Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,136)

Search Parameters:
Keywords = Quality-of-Service (QoS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 589 KiB  
Article
Intelligent Queue Scheduling Method for SPMA-Based UAV Networks
by Kui Yang, Chenyang Xu, Guanhua Qiao, Jinke Zhong and Xiaoning Zhang
Drones 2025, 9(8), 552; https://doi.org/10.3390/drones9080552 - 6 Aug 2025
Abstract
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and [...] Read more.
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and collaborate to perform tasks autonomously or semi-autonomously. These networks leverage wireless communication technologies to share data, coordinate movements, and optimize mission execution. In SPMA, traffic arriving at the UAV network node can be divided into multiple priorities according to the information timeliness, and the packets of each priority are stored in the corresponding queues with different thresholds to transmit packet, thus guaranteeing the high success rate and low latency for the highest-priority traffic. Unfortunately, the multi-priority queue scheduling of SPMA deprives the packet transmitting opportunity of low-priority traffic, which results in unfair conditions among different-priority traffic. To address this problem, in this paper we propose the method of Adaptive Credit-Based Shaper with Reinforcement Learning (abbreviated as ACBS-RL) to balance the performance of all-priority traffic. In ACBS-RL, the Credit-Based Shaper (CBS) is introduced to SPMA to provide relatively fair packet transmission opportunity among multiple traffic queues by limiting the transmission rate. Due to the dynamic situations of the wireless environment, the Q-learning-based reinforcement learning method is leveraged to adaptively adjust the parameters of CBS (i.e., idleslope and sendslope) to achieve better performance among all priority queues. The extensive simulation results show that compared with traditional SPMA protocol, the proposed ACBS-RL can increase UAV network throughput while guaranteeing Quality of Service (QoS) requirements of all priority traffic. Full article
Show Figures

Figure 1

24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
19 pages, 1109 KiB  
Article
User Preference-Based Dynamic Optimization of Quality of Experience for Adaptive Video Streaming
by Zixuan Feng, Yazhi Liu and Hao Zhang
Electronics 2025, 14(15), 3103; https://doi.org/10.3390/electronics14153103 - 4 Aug 2025
Abstract
With the rapid development of video streaming services, adaptive bitrate (ABR) algorithms have become a core technology for ensuring optimal viewing experiences. Traditional ABR strategies, predominantly rule-based or reinforcement learning-driven, typically employ uniform quality assessment metrics that overlook users’ subjective preference differences regarding [...] Read more.
With the rapid development of video streaming services, adaptive bitrate (ABR) algorithms have become a core technology for ensuring optimal viewing experiences. Traditional ABR strategies, predominantly rule-based or reinforcement learning-driven, typically employ uniform quality assessment metrics that overlook users’ subjective preference differences regarding factors such as video quality and stalling. To address this limitation, this paper proposes an adaptive video bitrate selection system that integrates preference modeling with reinforcement learning. By incorporating a preference learning module, the system models and scores user viewing trajectories, using these scores to replace conventional rewards and guide the training of the Proximal Policy Optimization (PPO) algorithm, thereby achieving policy optimization that better aligns with users’ perceived experiences. Simulation results on DASH network bandwidth traces demonstrate that the proposed optimization method improves overall Quality of Experience (QoE) by over 9% compared to other mainstream algorithms. Full article
Show Figures

Figure 1

12 pages, 5079 KiB  
Article
Enhancing QoS in Opportunistic Networks Through Direct Communication for Dynamic Routing Challenges
by Ambreen Memon, Aqsa Iftikhar, Muhammad Nadeem Ali and Byung-Seo Kim
Telecom 2025, 6(3), 55; https://doi.org/10.3390/telecom6030055 - 1 Aug 2025
Viewed by 136
Abstract
Opportunistic Networks (OppNets) lack the capability to maintain consistent end-to-end paths between source and destination nodes, unlike Mobile Ad Hoc Networks (MANETs). This absence of stable routing presents substantial challenges for data transmission in OppNets. Due to node mobility, routing paths are inherently [...] Read more.
Opportunistic Networks (OppNets) lack the capability to maintain consistent end-to-end paths between source and destination nodes, unlike Mobile Ad Hoc Networks (MANETs). This absence of stable routing presents substantial challenges for data transmission in OppNets. Due to node mobility, routing paths are inherently dynamic, requiring the selection of neighboring nodes as intermediate hops to forward data toward the destination. However, frequent node movement can cause considerable delays for senders attempting to identify appropriate next hops, consequently degrading the quality of service (QoS) in OppNets. To mitigate this challenge, this paper proposes an alternative approach for scenarios where senders cannot locate suitable next hops. Specifically, we propose utilizing direct communication via line of sight (LoS) between sender and receiver nodes to satisfy QoS requirements. The proposed scheme is experimented with using the ONE simulator, which is widely used for OppNet experiments and study, and compared against existing schemes such as the history-based routing protocol (HBRP) and AEProphet routing protocol. Full article
Show Figures

Figure 1

28 pages, 7946 KiB  
Article
Service Composition Optimization Method for Sewing Machine Cases Based on an Improved Multi-Objective Artificial Hummingbird Algorithm
by Gan Shi, Shanhui Liu, Keqiang Shi, Langze Zhu, Zhenjie Gao and Jiayue Zhang
Processes 2025, 13(8), 2433; https://doi.org/10.3390/pr13082433 - 31 Jul 2025
Viewed by 150
Abstract
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure [...] Read more.
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure and production process of sewing machine cases are analyzed; a framework for service composition optimization in the sewing machine cases manufacturing service platform is established; the required manufacturing resource service composition is determined; and a dual-objective service composition optimization mathematical model that considers Quality of Service (QoS) indicators and flexibility indicators is constructed. Opposition-based learning strategies, roulette wheel selection strategies, and improved differential evolution strategies are embedded in the multi-objective artificial hummingbird algorithm, and the improved artificial hummingbird algorithm (ORAHA_DE) is used to solve the sewing machine cases manufacturing service composition optimization model. The experimental results show the effectiveness and superiority of this composition optimization method in solving the sewing machine cases manufacturing composition optimization problem while avoiding entrapment in a local optimum during the solution process, thereby achieving the composition optimization of sewing machine cases collaborative manufacturing services. Full article
Show Figures

Figure 1

15 pages, 675 KiB  
Article
A Trusted Multi-Cloud Brokerage System for Validating Cloud Services Using Ranking Heuristics
by Rajganesh Nagarajan, Vinothiyalakshmi Palanichamy, Ramkumar Thirunavukarasu and J. Arun Pandian
Future Internet 2025, 17(8), 348; https://doi.org/10.3390/fi17080348 - 31 Jul 2025
Viewed by 167
Abstract
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud [...] Read more.
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud systems. The primary objective of a cloud broker is to ensure the quality and outcomes of services offered to customers. However, traditional cloud brokers face limitations in measuring service trust, ensuring validity, and anticipating future enhancements of services across different cloud platforms. To address these challenges, the proposed intelligent cloud broker integrates an intelligence mechanism that enhances decision-making within a multi-cloud environment. This broker performs a comprehensive validation and verification of service trustworthiness by analyzing various trust factors, including service response time, sustainability, suitability, accuracy, transparency, interoperability, availability, reliability, stability, cost, throughput, efficiency, and scalability. Customer feedback is also incorporated to assess these trust factors prior to service recommendation. The proposed model calculates service ranking (SR) values for available cloud services and dynamically includes newly introduced services during the validation process by mapping them with existing entries in the Service Collection Repository (SCR). Performance evaluation using the Google cluster-usage traces dataset demonstrates that the ICB outperforms existing approaches such as the Clustering-Based Trust Degree Computation (CBTDC) algorithm and the Service Context-Aware QoS Prediction and Recommendation (SCAQPR) model. Results confirm that the ICB significantly enhances the effectiveness and reliability of cloud service recommendations for users. Full article
Show Figures

Figure 1

23 pages, 1734 KiB  
Article
Design and Implementation of a Cost-Effective Failover Mechanism for Containerized UPF
by Kiem Nguyen Trung and Younghan Kim
Electronics 2025, 14(15), 2991; https://doi.org/10.3390/electronics14152991 - 27 Jul 2025
Viewed by 259
Abstract
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads [...] Read more.
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads close to end devices, reducing latency and ensuring stringent Quality of Service (QoS). However, edge environments often face resource constraints and unpredictable failures such as network disruptions or hardware malfunctions, which can severely affect the reliability of the network. In addition, existing redundancy-based UPF resilience strategies, which maintain standby instances, incur substantial overheads and degrade resource efficiency and scalability for the applications. To address this issue, this study introduces a novel design that enables quick detection of UPF failures and two failover mechanisms to restore failed UPF instances either within the cluster hosting the failed UPF or across multiple clusters, depending on that cluster’s resource availability and health. We implemented and evaluated our proposed approach on a Kubernetes-based testbed, and the results demonstrate that our approach reduces UPF redeployment time by up to 37% compared to baseline methods and lowers system cost by up to 50% under high-reliability requirements compared to traditional redundancy-based failover methods. These findings demonstrate that our design can serve as a complementary solution alongside traditional resilience strategies, offering a particularly cost-effective and resource-efficient alternative for edge computing and other constrained environments. Full article
(This article belongs to the Special Issue Advances in Intelligent Systems and Networks, 2nd Edition)
Show Figures

Figure 1

18 pages, 1138 KiB  
Article
Intelligent Priority-Aware Spectrum Access in 5G Vehicular IoT: A Reinforcement Learning Approach
by Adeel Iqbal, Tahir Khurshaid and Yazdan Ahmad Qadri
Sensors 2025, 25(15), 4554; https://doi.org/10.3390/s25154554 - 23 Jul 2025
Viewed by 268
Abstract
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning [...] Read more.
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning priority-aware spectrum management framework operating through Roadside Units (RSUs). RL-PASM dynamically allocates spectrum resources across three traffic classes: high-priority (HP), low-priority (LP), and best-effort (BE), utilizing reinforcement learning (RL). This work compares four RL algorithms: Q-Learning, Double Q-Learning, Deep Q-Network (DQN), and Actor-Critic (AC) methods. The environment is modeled as a discrete-time Markov Decision Process (MDP), and a context-sensitive reward function guides fairness-preserving decisions for access, preemption, coexistence, and hand-off. Extensive simulations conducted under realistic vehicular load conditions evaluate the performance across key metrics, including throughput, delay, energy efficiency, fairness, blocking, and interruption probability. Unlike prior approaches, RL-PASM introduces a unified multi-objective reward formulation and centralized RSU-based control to support adaptive priority-aware access for dynamic vehicular environments. Simulation results confirm that RL-PASM balances throughput, latency, fairness, and energy efficiency, demonstrating its suitability for scalable and resource-constrained deployments. The results also demonstrate that DQN achieves the highest average throughput, followed by vanilla QL. DQL and AC maintain fairness at high levels and low average interruption probability. QL demonstrates the lowest average delay and the highest energy efficiency, making it a suitable candidate for edge-constrained vehicular deployments. Selecting the appropriate RL method, RL-PASM offers a robust and adaptable solution for scalable, intelligent, and priority-aware spectrum access in vehicular communication infrastructures. Full article
(This article belongs to the Special Issue Emerging Trends in Next-Generation mmWave Cognitive Radio Networks)
Show Figures

Figure 1

18 pages, 7391 KiB  
Article
Reliable QoE Prediction in IMVCAs Using an LMM-Based Agent
by Michael Sidorov, Tamir Berger, Jonathan Sterenson, Raz Birman and Ofer Hadar
Sensors 2025, 25(14), 4450; https://doi.org/10.3390/s25144450 - 17 Jul 2025
Viewed by 282
Abstract
Face-to-face interaction is one of the most natural forms of human communication. Unsurprisingly, Video Conferencing (VC) Applications have experienced a significant rise in demand over the past decade. With the widespread availability of cellular devices equipped with high-resolution cameras, Instant Messaging Video Call [...] Read more.
Face-to-face interaction is one of the most natural forms of human communication. Unsurprisingly, Video Conferencing (VC) Applications have experienced a significant rise in demand over the past decade. With the widespread availability of cellular devices equipped with high-resolution cameras, Instant Messaging Video Call Applications (IMVCAs) now constitute a substantial portion of VC communications. Given the multitude of IMVCA options, maintaining a high Quality of Experience (QoE) is critical. While content providers can measure QoE directly through end-to-end connections, Internet Service Providers (ISPs) must infer QoE indirectly from network traffic—a non-trivial task, especially when most traffic is encrypted. In this paper, we analyze a large dataset collected from WhatsApp IMVCA, comprising over 25,000 s of VC sessions. We apply four Machine Learning (ML) algorithms and a Large Multimodal Model (LMM)-based agent, achieving mean errors of 4.61%, 5.36%, and 13.24% for three popular QoE metrics: BRISQUE, PIQE, and FPS, respectively. Full article
Show Figures

Figure 1

25 pages, 2870 KiB  
Article
Performance Evaluation and QoS Optimization of Routing Protocols in Vehicular Communication Networks Under Delay-Sensitive Conditions
by Alaa Kamal Yousif Dafhalla, Hiba Mohanad Isam, Amira Elsir Tayfour Ahmed, Ikhlas Saad Ahmed, Lutfieh S. Alhomed, Amel Mohamed essaket Zahou, Fawzia Awad Elhassan Ali, Duria Mohammed Ibrahim Zayan, Mohamed Elshaikh Elobaid and Tijjani Adam
Computers 2025, 14(7), 285; https://doi.org/10.3390/computers14070285 - 17 Jul 2025
Viewed by 308
Abstract
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic [...] Read more.
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic topology of vehicular environments. While some efforts have explored routing protocol optimization, few have systematically compared multiple optimization approaches tailored to distinct traffic and delay conditions. This study addresses this gap by evaluating and enhancing two widely used routing protocols, QOS-AODV and GPSR, through their improved versions, CM-QOS-AODV and CM-GPSR. Two distinct optimization models are proposed: the Traffic-Oriented Model (TOM), designed to handle variable and high-traffic conditions, and the Delay-Efficient Model (DEM), focused on reducing latency for time-critical scenarios. Performance was evaluated using key QoS metrics: throughput (rate of successful data delivery), packet delivery ratio (PDR) (percentage of successfully delivered packets), and end-to-end delay (latency between sender and receiver). Simulation results reveal that TOM-optimized protocols achieve up to 10% higher PDR, maintain throughput above 0.40 Mbps, and reduce delay to as low as 0.01 s, making them suitable for applications such as collision avoidance and emergency alerts. DEM-based variants offer balanced, moderate improvements, making them better suited for general-purpose VCN applications. These findings underscore the importance of traffic- and delay-aware protocol design in developing robust, QoS-compliant vehicular communication systems. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

32 pages, 5175 KiB  
Article
Scheduling and Routing of Device Maintenance for an Outdoor Air Quality Monitoring IoT
by Peng-Yeng Yin
Sustainability 2025, 17(14), 6522; https://doi.org/10.3390/su17146522 - 16 Jul 2025
Viewed by 286
Abstract
Air quality monitoring IoT is one of the approaches to achieving a sustainable future. However, the large area of IoT and the high number of monitoring microsites pose challenges for device maintenance to guarantee quality of service (QoS) in monitoring. This paper proposes [...] Read more.
Air quality monitoring IoT is one of the approaches to achieving a sustainable future. However, the large area of IoT and the high number of monitoring microsites pose challenges for device maintenance to guarantee quality of service (QoS) in monitoring. This paper proposes a novel maintenance programming model for a large-area IoT containing 1500 monitoring microsites. In contrast to classic device maintenance, the addressed programming scenario considers the division of appropriate microsites into batches, the determination of the batch maintenance date, vehicle routing for the delivery of maintenance services, and a set of hard constraints such as QoS in air quality monitoring, the maximum number of labor working hours, and an upper limit on the total CO2 emissions. Heuristics are proposed to generate the batches of microsites and the scheduled maintenance date for the batches. A genetic algorithm is designed to find the shortest routes by which to visit the batch microsites by a fleet of vehicles. Simulations are conducted based on government open data. The experimental results show that the maintenance and transportation costs yielded by the proposed model grow linearly with the number of microsites if the fleet size is also linearly related to the microsite number. The mean time between two consecutive cycles is around 17 days, which is generally sufficient for the preparation of the required maintenance materials and personnel. With the proposed method, the decision-maker can circumvent the difficulties in handling the hard constraints, and the allocation of maintenance resources, including budget, materials, and engineering personnel, is easier to manage. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

17 pages, 2103 KiB  
Article
Optimizing Time-Sensitive Traffic Scheduling in Low-Earth-Orbit Satellite Networks
by Wei Liu, Nan Xiao, Bo Liu, Yuxian Zhang and Taoyong Li
Sensors 2025, 25(14), 4327; https://doi.org/10.3390/s25144327 - 10 Jul 2025
Viewed by 332
Abstract
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and [...] Read more.
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and bandwidth competition contribute to the instability of these links. As a result, providing reliable quality of service (QoS) for time-sensitive flows (TSFs) in LEO satellite networks becomes a challenging task. Traditional terrestrial time-sensitive networking methods, which depend on fixed paths and static priority scheduling, are ill-equipped to handle the dynamic nature and resource constraints typical of satellite environments. This often leads to congestion, packet loss, and excessive latency, especially for high-priority TSFs. This study addresses the primary challenges faced by time-sensitive satellite networks and introduces a management framework based on software-defined networking (SDN) tailored for LEO satellites. An advanced queue management and scheduling system, influenced by terrestrial time-sensitive networking approaches, is developed. By incorporating differentiated forwarding strategies and priority-based classification, the proposed method improves the efficiency of transmitting time-sensitive traffic at multiple levels. To assess the scheme’s performance, simulations under various workloads are conducted, and the results reveal that it significantly boosts network throughput, reduces packet loss, and maintains low latency, thus optimizing the performance of time-sensitive traffic in LEO satellite networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

26 pages, 4750 KiB  
Article
Service Composition and Optimal Selection for Industrial Software Integration with QoS and Availability
by Yangzhen Cao, Shanhui Liu, Chaoyang Li, Hongen Yang and Yuanyang Wang
Appl. Sci. 2025, 15(14), 7754; https://doi.org/10.3390/app15147754 - 10 Jul 2025
Viewed by 218
Abstract
To address the growing demand for industrial software in the digital transformation of small and medium-sized enterprises (SMEs) in the manufacturing sector, and to ensure the stable integration and operation of multi-source heterogeneous industrial software under complex conditions—such as heterogeneous compatibility, component dependencies, [...] Read more.
To address the growing demand for industrial software in the digital transformation of small and medium-sized enterprises (SMEs) in the manufacturing sector, and to ensure the stable integration and operation of multi-source heterogeneous industrial software under complex conditions—such as heterogeneous compatibility, component dependencies, and uncertainty disturbances—this study established a comprehensive evaluation index system for service composition and optimal selection (SCOS). The system incorporated key criteria including service time, service cost, service reputation, service delivery quality, and availability. Based on this, a bi-objective SCOS model was established with the goal of maximizing both quality of service (QoS) and availability. To efficiently solve the proposed model, a hybrid enhanced multi-objective Gray Wolf Optimizer (HEMOGWO) was developed. This algorithm integrated Tent chaotic mapping and a Levy flight-enhanced differential evolution (DE) strategy. Extensive experiments were conducted, including performance evaluation on 17 benchmark functions and case studies involving nine industrial software integration scenarios of varying scales. Comparative results against state-of-the-art, multi-objective, optimization algorithms—such as MOGWO, MOEA/D_DE, MOPSO, and NSGA-III—demonstrate the effectiveness and feasibility of the proposed approach. Full article
Show Figures

Figure 1

16 pages, 1966 KiB  
Article
DRL-Driven Intelligent SFC Deployment in MEC Workload for Dynamic IoT Networks
by Seyha Ros, Intae Ryoo and Seokhoon Kim
Sensors 2025, 25(14), 4257; https://doi.org/10.3390/s25144257 - 8 Jul 2025
Viewed by 319
Abstract
The rapid increase in the deployment of Internet of Things (IoT) sensor networks has led to an exponential growth in data generation and an unprecedented demand for efficient resource management infrastructure. Ensuring end-to-end communication across multiple heterogeneous network domains is crucial to maintaining [...] Read more.
The rapid increase in the deployment of Internet of Things (IoT) sensor networks has led to an exponential growth in data generation and an unprecedented demand for efficient resource management infrastructure. Ensuring end-to-end communication across multiple heterogeneous network domains is crucial to maintaining Quality of Service (QoS) requirements, such as low latency and high computational capacity, for IoT applications. However, limited computing resources at multi-access edge computing (MEC), coupled with increasing IoT network requests during task offloading, often lead to network congestion, service latency, and inefficient resource utilization, degrading overall system performance. This paper proposes an intelligent task offloading and resource orchestration framework to address these challenges, thereby optimizing energy consumption, computational cost, network congestion, and service latency in dynamic IoT-MEC environments. The framework introduces task offloading and a dynamic resource orchestration strategy, where task offloading to the MEC server ensures an efficient distribution of computation workloads. The dynamic resource orchestration process, Service Function Chaining (SFC) for Virtual Network Functions (VNFs) placement, and routing path determination optimize service execution across the network. To achieve adaptive and intelligent decision-making, the proposed approach leverages Deep Reinforcement Learning (DRL) to dynamically allocate resources and offload task execution, thereby improving overall system efficiency and addressing the optimal policy in edge computing. Deep Q-network (DQN), which is leveraged to learn an optimal network resource adjustment policy and task offloading, ensures flexible adaptation in SFC deployment evaluations. The simulation result demonstrates that the DRL-based scheme significantly outperforms the reference scheme in terms of cumulative reward, reduced service latency, lowered energy consumption, and improved delivery and throughput. Full article
Show Figures

Figure 1

15 pages, 1816 KiB  
Article
A Framework for User Traffic Prediction and Resource Allocation in 5G Networks
by Ioannis Konstantoulas, Iliana Loi, Dimosthenis Tsimas, Kyriakos Sgarbas, Apostolos Gkamas and Christos Bouras
Appl. Sci. 2025, 15(13), 7603; https://doi.org/10.3390/app15137603 - 7 Jul 2025
Viewed by 455
Abstract
Fifth-Generation (5G) networks deal with dynamic fluctuations in user traffic and the demands of each connected user and application. This creates a need for optimized resource allocation to reduce network congestion in densely populated urban centers and further ensure Quality of Service (QoS) [...] Read more.
Fifth-Generation (5G) networks deal with dynamic fluctuations in user traffic and the demands of each connected user and application. This creates a need for optimized resource allocation to reduce network congestion in densely populated urban centers and further ensure Quality of Service (QoS) in (5G) environments. To address this issue, we present a framework for both predicting user traffic and allocating users to base stations in 5G networks using neural network architectures. This framework consists of a hybrid approach utilizing a Long Short-Term Memory (LSTM) network or a Transformer architecture for user traffic prediction in base stations, as well as a Convolutional Neural Network (CNN) to allocate users to base stations in a realistic scenario. The models show high accuracy in the tasks performed, especially in the user traffic prediction task, where the models show an accuracy of over 99%. Overall, our framework is capable of capturing long-term temporal features and spatial features from 5G user data, taking a significant step towards a holistic approach in data-driven resource allocation and traffic prediction in 5G networks. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop