Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (258)

Search Parameters:
Keywords = Qinling mountains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Viewed by 42
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 - 2 Aug 2025
Viewed by 255
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 5178 KiB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Viewed by 246
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

19 pages, 3352 KiB  
Article
Inhibitory Effects and Underlying Mechanisms of a Selenium Compound Agent Against the Pathogenic Fungus Sclerotinia sclerotiorum Causing Sclerotinia Stem Rot in Brassica napus
by Xiaojuan Zhang, Yangzi Hou, Xiuqi Ma, Xiaomin Sun, Qiao Chen, Lele Wu and Chenlu Zhang
Agronomy 2025, 15(8), 1764; https://doi.org/10.3390/agronomy15081764 - 23 Jul 2025
Viewed by 222
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite [...] Read more.
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite and cuminic acid to screen for the optimal mixing ratio and investigate its inhibitory effects and mechanisms against S. sclerotiorum. The results demonstrated that synergistic effects were observed with a 1:3 combination ratio of sodium selenite to cuminic acid. After treatment with the selenium compound agent, ultrastructural observations revealed that the hyphae of S. sclerotiorum became severely shriveled, deformed, and twisted. The agent significantly reduced oxalic acid production and the activities of polymethylgalacturonide (PMG) and carboxymethylcellulose enzymes (Cx), while increasing the exocytosis of nucleic acids and proteins from the mycelium. Foliar application of the selenium compound agent significantly reduced lesion areas in rapeseed. Combined with the results of transcriptome sequencing, this study suggests that the compound agent effectively inhibits the growth of S. sclerotiorum by disrupting its membrane system, reducing the activity of cell wall-degrading enzymes, and suppressing protein synthesis, etc. This research provides a foundation for developing environmentally friendly and effective fungicides to control S. sclerotiorum. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
Show Figures

Graphical abstract

20 pages, 4768 KiB  
Article
Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization
by Sibo Chen, Xin Fu, Kexin Chen, Jinguo Hua, Qian Rao, Xuewei Feng and Wenli Ji
Plants 2025, 14(14), 2130; https://doi.org/10.3390/plants14142130 - 10 Jul 2025
Viewed by 326
Abstract
The establishment of conservation areas is considered one of the most effective approaches to address biodiversity loss with limited resources. Identifying hotspots of plant diversity and conservation gaps has played a crucial role in optimizing conservation areas. Utilizing diverse types of research data [...] Read more.
The establishment of conservation areas is considered one of the most effective approaches to address biodiversity loss with limited resources. Identifying hotspots of plant diversity and conservation gaps has played a crucial role in optimizing conservation areas. Utilizing diverse types of research data can effectively enhance the recognition of hotspots and conservation gaps. Phenotypic trait diversity is a functional biogeography that analyzes the geographic distribution patterns, formation, and reasons for the development of specific or multiple phenotypic traits of organisms. Flower color and fruit color phenotypic traits are primary characteristics through which plants interact with other organisms, affecting their own survival and reproduction, and that of their offspring. This study utilized data from 1923 Phenotypic Trait Diversity Species (PTDS) with flower and fruit color characteristics to optimize conservation areas in the Shaanxi Qinling Mountains. Additionally, data from 1838 endemic species (ES), 190 threatened species (TS), and 119 protected species (PS) were used for validation. The data were primarily sourced from the Catalogue of Vascular Plants in Shaanxi, supplemented by the Chinese Virtual Herbarium and the Shaanxi Digital Herbarium. The results reveal that by comparing the existing conservation area boundaries with those determined by four types of data, conservation gaps are found in 14 counties in the Qinling Mountains of Shaanxi. The existing conservation area only accounts for 13.3% of the area determined by the four types of data. There are gaps in biodiversity conservation in the Qinling Mountains of Shaanxi, and the macroscopic use of plant phenotypic trait data contributes to optimizing these conservation gaps. Full article
Show Figures

Figure 1

20 pages, 7174 KiB  
Article
The Spatiotemporal Evolution Characteristics and Influencing Factors of Traditional Villages in the Qinling-Daba Mountains
by Tianshu Chu and Chenchen Liu
Buildings 2025, 15(14), 2397; https://doi.org/10.3390/buildings15142397 - 8 Jul 2025
Viewed by 265
Abstract
Traditional villages are irreplaceable cultural heritages, embodying complex human–environment interactions. This study uses historical geography analysis, kernel density estimation, centroid migration modeling, and Geodetector techniques to analyze the 2000-year spatiotemporal evolution and formation mechanisms of 224 nationally designated traditional villages in China’s Qinling-Daba [...] Read more.
Traditional villages are irreplaceable cultural heritages, embodying complex human–environment interactions. This study uses historical geography analysis, kernel density estimation, centroid migration modeling, and Geodetector techniques to analyze the 2000-year spatiotemporal evolution and formation mechanisms of 224 nationally designated traditional villages in China’s Qinling-Daba Mountains. The findings are as follows: (1) These villages significantly cluster on sunny slopes of hills and low mountains with moderate gradients. They are also closely located near waterways, ancient roads, and historic cities. (2) From the embryonic stage during the Qin and Han dynasties, through the diffusion and transformation phases in the Wei, Jin, Song, and Yuan dynasties, to the mature stage in the Ming and Qing dynasties, the spatial center of these villages shifted distinctly southwestward. This migration was accompanied by expansion along waterway transport corridors, an enlarged spatial scope, and a decrease in directional concentration. (3) The driving forces evolved from a strong coupling between natural conditions and infrastructure in the early stage to human-dominated adaptation in the later stage. Agricultural innovations, such as terraced fields, and sociopolitical factors, like migration policies, overcame environmental constraints through the synergistic effects of cultural and economic networks. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

15 pages, 8861 KiB  
Article
The Complete Chloroplast Genome of Purdom’s Rhododendron (Rhododendron purdomii Rehder & E. H. Wilson): Genome Structure and Phylogenetic Analysis
by Lu Yuan, Ningning Zhang, Shixin Zhu and Yang Lu
Forests 2025, 16(7), 1120; https://doi.org/10.3390/f16071120 - 7 Jul 2025
Viewed by 323
Abstract
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, [...] Read more.
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, assembled, and characterized. The cp genome exhibited a typical quadripartite structure with a total length of 208,062 bp, comprising a large single copy (LSC) region of 110,618 bp, a small single copy (SSC) region of 2606 bp, and two inverted repeat (IR) regions of 47,419 bp each. The overall GC content was 35.81%. The genome contained 146 genes, including 96 protein-coding genes, 42 transfer RNA genes, and 8 ribosomal RNA genes. Structure analysis identified 67,354 codons, 96 long repetitive sequences, and 171 simple sequence repeats. Comparative genomic analysis across Rhododendron species revealed hypervariable coding regions (accD, rps9) and non-coding regions (trnK-UUU-ycf3, trnI-CAU-rpoB, trnT-GGU-accD, rpoA-psbL, rpl20-trnC-GCA, trnI-CAU-rrn16, and trnI-CAU-rps16), which may serve as potential molecular markers for genetic identification. Phylogenetic reconstruction confirmed the monophyly of Rhododendron species and highlighted a close relationship between Rh. purdomii and Rh. henanense subsp. lingbaoense. These results provide essential genomic resources for advancing taxonomic, evolutionary, conservation, and breeding studies of Rh. purdomii and other species within the genus Rhododendron. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

20 pages, 4929 KiB  
Article
Remote Sensing Image-Based Building Change Detection: A Case Study of the Qinling Mountains in China
by Lei Fu, Yunfeng Zhang, Keyun Zhao, Lulu Zhang, Ying Li, Changjing Shang and Qiang Shen
Remote Sens. 2025, 17(13), 2249; https://doi.org/10.3390/rs17132249 - 30 Jun 2025
Viewed by 396
Abstract
With the widespread application of deep learning in Earth observation, remote sensing image-based building change detection has achieved numerous groundbreaking advancements. However, differences across time periods caused by temporal variations in land cover, as well as the complex spatial structures in remote sensing [...] Read more.
With the widespread application of deep learning in Earth observation, remote sensing image-based building change detection has achieved numerous groundbreaking advancements. However, differences across time periods caused by temporal variations in land cover, as well as the complex spatial structures in remote sensing scenes, significantly constrain the performance of change detection. To address these challenges, a change detection algorithm based on spatio-spectral information aggregation is proposed, which consists of two key modules: the Cross-Scale Heterogeneous Convolution module (CSHConv) and the Spatio-Spectral Information Fusion module (SSIF). CSHConv mitigates information loss caused by scale heterogeneity, thereby enhancing the effective utilization of multi-scale features. Meanwhile, SSIF models spatial and spectral information jointly, capturing interactions across different spatial scales and spectral domains. This investigation is illustrated with a case study conducted with the real-world dataset QL-CD (Qinling change detection), acquired in the Qinling region of China. The work includes the construction of QL-CD, which includes 12,724 pairs of images captured by the Gaofen-1 satellite. Experimental results demonstrate that the proposed approach outperforms a wide range of state-of-the-art algorithms. Full article
(This article belongs to the Special Issue Artificial Intelligence Remote Sensing for Earth Observation)
Show Figures

Figure 1

16 pages, 4570 KiB  
Article
Seasonality Has Greater Influence on Amphibian Cutaneous Mycobiome than Host Species
by Han Zhang, Kunyang Zhang, Hongying Ma, Jie Deng, Cheng Fang, Hu Zhao, Xiaoran An, Jianlu Zhang, Qijun Wang, Wei Jiang and Fei Kong
J. Fungi 2025, 11(7), 473; https://doi.org/10.3390/jof11070473 - 22 Jun 2025
Viewed by 402
Abstract
Amphibians face severe threats from chytridiomycosis, and their skin microbiota plays a crucial role in pathogen defense. However, studies on their mycobiomes are limited. We hypothesized that amphibian cutaneous mycobiomes vary with seasonal variations and host species. To test this hypothesis, we used [...] Read more.
Amphibians face severe threats from chytridiomycosis, and their skin microbiota plays a crucial role in pathogen defense. However, studies on their mycobiomes are limited. We hypothesized that amphibian cutaneous mycobiomes vary with seasonal variations and host species. To test this hypothesis, we used internal transcribed spacer (ITS) amplicon sequencing to identify the cutaneous fungal communities of two frogs from the Qinling Mountains of China, namely Pelophylax nigromaculatus and Nanorana quadranus. We also compared our ITS amplicon data with those of 30 known anti-Bd fungal ITS sequences to identify Bd-inhibiting fungi in the samples. The results showed that seasonal variation exerted a significantly stronger influence than host species on the fungal community structure (alpha diversity, beta diversity, species composition, abundance, and biomarkers). In the fungal community composition, intergroup consistency was significantly higher at the phylum level than at the genus level; however, one unidentified genus was present in samples from both frogs from different seasons. Anti-Bd fungi were detected in the skin fungal communities of P. nigromaculatus and N. quadranus, although their types and abundances varied seasonally and interspecifically. Overall, this study highlights seasonal dynamics and host-specific variations in amphibian cutaneous fungal ecology and identifies potential Bd-inhibiting fungal taxa. Full article
Show Figures

Figure 1

22 pages, 5466 KiB  
Article
A Framework for Multifunctional Green Infrastructure Planning Based on Ecosystem Service Synergy/Trade-Off Analysis: Application in the Qinling–Daba Mountain Area
by Mingjie Song, Shicheng Li, Basanta Paudel and Fangjie Pan
Land 2025, 14(6), 1287; https://doi.org/10.3390/land14061287 - 16 Jun 2025
Viewed by 482
Abstract
The multifunctionality of green infrastructure (GI) can be enhanced through intentional planning that promotes synergies among various functions while minimizing trade-offs. Despite its significance, methodologies for implementing this approach remain underexplored. This paper presents an application-oriented framework for GI planning that emphasizes the [...] Read more.
The multifunctionality of green infrastructure (GI) can be enhanced through intentional planning that promotes synergies among various functions while minimizing trade-offs. Despite its significance, methodologies for implementing this approach remain underexplored. This paper presents an application-oriented framework for GI planning that emphasizes the relationship between GI functional performance and the provision of ecosystem services. By reframing the issues of multifunctional synergies and trade-offs as quantifiable and spatially explicit problems associated with ecosystem services, the framework offers both a conceptual foundation and technical protocols for practical application. This framework was implemented in the Qinling–Daba Mountain Area (QDMB) in China to evaluate its practicality and identify potential challenges. The planned GI system aims to fulfill multiple functions, including biodiversity maintenance, water and soil conservation, eco-farming, and ecotourism development. Additionally, 73 wildlife corridors were established to connect GI elements, thereby enhancing habitat services for biodiversity. Furthermore, the analysis identified 245 townships and 273 sites as strategic areas and points requiring targeted intervention to mitigate potential multifunctional trade-offs. These locations are characterized by their location within protected areas, protected buffer zones, or wildlife corridors, or at the intersection of wildlife corridors with existing transportation infrastructure. The findings validate the framework’s practicality and highlight the necessity for additional research into the capacity of GI to support diverse human activities and the approaches to enhance GI elements’ connectivity for multifunctionality. Full article
Show Figures

Figure 1

19 pages, 2375 KiB  
Technical Note
Synergizing Multi-Temporal Remote Sensing and Systemic Resilience for Rainstorm–Flood Risk Zoning in the Northern Qinling Foothills: A Geospatial Modeling Approach
by Dong Liu, Jiaqi Zhang, Xin Wang, Jianbing Peng, Rui Wang, Xiaoyan Huang, Denghui Li, Long Shao and Zixuan Hao
Remote Sens. 2025, 17(12), 2009; https://doi.org/10.3390/rs17122009 - 11 Jun 2025
Viewed by 507
Abstract
The northern foothills of the Qinling Mountains, a critical ecological barrier and urban–rural transition zone in China, face intensifying rainstorm–flood disasters under climate extremes and rapid urbanization. This study pioneers a remote sensing-driven, dynamically coupled framework by integrating multi-source satellite data, system resilience [...] Read more.
The northern foothills of the Qinling Mountains, a critical ecological barrier and urban–rural transition zone in China, face intensifying rainstorm–flood disasters under climate extremes and rapid urbanization. This study pioneers a remote sensing-driven, dynamically coupled framework by integrating multi-source satellite data, system resilience theory, and spatial modeling to develop a novel “risk identification–resilience assessment–scenario simulation” chain. This framework quantitatively evaluates the nonlinear response mechanisms of town–village systems to flood disasters, emphasizing the synergistic effects of spatial scale, morphology, and functional organization. The proposed framework uniquely integrates three innovative modules: (1) a hybrid risk identification engine combining normalized difference vegetation index (NDVI) temporal anomaly detection and spatiotemporal hotspot analysis; (2) a morpho-functional resilience quantification model featuring a newly developed spatial morphological resilience index (SMRI) that synergizes landscape compactness, land-use diversity, and ecological connectivity through the entropy-weighted analytic hierarchy process (AHP); and (3) a dynamic scenario simulator embedding rainfall projections into a coupled hydrodynamic model. Key advancements over existing methods include the multi-temporal SMRI and the introduction of a nonlinear threshold response function to quantify “safe-fail” adaptation capacities. Scenario simulations reveal a reduction in flood losses under ecological priority strategies, outperforming conventional engineering-based solutions by resilience gain. The proposed zoning strategy prioritizing ecological restoration, infrastructure hardening, and community-based resilience units provides a scalable framework for disaster-adaptive spatial planning, underpinned by remote sensing-driven dynamic risk mapping. This work advances the application of satellite-aided geospatial analytics in balancing ecological security and socioeconomic resilience across complex terrains. Full article
Show Figures

Figure 1

14 pages, 1521 KiB  
Article
Habitat Heterogeneity of Nitrogen and Phosphorus Cycling Functional Genes in Rhizosphere Microorganisms of Pinus tabuliformis in Qinling Mountains, China
by Hang Yang, Yue Pang, Ying Yang, Dexiang Wang and Yuchao Wang
Microorganisms 2025, 13(6), 1275; https://doi.org/10.3390/microorganisms13061275 - 30 May 2025
Viewed by 520
Abstract
Microbial functional genes serve as the core genetic foundation driving microbial ecological functions; however, its microbial functional gene composition across varied habitats and its ecological adaptation interplay with plants remain understudied. In this study, we investigated the P. tabuliformis rhizosphere microbial functional genes [...] Read more.
Microbial functional genes serve as the core genetic foundation driving microbial ecological functions; however, its microbial functional gene composition across varied habitats and its ecological adaptation interplay with plants remain understudied. In this study, we investigated the P. tabuliformis rhizosphere microbial functional genes which are related to N and P cycles across ridge and slope habitats between different elevational gradients, analyzed their composition and abundance, and analyzed their responses to environmental factors. Results showed that slope habitats had a significantly greater abundance of N and P cycling functional genes compared to those of ridge counterparts (p < 0.05). Specifically, slope environments showed an enhanced gene abundance associated with denitrification, nitrogen fixation, nitrification, assimilatory/dissimilatory nitrate reduction, and nitrogen transport processes, along with the superior expression of genes related to inorganic/organic phosphorus metabolism, phosphorus transport, and regulatory gene expression. These nutrient cycling gene levels were positively correlated with soil nutrient availability. Our findings revealed distinct ecological strategies: Ridge communities employ resource-conservative tactics, minimizing microbial investments to endure nutrient scarcity, whereas slope populations adopt competitive strategies through enriched high-efficiency metabolic genes and symbiotic microbial recruitment to withstand resource competition. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 5536 KiB  
Article
Synergistic Impact of Midlatitude Westerly and East Asian Summer Monsoon on Mid-Summer Precipitation in North China
by Ke Shang, Xiaodong Liu, Xiaoning Xie, Yingying Sha, Xuan Zhao, Jiahuimin Liu and Anqi Wang
Atmosphere 2025, 16(6), 658; https://doi.org/10.3390/atmos16060658 - 29 May 2025
Viewed by 411
Abstract
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, [...] Read more.
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, the concurrent variations of mid-summer westerly and EASM are categorized into two configurations: strong westerly–strong EASM (SS) and weak westerly–weak EASM (WW). At the synoptic timescale, the SS configuration significantly enhances precipitation in NC, whereas the WW configuration suppresses mid-summer rainfall. The underlying mechanism is that the SS pattern stimulates an anomalous quasi-barotropic cyclone–anticyclone pair over the Mongolian Plateau–Yellow Sea region. Two anomalous water vapor channels (westerly-driven and EASM-driven water vapor transport) are established in the southern and western peripheries of this cyclone–anticyclone pair, ensuring abundant moisture supply over NC. Meanwhile, frequently occurring westerly jet cores in northern NC form a jet entrance region, favoring strong upper-level divergent pumping and deep accents in its southern flank. This synergy between strong westerlies and EASM enhances both the moisture transports and ascending movements, thereby increasing precipitation over NC. Conversely, the atmospheric circulation associated with the WW pattern exhibits opposite characteristics, resulting in decreased NC rainfall. Our findings elucidate the synoptic-scale influences of westerly–monsoon synergy on mid-summer rainfall, through regulating moisture transports and westerly jet-induced dynamic uplift, potentially improving predictive capabilities for mid-summer precipitation forecasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 24414 KiB  
Article
Current and Future Geographical Distribution and Potential Habitat of Carpinus fangiana Hu (Betulaceae) Under Different Climate Change Scenarios
by Runan Zhao, Qianqian He, Xiaojie Chu and Zunling Zhu
Horticulturae 2025, 11(6), 575; https://doi.org/10.3390/horticulturae11060575 - 23 May 2025
Viewed by 345
Abstract
Climate change has greatly affected the survival and distribution of various species. Understanding the distribution of species and their responses to climate change is helpful for species conservation and the utilization of germplasm resources. Carpinus fangiana is endemic to China, and it is [...] Read more.
Climate change has greatly affected the survival and distribution of various species. Understanding the distribution of species and their responses to climate change is helpful for species conservation and the utilization of germplasm resources. Carpinus fangiana is endemic to China, and it is used as an ornamental plant and in traditional Chinese medicine. However, its distribution remains unclear. In this study, we aimed to reconstruct the current and future ecological niches of C. fangiana. The prediction results indicated that annual precipitation and elevation are the key factors limiting its distribution. Our research found that it also exists in southern Chongqing and southwestern Hunan, and distinct suitable distribution areas and core suitable areas have been detected in these areas. Currently, the suitable distribution areas and core suitable areas of C. fangiana are mainly located in southwestern China around the Sichuan Basin. Although it is distributed in southeastern Yunnan, no distinct suitable distribution areas were detected there. In contrast, suitable distribution areas and core suitable areas were detected in the Qinling and Dabashan mountains, the mountainous areas in western Hubei, and southeastern Xizang, where C. fangiana is not currently distributed. Future climate change will likely have a considerable impact on its distribution, with a clear trend of suitable distribution areas migrating toward higher latitudes and elevations. The suitable distribution areas located in southeastern Xizang and northwestern Yunnan are expected to be lost in the future. In particular, under the high-concentration scenario, a substantial loss of suitable distribution areas is predicted. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

16 pages, 4455 KiB  
Article
Elevational Patterns and Environmental Drivers of Dominant Bacterial Communities in Alpine Forest Soils of Mt. Taibai, China
by Zhigang Li, Xin Wei and Yanbing Qi
Forests 2025, 16(5), 814; https://doi.org/10.3390/f16050814 - 14 May 2025
Viewed by 432
Abstract
Alpine ecosystems, as one of the most representative terrestrial ecosystems, have garnered significant attention due to their susceptibility to human activities and climate change. However, the distribution patterns and driving factors of alpine soil bacterial communities remain to be further explored, especially for [...] Read more.
Alpine ecosystems, as one of the most representative terrestrial ecosystems, have garnered significant attention due to their susceptibility to human activities and climate change. However, the distribution patterns and driving factors of alpine soil bacterial communities remain to be further explored, especially for different dominant phyla. This study investigated the soil bacterial community composition, elevational patterns, and relationships between bacterial diversity and environmental factors at four elevation gradients (2406–3204 m) on Mt. Taibai, Qinling Mountains, China, using 16S rRNA sequencing. The results showed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Proteobacteria, and Chloroflexi, accounting for over 69% of the bacterial sequences in soil samples. Dominant bacterial communities exhibit distinct elevation gradient patterns in diversity and community structure. The α-diversity of Actinobacteria and Chloroflexi decreases with increasing elevation, whereas that of Proteobacteria and Acidobacteria increases. Moreover, the community structure of Actinobacteria shows greater variation across elevations than the other three dominant bacterial groups, with significant differences observed among elevations. Redundancy analysis and distance decay analysis revealed that elevation was significantly correlated with the soil bacterial community structure (p < 0.01). Different dominant bacterial communities were regulated by distinct environmental factors, providing strong evidence for understanding microbial community assembly. Therefore, the α- and β-diversity of soil bacteria on Mt. Taibai exhibit distinct elevational variations, and elevation-driven plant diversity and pH may be key factors shaping the spatial distribution of soil bacteria. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop