic pain, fractures, and limited mobility that burden individuals and society. While resistance exercise benefits bone health, its role in osteoporotic bone injury healing and underlying mechanisms remain unclear. This study aimed to explore the effects of 10-week weight-bearing ladder climbing exercise on ovariectomy (OVX)-induced osteoporosis and subsequent bone injury healing, and to investigate whether these effects are associated with the myostatin (MSTN) and Wnt/β-catenin pathways. Fifty-four 12-week-old female SD rats were randomized into Sham, OVX, and OVX + EX groups. Rats in the OVX and OVX + EX groups underwent ovariectomy to induce postmenopausal osteoporosis, and those in the OVX + EX group received 10-week weight-bearing ladder climbing. After the exercise intervention, 6 rats in each group were sacrificed; the remaining rats underwent femoral midshaft drilling to establish bone injury. The improvement in osteoporosis was evaluated via Micro-CT, biomechanical tests, RT-qPCR for mRNA detection, and Western blot for measuring protein levels of MSTN and Wnt/β-catenin pathway-related molecules at post-exercise and 21 days post-injury. Bone healing was reflected by the bone volume fraction at the bone injury site detected via Micro-CT at 10 and 21 days post-injury. This exercise significantly enhanced muscle strength and improved femoral bone mineral density (BMD), trabecular microstructure, and biomechanical properties in OVX rats. Meanwhile, the level of MSTN in the OVX + EX group was decreased, the expression of its downstream signaling pathways was inhibited, and the mRNA and protein expressions of Wnt/β-catenin were upregulated. Moreover, 21 days after exercise intervention, the biomechanical properties and bone microstructure of the OVX + EX group were still significantly superior to those of the OVX group, and the aforementioned molecular regulatory effect remained. In addition, pre-conducted exercise was able to promote increases in bone volume fraction at the bone injury site 10 and 21 days after drilling, which was conducive to bone injury healing. Ten-week weight-bearing ladder climbing ameliorates OVX-induced bone loss and promotes osteoporotic bone repair via regulating the MSTN/ActRIIB/Smad3 and Wnt/β-catenin pathways, providing evidence for exercise as a safe non-pharmacological intervention. Full article
(This article belongs to the Special Issue Bone Mechanics: From Cells to Organs, to Function)
Show Figures

Figure 1

Back to TopTop