Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,810)

Search Parameters:
Keywords = Q-RTS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19617 KB  
Article
In Vivo and In Vitro Antioxidant Effects of Arthrospira platensis Polysaccharide Component 1 (PAP-1)
by Haifeng Yuan, Yuheng Wei, Zhaoyuan He, Xinrui Wang, Xiaoli Yu, Qiuhua Wang, Meiling Yu and Tingjun Hu
Antioxidants 2025, 14(11), 1358; https://doi.org/10.3390/antiox14111358 (registering DOI) - 13 Nov 2025
Abstract
Arthrospira platensis polysaccharide component 1 (PAP-1), a purified polysaccharide monomer isolated from Arthrospira platensis, exhibits pronounced antioxidant activity. To investigate the in vivo and in vitro regulatory effects of PAP-1 on antioxidant enzyme activities and inflammatory mediators in mice and RAW264.7 cells, [...] Read more.
Arthrospira platensis polysaccharide component 1 (PAP-1), a purified polysaccharide monomer isolated from Arthrospira platensis, exhibits pronounced antioxidant activity. To investigate the in vivo and in vitro regulatory effects of PAP-1 on antioxidant enzyme activities and inflammatory mediators in mice and RAW264.7 cells, the mice were administered PAP-1 by gavage, and the cells were cultured with PAP-1. Subsequently, serum, lung, spleen, and thymus tissues from mice, as well as the cultured RAW264.7 cells, were collected for analysis using RNA sequencing, commercial assay kits, immunohistochemistry, RT-qPCR, and Western blotting. The results demonstrated that PAP-1 significantly reduced the levels of oxidative stress-related indicators (NO, iNOS, MDA, MPO, and XOD), while markedly enhancing the activities of antioxidant enzymes (SOD, CAT, and GSH-Px) (p < 0.05), a trend consistently observed in both in vivo and in vitro experiments. Furthermore, PAP-1 upregulated the expression of key antioxidant genes and proteins, including HO-1, NQO1, GCLM, p62, Prdx1, and SLC7A11. Collectively, these findings indicate that PAP-1 exerts regulatory antioxidant effects in mice and RAW264.7 cells by enhancing antioxidant enzyme activity and suppressing oxidative stress responses, underscoring its potential as a natural antioxidant agent. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
16 pages, 681 KB  
Article
SOX9, GATA3, and GATA4 Overexpression in Liposarcomas: Insights into the Molecular Biology of Adipocytic Sarcomas
by Andrei-Ionuț Patrichi, Zsolt Kovács, Ioan Jung and Simona Gurzu
Int. J. Mol. Sci. 2025, 26(22), 10981; https://doi.org/10.3390/ijms262210981 - 13 Nov 2025
Abstract
Liposarcomas represent a heterogeneous group of malignant mesenchymal neoplasms, with diverse histological subtypes and molecular alterations. This study aimed to investigate the gene expression profiles of SOX9, GATA3, and GATA4 in liposarcoma subtypes and to assess their associations with clinicopathological parameters. Forty-two formalin-fixed, [...] Read more.
Liposarcomas represent a heterogeneous group of malignant mesenchymal neoplasms, with diverse histological subtypes and molecular alterations. This study aimed to investigate the gene expression profiles of SOX9, GATA3, and GATA4 in liposarcoma subtypes and to assess their associations with clinicopathological parameters. Forty-two formalin-fixed, paraffin-embedded liposarcoma samples were analyzed. Total RNA was extracted, reverse-transcribed, and quantified by qRT-PCR using GAPDH as an endogenous control. Relative quantification (RQ) values were categorized, and statistical analyses included Fisher’s exact test, Kaplan–Meier survival analysis, and Cox proportional hazards modeling. SOX9 expression significantly varied among histological subtypes (p = 0.017), with ALT/WDLS cases showing a predominance of high-level expression (RQ > 50 in 12/15 cases), in contrast to myxoid subtypes clustering mainly in the 10–50 RQ range. GATA4 overexpression correlated with smaller tumor size (<100 mm) (p = 0.049), being more frequent in 15/20 small tumors compared to 10/22 larger ones. GATA3 and GATA4 demonstrated the strongest inter-gene correlation (r = 0.68, p < 0.05), suggesting possible functional interplay. Kaplan–Meier analysis revealed no statistically significant survival differences for individual gene expression, but a high combined GATA3–GATA4 signature was associated with a favorable trend. These findings indicate that SOX9, GATA3, and GATA4 are broadly upregulated in liposarcomas, with subtype- and size-dependent expression patterns. The strong association between GATA3 and GATA4 expression supports their potential synergistic role in tumor biology. Integration of these molecular markers into diagnostic and prognostic workflows may enhance subtype characterization and inform targeted therapeutic strategies. Further studies in larger cohorts are warranted to validate these biomarkers and explore their mechanistic interplay in liposarcoma pathogenesis. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Fourth Edition)
Show Figures

Figure 1

20 pages, 6594 KB  
Article
Genome-Wide Identification and Characterization of the VOZ Gene Family in Gossypium hirsutum L. and Functional Characterization in Abiotic Stress and Somatic Embryogenesis
by Mengmeng Jiang, Conghua Feng, Junbo Zhen, Linlin Liu, Di Liu, Shuling Zhang and Jina Chi
Int. J. Mol. Sci. 2025, 26(22), 10965; https://doi.org/10.3390/ijms262210965 - 12 Nov 2025
Abstract
Vascular Plant One-Zinc finger (VOZ) transcription factors are pivotal regulators of plant growth and stress adaptation, yet their functional roles in Gossypium hirsutum, a key fiber crop, remain poorly characterized. In this study, we systematically identified six VOZ genes in G. hirsutum [...] Read more.
Vascular Plant One-Zinc finger (VOZ) transcription factors are pivotal regulators of plant growth and stress adaptation, yet their functional roles in Gossypium hirsutum, a key fiber crop, remain poorly characterized. In this study, we systematically identified six VOZ genes in G. hirsutum and conducted a comprehensive analysis of their phylogenetic relationships, genomic distribution, promoter architecture, and expression profiles. Phylogenetic classification placed the GhVOZ proteins into three distinct clades, and chromosomal localization revealed that family expansion was likely driven by segmental duplication events. Promoter analysis uncovered an abundance of stress-related cis-regulatory elements, suggesting a potential role in abiotic stress signaling. Consistent with this, expression profiling demonstrated that GhVOZ1/3, GhVOZ2/4/5, and GhVOZ6 were specifically induced under drought, salt, and cold stress, respectively, with qRT-PCR further confirming their tissue-specific dynamic regulation under salt treatment. Furthermore, the GhVOZ family exhibited stage-specific expression patterns during somatic embryogenesis. GhVOZ1, GhVOZ3, and GhVOZ4 were upregulated at the early induction phase, implicating them in the initiation of cell reprogramming. In contrast, GhVOZ2 and GhVOZ4 showed sustained expression in embryogenic callus at later stages, suggesting a role in maintaining embryogenic competence, whereas GhVOZ5—preferentially expressed in non-embryogenic callus—may act as a repressor of embryogenesis. Synteny analysis further highlighted evolutionary conservation and subgenomic divergence of VOZ genes in G. hirsutum. Collectively, these findings establish GhVOZs as key regulators integrating abiotic stress response and somatic embryogenesis, providing a genetic framework for future functional studies and crop improvement. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
23 pages, 3043 KB  
Article
Study on the Function of ID2 Gene in Granulosa Cells of Ovaries of Hetian Sheep and Its Correlation Analysis with Lambing Traits
by Huiping Sun, Xinkun Wang, Lexiao Zhu, Gul Muhammad Shahbaz, Ruohuai Gu, Qiaoyan Huang, Wei Li and Feng Xing
Animals 2025, 15(22), 3271; https://doi.org/10.3390/ani15223271 - 12 Nov 2025
Abstract
Reproductive efficiency is a key determinant of sheep productivity, yet Hetian sheep remain limited by relatively low fecundity despite their adaptability to harsh environments. The inhibitor of DNA binding 2 (ID2) gene is known to regulate cell proliferation and differentiation, but its specific [...] Read more.
Reproductive efficiency is a key determinant of sheep productivity, yet Hetian sheep remain limited by relatively low fecundity despite their adaptability to harsh environments. The inhibitor of DNA binding 2 (ID2) gene is known to regulate cell proliferation and differentiation, but its specific role in sheep reproduction is not well understood. This study aimed to characterize the ID2 gene in Hetian sheep and to assess its functional association with ovarian granulosa cells and litter size. The coding sequence of ovine ID2 was cloned and analyzed using bioinformatics tools. Tissue-specific expression patterns were measured by quantitative PCR at different pubertal stages. A total of 157 ewes were genotyped to identify single-nucleotide polymorphisms (SNPs) and their association with litter size. Functional studies were performed by lentiviral overexpression of ID2 in granulosa cells, with effects evaluated using CCK-8 proliferation assays, ELISA for hormone secretion, and RT-qPCR for related gene expression. ID2 was highly expressed in the ovary, particularly during puberty. Four SNPs (g.18202368 A>T, g.18202372 G>A, g.18202431 G>C, g.18202472 G>C) were significantly associated with increased litter size. Overexpression of ID2 promoted granulosa cell proliferation, increased progesterone, decreased estradiol, and altered expression of key genes in the TGF-β/BMP-SMAD signaling pathway. The ID2 gene plays a crucial role in ovarian function and reproductive regulation in Hetian sheep. Its polymorphisms and functional impact on granulosa cells suggest that ID2 is a promising candidate gene for marker-assisted selection to improve reproductive efficiency in sheep. Full article
Show Figures

Figure 1

15 pages, 2879 KB  
Article
Transcriptomics Data Mining to Identify Novel Regulatory Genes of Iron Uptake in Drought-Stressed Wheat
by Mohamed Najib Saidi, Omeima Rebai, Fadhila Hachani, Gianpiero Vigani and Stefania Astolfi
Int. J. Mol. Sci. 2025, 26(22), 10955; https://doi.org/10.3390/ijms262210955 - 12 Nov 2025
Abstract
Understanding the molecular crosstalk between drought and iron (Fe) homeostasis is crucial for developing drought-tolerant wheat cultivars with enhanced nutrient quality. In this study, transcriptomic data mining identified 23,271 and 5933 differentially expressed genes (DEGs) under drought and Fe deficiency, respectively, with 2479 [...] Read more.
Understanding the molecular crosstalk between drought and iron (Fe) homeostasis is crucial for developing drought-tolerant wheat cultivars with enhanced nutrient quality. In this study, transcriptomic data mining identified 23,271 and 5933 differentially expressed genes (DEGs) under drought and Fe deficiency, respectively, with 2479 DEGs in response to both stresses. Notably, this overlapping set included significant numbers of genes encoding transcription factors (TFs) (149 genes), Fe homeostasis components (274 genes), and those involved in phytohormones pathways (245 genes), particularly the abscisic acid (ABA) pathway. Gene Ontology (GO) analysis revealed specific and commonly affected biological processes, such as response to abiotic stimulus and heme binding. Furthermore, co-expression network analysis revealed modules highly enriched with genes involved in transcriptional regulation and Fe uptake, enabling the identification of key hub regulatory genes, belonging to the MYB, NAC, BHLH, and AP2/ERF families, involved in the shared stress response. Finaly, the expression of a set of candidate TF-encoding genes was validated using qRT-PCR in durum wheat under drought and Fe starvation, providing a detailed overview of the possible shared regulatory mechanisms linking drought and Fe deficiency responses. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 1049 KB  
Article
Functional Characterization of Nuclear Receptor MuFTZ-F1 in the Bean Flower Thrips, Megalurothrips usitatus
by Zexin Zhong, Jianxing Li, Jian Chen, Chunxiao Yang, Chaoqun Zhang, Riyuan Tang, Wen Xie, Youjun Zhang and Huipeng Pan
Agronomy 2025, 15(11), 2593; https://doi.org/10.3390/agronomy15112593 - 11 Nov 2025
Abstract
The development of novel control strategies for the major cowpea pest Megalurothrips usitatus requires a deeper understanding of its critical molecular regulators. The nuclear receptor Fushi-tarazu factor 1 (FTZ-F1) is a conserved master regulator of insect development and reproduction, yet its [...] Read more.
The development of novel control strategies for the major cowpea pest Megalurothrips usitatus requires a deeper understanding of its critical molecular regulators. The nuclear receptor Fushi-tarazu factor 1 (FTZ-F1) is a conserved master regulator of insect development and reproduction, yet its function in M. usitatus remains uncharacterized. In this study, we investigated the expression and functional role of MuFTZ-F1 in this pest. RT-qPCR analysis revealed ubiquitous MuFTZ-F1 expression across all developmental stages and in major adult tissues. RNA interference (RNAi)-mediated knockdown of MuFTZ-F1 in the 2nd instar nymphs caused severe developmental defects, including impaired eclosion and significantly increased mortality. Mechanistically, silencing led to a significant reduction in the molting hormone ecdysone, accounting for the observed molting arrest. Furthermore, MuFTZ-F1 knockdown significantly decreased dopamine titers in both nymphs and female adults, suggesting its involvement in regulating this key biogenic amine beyond developmental processes. Our results provide the first functional evidence that MuFTZ-F1 is indispensable for nymphal development and survival in M. usitatus, mediated through the regulation of ecdysone. The profound lethal effect of MuFTZ-F1 silencing underscores its promise as a target for RNAi-based pest management strategies against this economically important pest. Full article
(This article belongs to the Special Issue Genetically Modified (GM) Crops and Pests Management)
Show Figures

Figure 1

16 pages, 2526 KB  
Article
Genome-Wide Screening for MYB Transcription Factors Involved in Flavonoid Glycoside Biosynthesis in Carthamus tinctorius L.
by Xiaohan Yu, Bin Xian, Lijun Peng, Xunjian Wu, Juncheng Zhang, Yuanyuan Li, Yueying Hu and Jiang Chen
Genes 2025, 16(11), 1376; https://doi.org/10.3390/genes16111376 - 11 Nov 2025
Abstract
Background: Safflower (Carthamus tinctorius L.) is a multipurpose crop with both medicinal and economic values. Flavonoid glycosides are the core bioactive components of this species for preventing and treating cardiovascular and cerebrovascular diseases, yet their specific regulatory mechanisms remain insufficiently systematically elucidated. [...] Read more.
Background: Safflower (Carthamus tinctorius L.) is a multipurpose crop with both medicinal and economic values. Flavonoid glycosides are the core bioactive components of this species for preventing and treating cardiovascular and cerebrovascular diseases, yet their specific regulatory mechanisms remain insufficiently systematically elucidated. Methods: Based on the whole-genome data of Carthamus tinctorius L., key MYB transcription factors regulating the flavonoid glycoside biosynthesis pathway in safflower were screened and verified via MeJA treatment. Results: A total of 202 MYB transcription factors were identified, and 18 candidate genes were screened out. Further analysis showed that four genes (HH_019113, HH_009268, HH_009443 and HH_029380) were extremely significantly positively correlated with flavonid glycoside biosynthesis genes. After MeJA treatment, RT-qPCR analysis showed that their expression levels were significantly different. Conclusions: With the objective of elucidating the biosynthesis mechanism of flavonoid glycosides in safflower and exploring key regulatory genes, this study identified four MYB transcription factors that regulate flavonoid glycoside biosynthesis, providing new insights into elucidating the biosynthesis mechanism of flavonoid glycosides in safflower and offering targets for the construction of its molecular regulatory network and the improvement of medicinal quality and molecular breeding technology Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 4341 KB  
Article
Moon Jellyfish Mucin and Collagen Attenuate Catabolic Activity in Chondrocytes but Show Limited Efficacy in an Osteoarthritis Rat Model
by Haruka Omura, Eriko Toyoda, Takayuki Baba, Ryoka Uchiyama, Masahiko Watanabe and Masato Sato
Int. J. Mol. Sci. 2025, 26(22), 10920; https://doi.org/10.3390/ijms262210920 - 11 Nov 2025
Abstract
Cartilage regeneration has long been a major challenge in the treatment of osteoarthritis (OA). Aiming to develop a simple outpatient treatment for knee OA, we have demonstrated the potential of combining Nomura’s jellyfish mucin (JM) and hyaluronic acid (HA) to contribute to cartilage [...] Read more.
Cartilage regeneration has long been a major challenge in the treatment of osteoarthritis (OA). Aiming to develop a simple outpatient treatment for knee OA, we have demonstrated the potential of combining Nomura’s jellyfish mucin (JM) and hyaluronic acid (HA) to contribute to cartilage repair and regeneration in chondrocytes. In this study, we examined the effects of moon jellyfish JM and jellyfish collagen (JC) on chondrocytes. Polydactyly-derived chondrocytes (PDs), obtained from polydactyly surgery, were used. PDs were cultured in media supplemented with JM or JC, harvested, and evaluated by RT-qPCR. The effects of simultaneous addition of the inflammatory cytokine IL-1β were also examined. Furthermore, the effects on rat articular cartilage were investigated. A mono-iodoacetate (MIA) model was created by intra-articular injection in 6-week-old rats, followed by four intra-articular injections. Evaluations were performed using macroscopic observation and histological assessment with the OARSI scoring system. In vitro, the addition of JM or JC significantly affected the expression of ACAN, MMP3, and ADAMTS5. However, in vivo, intra-articular injection of JM alone did not significantly suppress cartilage degeneration in MIA-induced OA model rats. Both JM and JC may contribute to the suppression of cartilage degeneration as well as to cartilage repair and regeneration, even in the absence of HA. However, further studies are needed to clarify the optimal conditions, such as dosage, timing, and delivery method, that are required to achieve these effects in articular cartilage. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

15 pages, 921 KB  
Article
Genomic Characterization of Predominant Delta Variant (B.1.617.2 and AY.120 Sub-Lineages) SARS-CoV-2 Detected from AFI Patients in Ethiopia During 2021–2022
by Musse Tadesse Chekol, Dejenie Shiferaw Teklu, Adamu Tayachew, Wolde Shura, Admikew Agune, Aster Hailemariam, Aynalem Alemu, Mesfin Wossen, Abdulhafiz Hassen, Melaku Gonta, Neamin Tesfay, Tesfu Kasa and Nigatu Kebede
Genes 2025, 16(11), 1366; https://doi.org/10.3390/genes16111366 - 11 Nov 2025
Abstract
Background: The Delta variant of SARS-CoV-2 virus, one of the alarming variants of concern (VOC) with a distinct mutation characteristic, was immensely detrimental and a significant cause of the prolonged pandemic waves. This study aimed to analyze the genetic characteristics of the [...] Read more.
Background: The Delta variant of SARS-CoV-2 virus, one of the alarming variants of concern (VOC) with a distinct mutation characteristic, was immensely detrimental and a significant cause of the prolonged pandemic waves. This study aimed to analyze the genetic characteristics of the predominant Delta variant in acute febrile illness (AFI) patients in Ethiopia. Method: Nasopharyngeal swab samples were collected from AFI patients in four hospitals from February 2021 to June 2022 and tested for SARS-CoV-2 by using RT-qPCR. Of 101 positive samples, 48 stored specimens were re-tested, and 26 with sufficient RNA quality (Ct < 30) were sequenced using whole-genome sequencing to identify variants of concern, specific virus lineages and mutation features. Result: Delta variants (21J clade) were found predominant among all the sequenced SARS-CoV-2 isolate (80.8%, 21/26). AY.120 (46.2%) and B.1.617.2 (26.9%) were the predominant sub-lineages of the Delta variant. Omicron (21k, Pango BA.1.1/BA.1.17/BA.1) and Alpha (20I, Pango B.1.1.7) variants accounted for 11.5% and 7.7% of the total sequenced samples. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Ethiopia. The number of mutations increases dramatically from Alpha (~35 avg) to Delta (~42 avg) to Omicron (~56 avg). The Delta variant revealed a spike mutation on L452R and T478K and P681R, and was characterized by the double deletion E156-F157- in Spike protein. Conclusions: The findings are indicative of a gradual change in the genetic coding of the virus underscoring the importance of ongoing genomic surveillance to track the evolution and spread of SARS-CoV-2 and other emerging virus. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 9506 KB  
Article
The Bitter Gourd Transcription Factor McNAC087 Confers Cold Resistance in Transgenic Arabidopsis
by Xuetong Yang, Kai Wang, Feng Guan, Bo Shi, Yuanyuan Xie, Chang Du, Tong Tang, Zheng Yang, Shijie Ma and Xinjian Wan
Plants 2025, 14(22), 3440; https://doi.org/10.3390/plants14223440 - 10 Nov 2025
Viewed by 89
Abstract
Low-temperature stress severely restricts the growth, development, and yield of bitter gourd (Momordica charantia L.), a warm-loving crop with inherent low cold tolerance. NAC transcription factors (TFs) serve as crucial regulators in plant responses to abiotic stresses like cold, while their roles in [...] Read more.
Low-temperature stress severely restricts the growth, development, and yield of bitter gourd (Momordica charantia L.), a warm-loving crop with inherent low cold tolerance. NAC transcription factors (TFs) serve as crucial regulators in plant responses to abiotic stresses like cold, while their roles in coping with cold stress in bitter gourd remain unclear. This study identified cold-responsive genes in bitter gourd and characterized the candidate NAC TF McNAC087 through transcriptome analysis. Transcriptome sequencing of cold-tolerant (R) and cold-sensitive (S) bitter gourd inbred lines under 5 °C stress (0 h, 6 h, 12 h, 24 h) revealed 1157 co-expressed differentially expressed genes (DEGs), enriched via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in cold tolerance-related pathways (signal transduction, carbohydrate/amino acid metabolism). RT-qPCR showed higher McNAC087 expression in R than S under cold stress, and subcellular localization confirmed it as a nucleus-localized protein. McNAC087 overexpression in Arabidopsis enhanced cold tolerance after sequential stress (−14 °C for 1.5 h, 4 °C for 16 h, and 22 °C recovery for 2 days), with less damage compared to wildtype (WT). Physiologically, overexpressing lines had higher proline, elevated superoxide dismutase/peroxidase/catalase (SOD/POD/CAT) activities, lower malondialdehyde/hydrogen peroxide/superoxide anion (MDA/H2O2/O2) accumulation under cold stress, and upregulated ICE-CBF-COR pathway marker genes (CBF1, DREB2A, RD29A, COR47). In conclusion, McNAC087 enhances Arabidopsis cold tolerance by regulating physiology and activating cold-responsive genes, providing insights for bitter gourd cold tolerance mechanisms and crop breeding. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding—2nd Edition)
Show Figures

Figure 1

12 pages, 1065 KB  
Article
Cost-Effective Method for Using Cross-Species Spike-In RNA for Normalization and Quantification in Polysome Profiling Experiments
by Krishna Bhattarai, Angelo Slade and Martin Holcik
Genes 2025, 16(11), 1354; https://doi.org/10.3390/genes16111354 - 10 Nov 2025
Viewed by 106
Abstract
Background/Objective: Accurate quantification of RNA is critical for RNA-based experiments such as polysome profiling and RT-qPCR. These techniques often rely on control RNA to ensure consistency and reliability across experiments. Commonly used spike-in controls, including in vitro-synthesized mRNA or ERCC mixes, are expensive [...] Read more.
Background/Objective: Accurate quantification of RNA is critical for RNA-based experiments such as polysome profiling and RT-qPCR. These techniques often rely on control RNA to ensure consistency and reliability across experiments. Commonly used spike-in controls, including in vitro-synthesized mRNA or ERCC mixes, are expensive and time-consuming, limiting accessibility for many laboratories. This study aims to evaluate the use of cross-species total RNA as a cost-effective and reliable spike-in control. Methods: We developed a method using total RNA from a non-homologous species—specifically, yeast RNA—as a spike-in control for experiments involving human cells. The approach was tested across multiple RNA-based assays to assess its impact on quantification accuracy, reproducibility, and interference with endogenous RNA measurements. Additionally, we applied this method to evaluate the translation efficiency of Bcl-xL mRNA in mammalian cells under hypertonic stress. Results: Cross-species spike-in RNA demonstrated minimal interference with experimental outcomes and provided consistent normalization across replicates. The use of yeast RNA enabled accurate fold-change calculations and improved detection of experimental variability. In the case study involving Bcl-xL mRNA, the spike-in control facilitated reliable assessment of translation efficiency under stress conditions. Conclusions: Using total RNA from a non-related species as a spike-in control offers a practical, economical alternative to conventional methods. This approach enhances the reliability of RNA quantification without compromising experimental integrity, making it especially valuable for resource-limited settings, particularly in polysome and RT-qPCR workflows. Full article
(This article belongs to the Special Issue Roles of RNAs in Biology)
Show Figures

Graphical abstract

18 pages, 1329 KB  
Article
First Molecular Insights into the Presence of Canine Kobuvirus in Ecuadorian Dogs Through the Standardization of a Sensitive SYBR Green RT-qPCR Assay
by Camila Sanchez-Castro, Anthony Loor-Giler, Silvana Santander-Parra, Martín Campos, Renán Mena-Pérez, Santiago Prado-Chiriboga and Luis Nuñez
Vet. Sci. 2025, 12(11), 1076; https://doi.org/10.3390/vetsci12111076 - 10 Nov 2025
Viewed by 193
Abstract
Canine Kobuvirus (CaKoV) has been identified as an agent involved in gastrointestinal diseases among dogs worldwide, with a particular impact on young individuals. This study reports the first molecular detection of CaKoV in Ecuadorian dogs with gastroenteritis, using a sensitive SYBR Green-based RT-qPCR [...] Read more.
Canine Kobuvirus (CaKoV) has been identified as an agent involved in gastrointestinal diseases among dogs worldwide, with a particular impact on young individuals. This study reports the first molecular detection of CaKoV in Ecuadorian dogs with gastroenteritis, using a sensitive SYBR Green-based RT-qPCR assay. The assay demonstrated high sensitivity, with detection limits approaching a single copy of genetic material (1 copy/μL), with a standard efficiency curve of 100.6% and a correlation coefficient of 0.997, facilitating accurate CaKoV detection even at a minimal number of gene copies; it was also highly specific for CaKoV genome amplification, as no amplification was shown for other canine enteric viruses [Canine Parvovirus (CPV-2), Canine Astrovirus (CaAstV), Canine Coronavirus (CCoV), and Canine Distemper Virus (CDV)], and demonstrated strong reproducibility across different runs. A total of 250 fecal samples were used to validate the assay and detect the presence of CaKoV, with 91 samples testing positive for CaKoV, confirming the virus’ presence across multiple provinces in Ecuador, with Pichincha reporting the highest number of positive samples. Phylogenetic analysis of the partial 3D gene sequence exhibited a nucleotide identity ≥ 90% with sequences of CaKoV strains from different countries around the world. Co-infections with other enteric viruses such as CPV-2, CCoV, and CaAstV were observed in 61.3% of CaKoV-positive samples from dogs with gastroenteritis, with triple co-infections (CPV-2, CaAstV, and CaKoV) being the most frequently detected combination in the study. The present study showed that CaKoV is circulating in domestic dogs affected with gastroenteric disease and in apparently healthy dogs. This work establishes CaKoV as a possible contributor to canine gastroenteritis in Ecuador, in addition to the typical viruses such as CPV-2 and CCoV; moreover, this study illustrates a molecular assay that is both rapid and reliable for the diagnosis of CaKoV. Full article
Show Figures

Figure 1

15 pages, 3147 KB  
Article
circRNA-02213 Regulates Milk Fat Synthesis in Bovine Mammary Epithelial Cells via ACSS2
by Meixia Sui, Gaofei Duan, Zongwei Wang, Shuhua Guo and Jingjing Fan
Genes 2025, 16(11), 1351; https://doi.org/10.3390/genes16111351 - 9 Nov 2025
Viewed by 144
Abstract
Background: In the bovine mammary gland, de novo fatty acid synthesis is a critical process for milk fat production, in which acetyl-CoA synthetase 2 (ACSS2) serves as a key enzyme by converting acetate into acetyl-CoA. This metabolic pathway is intricately regulated by non-coding [...] Read more.
Background: In the bovine mammary gland, de novo fatty acid synthesis is a critical process for milk fat production, in which acetyl-CoA synthetase 2 (ACSS2) serves as a key enzyme by converting acetate into acetyl-CoA. This metabolic pathway is intricately regulated by non-coding RNAs, particularly through the competitive endogenous RNA (ceRNA) mechanism.Purpose: To elucidate the regulatory role and molecular mechanism of the circRNA-02213/miR-328/ACSS2 axis in the lipid metabolism of bovine mammary epithelial cells (BMECs). Methods: Bioinformatic prediction and dual-luciferase reporter assays were employed to verify the targeting interactions among circRNA-02213, miR-328, and ACSS2. In BMECs, qRT-PCR, Western blot, triglyceride/cholesterol quantification, Oil Red O staining, and cell proliferation assays were used to evaluate the effects of this axis on key lipid-metabolic indices and cellular phenotypes. Results: circRNA-02213 functioned as a molecular “sponge” that sequestered miR-328, thereby upregulating ACSS2 expression. Functionally, circRNA-02213 overexpression markedly promoted triglyceride and cholesterol synthesis, lipid droplet accumulation, and BMEC proliferation; whereas miR-328 exerted significant inhibitory effects on these lipid-metabolic processes and cell proliferation. Conclusions: This study demonstrates that circRNA-02213 acts as a ceRNA to relieve miR-328-mediated repression of ACSS2, constituting a critical network that regulates milk fat synthesis and metabolism. The circRNA-02213/miR-328/ACSS2 axis represents a potential molecular target for improving milk lipid quality in ruminants. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4659 KB  
Article
Integrated Transcriptomic and Metabolomic Analyses of the Response of Lutein Accumulation in Marigold Petals to Light Intensity
by Haimin Zhang, Hong Qiu, Meng Xue and Palinuer Aiwaili
Genes 2025, 16(11), 1350; https://doi.org/10.3390/genes16111350 - 9 Nov 2025
Viewed by 170
Abstract
[Background] Marigold (Tagetes erecta L.) is the main source of the natural pigment lutein. [Methods] In this study, Marigold served as the experimental material for systematic observation of floral organ development. Based on floral morphology and lutein content, the full-flowering stage was [...] Read more.
[Background] Marigold (Tagetes erecta L.) is the main source of the natural pigment lutein. [Methods] In this study, Marigold served as the experimental material for systematic observation of floral organ development. Based on floral morphology and lutein content, the full-flowering stage was identified as the optimal harvesting period. [Results] Under different light intensity gradients (30–1500 μmol·m−2·s−1), the highest lutein content in petals occurred at ≈500 μmol·m−2·s−1. Increased light intensities promoted flowering and enlarged flower diameter while significantly shortening the growth cycle. Transcriptome analysis revealed that light intensity variation markedly influenced the expression of genes related to metabolic pathways, plant hormone signal transduction, and carotenoid biosynthesis, and enriched transcription factor families including bHLH, MYB, NAC, and WRKY. Metabolomic profiling identified lutein esters, such as lutein dimyristate and lutein dipalmitate, as the dominant accumulated forms, with their contents positively correlated with light intensity; under high light, intermediate metabolites, including α-cryptoxanthin and zeaxanthin, were significantly up-regulated. [Conclusions] This study clarifies the molecular mechanism by which light intensity precisely regulates lutein accumulation through coordinated synthesis, esterification, and degradation pathways, offering a theoretical foundation for light-regulated cultivation of T. erecta L. and efficient lutein production. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 10386 KB  
Article
Genome-Wide Identification of 13 miR5200 Loci in Wheat and Investigation of Their Regulatory Roles Under Stress
by Yuan Zhou, Chenyu Zhao, Huiyuan Yan, Jiahao Yang, Mingyang Chen, Xia Wang, Pingfan Xie, Yongjing Ni, Jishan Niu, Jiangping Ren, Guojun Xia, Yongchun Li and Lei Li
Genes 2025, 16(11), 1349; https://doi.org/10.3390/genes16111349 - 9 Nov 2025
Viewed by 199
Abstract
Background/Objectives: miR5200 is miRNA unique to Poaceae plants. Induced under short-day conditions, it modulates flowering time by regulating the florigen FT gene expression. However, to date, the genetic locus responsible for mature miR5200 formation remains experimentally unvalidated, and its biological function in abiotic [...] Read more.
Background/Objectives: miR5200 is miRNA unique to Poaceae plants. Induced under short-day conditions, it modulates flowering time by regulating the florigen FT gene expression. However, to date, the genetic locus responsible for mature miR5200 formation remains experimentally unvalidated, and its biological function in abiotic stress responses remains unknown. This has hindered systematic elucidation of miR5200’s physiological role and molecular mechanisms. Methods: This study utilized wheat as the research material. First, through bioinformatics analysis at the genomic level, 13 potential candidate tae-miR5200 gene loci were screened. Subsequently, the authenticity of these gene loci was systematically validated by combining tobacco transient transfection-based GUS staining assay and quantitative real-time PCR (qRT-PCR) to detect expression levels. Building upon this foundation, the expression patterns of tae-miR5200 under abiotic stresses such as low temperature, drought, and salinity, as well as SA, ABA, IAA, GA3, and MeJA treatments, were further investigated. Results: Experimental validation confirmed that 7 out of 13 potential gene loci are authentic and functional, and tae-miR5200 exhibited specific expression changes under different types of abiotic stress. Conclusions: This study confirms the authenticity of tae-miR5200 gene loci, effectively eliminating interference from bioinformatics-predicted false-positive loci in subsequent functional studies. It provides an experimental foundation for further investigation into the molecular mechanisms of tae-miR5200 in wheat responses to abiotic stress. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop