Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = PrCeMn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1145 KiB  
Article
Solvent Extraction of Rare-Earth Elements (REEs) from Lignite Coal In Situ
by Ian K. Feole and Bruce C. Folkedahl
Fuels 2025, 6(3), 61; https://doi.org/10.3390/fuels6030061 - 19 Aug 2025
Viewed by 106
Abstract
Plugs of lignite coal from multiple formations were subjected to a series of tests to determine the amount of rare-earth elements (REEs) to be extracted from coal in an in situ mining operation. These tests were used to determine if extraction of REEs [...] Read more.
Plugs of lignite coal from multiple formations were subjected to a series of tests to determine the amount of rare-earth elements (REEs) to be extracted from coal in an in situ mining operation. These tests were used to determine if extraction of REEs and other critical minerals in an in situ environment would be possible for future attempts as an alternative to extraction mining. The tests involved subjecting whole lignite coal plugs from the Twin Butte coal seams in North Dakota to flow-through tests of water, and concentrations of 1.0 M ammonium nitrate, 1.0 M and 1.5 M sulfuric acid, and 1.0 M and 1.5 M hydrochloric acid (HCl) solvents at different concentrations and combinations. The flow-through testing was conducted by alternating the solvent and water flow-through to simulate an in situ mining scenario. The samples were analyzed for their concentrations of REEs (lanthanum [La], cerium [Ce], praseodymium [Pr], neodymium [Nd], samarium [Sm], europium [Eu], gadolinium [Gd], terbium [Tb], dysprosium [Dy], holmium [Ho], erbium [Er], thulium [Tm], ytterbium [Yb], lutetium [Lu], yttrium [Y], and scandium [Sc], as well as germanium [Ge] and cobalt [Co], manganese [Mn], nickel [Ni], and barium [Ba]). Results from the testing showed that REEs were extracted in concentrations that were on average higher using sulfuric acid (8.9%) than with HCl (5.8%), which had a higher recovery than ammonium nitrate. Tests were performed over a standard time interval for comparison between solvents, while a second set of testing was done to determine recovery rates of REEs and critical minerals under certain static and constant flow-through times to determine extraction in relation to time. Critical minerals had a higher recovery rate than the REEs across all tests, with a slightly higher recovery of light REEs over heavy REEs. Full article
Show Figures

Figure 1

16 pages, 2126 KiB  
Article
Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells
by Esra Balkanlı Ünlü, Meltem Karaismailoğlu Elibol and Halit Eren Figen
Catalysts 2025, 15(8), 786; https://doi.org/10.3390/catal15080786 - 18 Aug 2025
Viewed by 298
Abstract
In this study, cerium with different ratios (x = 0 (zero), 0.1, 0.15, 0.5) was added to the PrMn structure as an A-site material to evaluate characteristic behavior as a potential cathode material for solid oxide fuel cells. The PrxCe1−x [...] Read more.
In this study, cerium with different ratios (x = 0 (zero), 0.1, 0.15, 0.5) was added to the PrMn structure as an A-site material to evaluate characteristic behavior as a potential cathode material for solid oxide fuel cells. The PrxCe1−xMnO3−δ electrocatalysts were synthesized using the sol–gel combustion method and were assessed for their electrochemical, phase, and structural properties, as well as desorption and reducibility capabilities. Phase changes, from orthorhombic to cubic structures observed upon cerium additions, were evaluated via the X-Ray diffraction method. X-Ray photoelectron spectroscopy (XPS) showed the valence states of the surface between the Ce4+/Ce3+ and Pr4+/Pr3+ redox pairs, while oxygen temperature programmed desorption (O2-TPD) analysis was used to evaluate the oxygen adsorption and desorption behavior of the electrocatalysts. Redox characterization, evaluated via hydrogen atmosphere temperature-programmed reduction (H2-TPR), revealed that a higher cerium ratio in the structure lowered the reduction temperature, suggesting a better dynamic oxygen exchange capability at a lower temperature for the Pr0.5Ce0.5MnO3−δ catalyst compared to the electrochemical behavior analysis by the electrochemical impedance spectroscopy method. Moreover, the symmetrical cell tests with Pr0.5Ce0.5MnO3−δ electrodes showed that, when combined with scandia-stabilized zirconia (ScSZ) electrolyte, the overall polarization resistance was reduced by approximately 28% at 800 °C compared to cells with yttria-stabilized zirconia (YSZ) electrolyte. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Viewed by 229
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

14 pages, 1706 KiB  
Article
Thermal Stabilization Activities of Metal Oxide γ-Irradiated Styrene–Isoprene–Styrene Nanocomposites
by Traian Zaharescu, Ademar B. Lugāo, Violeta Mangalagiu and Radu Mirea
J. Compos. Sci. 2025, 9(4), 192; https://doi.org/10.3390/jcs9040192 - 17 Apr 2025
Viewed by 773
Abstract
This study provides insights into the stabilization effects of certain oxides (CeO2, Cr2O3, Cd2O3, In2O3, MnO2, MgO, Nd2O3, and Pr2O3 [...] Read more.
This study provides insights into the stabilization effects of certain oxides (CeO2, Cr2O3, Cd2O3, In2O3, MnO2, MgO, Nd2O3, and Pr2O3) in styrene–isoprene–styrene triblock copolymers with respect to neat materials. This study was performed via chemiluminescence (CL), which allowed for the determination of the main parameters characterizing the interphase coexistence: the oxidation induction times, oxidation rates, and onset oxidation temperatures. The improvement in the thermal performances of the pristine and γ-ray-processed samples at a moderate dose was highlighted differently due to the electronic interactions on the particle surface. While the non-isothermal CL measurements pointed to a weaker evolution of oxidation in the studied composites at a higher temperature range over 160 °C, the isothermal CL determinations revealed a delayed start of oxidation, slower oxidation rates, and greater activation energies in the nanocomposite aging patterns. The different individual behaviors of the investigated formulations were ascribed to the dissimilar electronic interactions between the particles and the surrounding matrix, where the oxidation initiators were formed by the molecular fragmentation of the polymer macromolecules. The kinetic features illustrate the influence of the peculiarities due to the electronic interactions. The higher resistance shown by the irradiated samples compared with the non-processed compositions demonstrates the stabilization efficiency of the fillers studied. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

17 pages, 3001 KiB  
Article
Potentially Toxic Elements in Soils, Channel Banks, and Riverbed Sediments of a Watershed Under Agricultural Pressure
by Kamylla Gonçalves Oliveira Assis, Rennan Cabral Nascimento, Marcos Paulo Rodrigues Teixeira, Fernando Braga Rimá, Clístenes Williams Araújo do Nascimento, Cinthia Maria Cordeiro Atanázio Cruz Silva, Katerin Manuelita Encina Oliva, José Wellington Batista Lopes, Ronny Sobreira Barbosa, Vijay Pal Singh and Yuri Jacques Agra Bezerra da Silva
Hydrology 2025, 12(3), 45; https://doi.org/10.3390/hydrology12030045 - 27 Feb 2025
Cited by 1 | Viewed by 904
Abstract
Anthropogenic activities increase the amount of potentially toxic elements (PTEs) in the environment and consequently affect the quality of soils and water resources. This study aimed to investigate the concentrations, spatial distribution, and sources of soil and sediment pollution at the watershed scale [...] Read more.
Anthropogenic activities increase the amount of potentially toxic elements (PTEs) in the environment and consequently affect the quality of soils and water resources. This study aimed to investigate the concentrations, spatial distribution, and sources of soil and sediment pollution at the watershed scale for the following PTEs: aluminum (Al), barium (Ba), cerium (Ce), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), lanthanum (La), manganese (Mn), neodymium (Nd), nickel (Ni), lead (Pb), praseodymium (Pr), scandium (Sc), samarium (Sm), thorium (Th), titanium (Ti), vanadium (V), yttrium (Y) and zinc (Zn). One hundred and eighty-eight composite samples collected from preserved Cerrado areas, channel banks, agricultural areas, pastures, and riverbed sediments were used. Environmental contamination was assessed using geochemical indices and ecological risk assessment. The concentration of these elements often followed the order of riverbed sediment > channel bank > pasture > agricultural areas. Based on the pollutant load index, riverbed sediments and channel banks were classified as polluted, acting as a source of PTEs. The Gurgueia watershed, Brazil, was classified as unpolluted to moderately polluted, with low to no enrichment by PTEs. These values serve as a basis for future monitoring of the impacts resulting from the advance of agricultural and industrial activities in the region. Full article
Show Figures

Figure 1

37 pages, 1633 KiB  
Review
Molecular and Environmental Determinants of Addictive Substances
by Małgorzata Lorek, Piotr Kamiński, Jędrzej Baszyński, Tadeusz Tadrowski, Edward Jacek Gorzelańczyk, Julia Feit, Natalia Kurhaluk, Alina Woźniak and Halina Tkaczenko
Biomolecules 2024, 14(11), 1406; https://doi.org/10.3390/biom14111406 - 5 Nov 2024
Viewed by 1747
Abstract
Knowledge about determinants of addiction in people taking addictive substances is poor and needs to be supplemented. The novelty of this paper consists in the analysis of innovative aspects of current research about relationships between determinants of addiction in Polish patients taking addictive [...] Read more.
Knowledge about determinants of addiction in people taking addictive substances is poor and needs to be supplemented. The novelty of this paper consists in the analysis of innovative aspects of current research about relationships between determinants of addiction in Polish patients taking addictive substances and rare available data regarding the relationships between these factors from studies from recent years from other environments, mainly in Europe, and on the development of genetic determinants of physiological responses. We try to explain the role of the microelements Mn, Fe, Cu, Co, Zn, Cr, Ni, Tl, Se, Al, B, Mo, V, Sn, Sb, Ag, Sr, and Ba, the toxic metals Cd, Hg, As, and Pb, and the rare earth elements Sc, La, Ce, Pr, Eu, Gd, and Nd as factors that may shape the development of addiction to addictive substances or drugs. The interactions between factors (gene polymorphism, especially ANKK1 (TaqI A), ANKK1 (Taq1 A-CT), DRD2 (TaqI B, DRD2 Taq1 B-GA, DRD2 Taq1 B-AA, DRD2-141C Ins/Del), and OPRM1 (A118G)) in patients addicted to addictive substances and consumption of vegetables, consumption of dairy products, exposure to harmful factors, and their relationships with physiological responses, which confirm the importance of internal factors as determinants of addiction, are analyzed, taking into account gender and region. The innovation of this review is to show that the homozygous TT mutant of the ANKK1 TaqI A polymorphism rs 1800497 may be a factor in increased risk of opioid dependence. We identify a variation in the functioning of the immune system in addicted patients from different environments as a result of the interaction of polymorphisms. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

11 pages, 3001 KiB  
Article
Enhanced Oxygen Vacancy Formation in CeO2-Based Materials and the Water–Gas Shift Performance
by Sangaroon Kaewtong, Thanathon Sesuk and Pannipa Tepamatr
ChemEngineering 2024, 8(4), 79; https://doi.org/10.3390/chemengineering8040079 - 2 Aug 2024
Viewed by 1703
Abstract
The role of dopants (Sm, Tb and Pr) on the water–gas shift performance of CeO2-based materials was studied. Modification of CeO2 with Sm significantly improved the water–gas shift performance. The catalytic activities of doped CeO2 were increased when compared [...] Read more.
The role of dopants (Sm, Tb and Pr) on the water–gas shift performance of CeO2-based materials was studied. Modification of CeO2 with Sm significantly improved the water–gas shift performance. The catalytic activities of doped CeO2 were increased when compared with the catalytic activities of pure ceria (65% conversion at 600 °C for Ce5%SmO and 50% conversion at 600 °C for CeO2). The key factors driving the water–gas shift performance were reduction behavior and oxygen vacancy concentration. In the redox mechanism of the WGS reaction, CeO2 plays a crucial role in transferring oxygen to CO through changes in the oxidation state. Therefore, Sm is effective in catalyzing the water–gas shift activity because the addition of Sm into CeO2 decreases the surface reduction temperature and alters the oxygen transportation ability through the redox mechanism. XRD results suggested that Mn+ (M = Sm, Tb and Pr) incorporate into ceria lattice to form a solid solution resulting in unit cell enlargement. The defect structure inside the CeO2 lattice generates a strain on the oxide lattice and facilitates the generation of oxygen vacancies. XANES analysis revealed that Sm reduced CeO2 easily by transporting its electron into the d-orbitals of Ce, thus giving rise to more Ce3+ at the CeO2 surface. The presence of Ce3+ is a result of oxygen vacancy. Therefore, the high content of Ce3+ provides more oxygen vacancies. The oxygen vacancy formation results in easy oxygen exchange. Thus, reactive oxygen species can be generated and easily reduced by CO reactant, which enhances the WGS activity. Full article
Show Figures

Figure 1

11 pages, 2872 KiB  
Article
First-Principles Study of Ti-Doping Effects on Hard Magnetic Properties of RFe11Ti Magnets
by Chengyuan Xu, Lin Wen, Anjian Pan, Lizhong Zhao, Yuansen Liu, Xuefeng Liao, Yu Pan and Xuefeng Zhang
Crystals 2024, 14(6), 507; https://doi.org/10.3390/cryst14060507 - 27 May 2024
Cited by 2 | Viewed by 1320
Abstract
Due to the rare earth supply shortage, ThMn12-type RFe12-based (R is the rare earth element) magnets with lean rare earth content are gaining more concern. Most ThMn12-type RFe12 structures are thermodynamically metastable and require doping of [...] Read more.
Due to the rare earth supply shortage, ThMn12-type RFe12-based (R is the rare earth element) magnets with lean rare earth content are gaining more concern. Most ThMn12-type RFe12 structures are thermodynamically metastable and require doping of the stabilizing element Ti. However, the Ti-doping effects on the hard magnetic properties of RFe11Ti have not been thoroughly investigated. Herein, based on density functional theory calculations, we report the Ti-doping effects on the phase stability, intrinsic hard magnetic properties and electronic structures of RFe11Ti (R = La, Ce, Pr, Nd, Sm, Y, Zr). Our results indicate that Ti-doping not only increases their phase stability, but also enhances the magnetic hardness of ground-state RFe12 phases. Particularly, it leads to the transition of CeFe11Ti and PrFe11Ti from easy-plane to easy-axis anisotropy. Charge density distributions demonstrate that Ti-doping breaks the original symmetry of the R-site crystal field, which alters the magnetic anisotropy of RFe11Ti. Projected densities of states reveal that the addition of Ti results in the shift of occupied and unoccupied f-electron energy levels of rare earth elements, affecting their magnetic exchange. This study provides an insight into regulating the hard magnetic properties of RFe12-based magnets by Ti-doping. Full article
(This article belongs to the Special Issue The Synthesis and Prospects of Magnetic Materials)
Show Figures

Figure 1

21 pages, 2058 KiB  
Article
Biostimulant Response of Foliar Application of Rare Earth Elements on Physiology, Growth, and Yield of Rice
by Cynthia de Oliveira, Silvio Junio Ramos, Guilherme Soares Dinali, Teotonio Soares de Carvalho, Fábio Aurélio Dias Martins, Valdemar Faquin, Evaristo Mauro de Castro, Jorge Eduardo Souza Sarkis, José Oswaldo Siqueira and Luiz Roberto Guimarães Guilherme
Plants 2024, 13(11), 1435; https://doi.org/10.3390/plants13111435 - 22 May 2024
Cited by 9 | Viewed by 2351
Abstract
Rare earth elements (REEs) have been intentionally used in Chinese agriculture since the 1980s to improve crop yields. Around the world, REEs are also involuntarily applied to soils through phosphate fertilizers. These elements are known to alleviate damage in plants under abiotic stresses, [...] Read more.
Rare earth elements (REEs) have been intentionally used in Chinese agriculture since the 1980s to improve crop yields. Around the world, REEs are also involuntarily applied to soils through phosphate fertilizers. These elements are known to alleviate damage in plants under abiotic stresses, yet there is no information on how these elements act in the physiology of plants. The REE mode of action falls within the scope of the hormesis effect, with low-dose stimulation and high-dose adverse reactions. This study aimed to verify how REEs affect rice plants’ physiology to test the threshold dose at which REEs could act as biostimulants in these plants. In experiment 1, 0.411 kg ha−1 (foliar application) of a mixture of REE (containing 41.38% Ce, 23.95% La, 13.58% Pr, and 4.32% Nd) was applied, as well as two products containing 41.38% Ce and 23.95% La separately. The characteristics of chlorophyll a fluorescence, gas exchanges, SPAD index, and biomass (pot conditions) were evaluated. For experiment 2, increasing rates of the REE mix (0, 0.1, 0.225, 0.5, and 1 kg ha−1) (field conditions) were used to study their effect on rice grain yield and nutrient concentration of rice leaves. Adding REEs to plants increased biomass production (23% with Ce, 31% with La, and 63% with REE Mix application) due to improved photosynthetic rate (8% with Ce, 15% with La, and 27% with REE mix), favored by the higher electronic flow (photosynthetic electron transport chain) (increase of 17%) and by the higher Fv/Fm (increase of 14%) and quantum yield of photosystem II (increase of 20% with Ce and La, and 29% with REE Mix), as well as by increased stomatal conductance (increase of 36%) and SPAD index (increase of 10% with Ce, 12% with La, and 15% with REE mix). Moreover, adding REEs potentiated the photosynthetic process by increasing rice leaves’ N, Mg, K, and Mn concentrations (24–46%). The dose for the higher rice grain yield (an increase of 113%) was estimated for the REE mix at 0.72 kg ha−1. Full article
(This article belongs to the Special Issue Abiotic Stress Signaling in Cereals, Especially Wheat)
Show Figures

Figure 1

19 pages, 15319 KiB  
Article
Synthesis of Ce-La-Pr/Mn-O Ternary Oxide Composites via Co-Precipitation and Synergistic Photocatalytic Degradation of Cr(VI)
by Xiujuan Feng and Zebang Yu
Water 2024, 16(8), 1178; https://doi.org/10.3390/w16081178 - 20 Apr 2024
Viewed by 2198
Abstract
This study utilized a straightforward co-precipitation method to successfully synthesize Ce-La-X(Mn/Pr)-O composite materials for treating simulated hexavalent chromium (Cr(VI)) wastewater with distinctively porous and fluffy textures, along with tubular morphologies. Notably, Ce-La-Mn-O demonstrated a remarkable specific surface area of 96.2698 m2/g, [...] Read more.
This study utilized a straightforward co-precipitation method to successfully synthesize Ce-La-X(Mn/Pr)-O composite materials for treating simulated hexavalent chromium (Cr(VI)) wastewater with distinctively porous and fluffy textures, along with tubular morphologies. Notably, Ce-La-Mn-O demonstrated a remarkable specific surface area of 96.2698 m2/g, mesoporous architecture with a pore diameter of 6.9511 nm, and an impressive adsorption capacity of 88.79 mg/g. Under optimized conditions, specifically an initial Cr(VI) concentration of 20 mg/L, a Ce-La-Mn-O dosage of 0.8 g/L, a reaction temperature of 40 °C, an initial pH of 6, and with the application of simulated daylight, the removal rate of Cr(VI) exceeded 98% within 15 min. Even after three cycles, the removal rate was maintained at above 80%. Based on a comprehensive suite of morphological, structural, and performance characterizations, the introduction of Mn/Pr was found to modify the structure of Ce-La-O and enhance the synergistic interactions among the metals within the Ce-La-O framework. In addition, Ce-La-Mn-O exhibited superior visible light absorption properties and dual functionality for catalytic reduction and adsorption. All three materials were found to form -OH polar bond functional groups, converting it to Cr(III) and subsequently forming Cr(OH)3. The Ce-La-X(Mn/Pr)-O composite materials provide a robust theoretical foundation for exploring the dual functional synergistic effects in the efficient removal of Cr(VI) from aqueous systems, indicating their vast potential for practical applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 11884 KiB  
Article
Interaction of the C9orf72-Amyotrophic Lateral Sclerosis-Related Proline–Arginine Dipeptide Repeat Protein with the RNA-Binding Protein NOVA1 Causes Decreased Expression of UNC13A Due to Enhanced Inclusion of Cryptic Exons, Which Is Reversed by Betulin Treatment
by Ru-Huei Fu, Hui-Jye Chen and Syuan-Yu Hong
Cells 2023, 12(20), 2476; https://doi.org/10.3390/cells12202476 - 18 Oct 2023
Cited by 1 | Viewed by 2631
Abstract
C9orf72 mutations are the most common form of familial amyotrophic lateral sclerosis (C9-ALS). It causes the production of proline–arginine dipeptide repeat proteins (PR-DPRs) in motor neurons (MNs), leading to the molecular pathology characteristic of ALS. UNC13A is critical for maintaining the synaptic function [...] Read more.
C9orf72 mutations are the most common form of familial amyotrophic lateral sclerosis (C9-ALS). It causes the production of proline–arginine dipeptide repeat proteins (PR-DPRs) in motor neurons (MNs), leading to the molecular pathology characteristic of ALS. UNC13A is critical for maintaining the synaptic function of MNs. Most ALS patients have nuclear deletion of the splicing repressor TDP-43 in MNs, which causes inclusion of the cryptic exon (CE) of UNC13A mRNA, resulting in nonsense-mediated mRNA decay and reduced protein expression. Therefore, in this study, we explored the role of PR-DPR in CE inclusion of UNC13A mRNA. Our results showed that PR-DPR (PR50) induced CE inclusion and decreased the protein expression of UNC13A in human neuronal cell lines. We also identified an interaction between the RNA-binding protein NOVA1 and PR50 by yeast two-hybrid screening. NOVA1 expression is known to be reduced in patients with ALS. We found that knockdown of NOVA1 enhanced CE inclusion of UNC13A mRNA. Furthermore, the naturally occurring triterpene betulin can inhibit the interaction between NOVA1 and PR50, thus preventing CE inclusion of UNC13A mRNA and protein reduction in human neuronal cell lines. This study linked PR-DPR with CE inclusion of UNC13A mRNA and developed candidate therapeutic strategies for C9-ALS using betulin. Full article
Show Figures

Graphical abstract

27 pages, 5239 KiB  
Article
Multi-Element Assessment of Potentially Toxic and Essential Elements in New and Traditional Food Varieties in Sweden
by Barbro Kollander, Ilia Rodushkin and Birgitta Sundström
Foods 2023, 12(9), 1831; https://doi.org/10.3390/foods12091831 - 28 Apr 2023
Cited by 10 | Viewed by 3906
Abstract
With the global movement toward the consumption of a more sustainable diet that includes a higher proportion of plant-based foods, it is important to determine how such a change could alter the intake of cadmium and other elements, both essential and toxic. In [...] Read more.
With the global movement toward the consumption of a more sustainable diet that includes a higher proportion of plant-based foods, it is important to determine how such a change could alter the intake of cadmium and other elements, both essential and toxic. In this study, we report on the levels of a wide range of elements in foodstuffs that are both traditional and “new” to the Swedish market. The data were obtained using analytical methods providing very low detection limits and include market basket data for different food groups to provide the general levels in foods consumed in Sweden and to facilitate comparisons among traditional and “new” food items. This dataset could be used to estimate changes in nutritional intake as well as exposure associated with a change in diet. The concentrations of known toxic and essential elements are provided for all the food matrices studied. Moreover, the concentrations of less routinely analyzed elements are available in some matrices. Depending on the food variety, the dataset includes the concentrations of inorganic arsenic and up to 74 elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, W, V, Y, Zn, Zr, rare Earth elements (REEs) (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, and Yb), platinum group elements (PGEs) (Ir, Os, Pd, Pr, Pt, Re, Rh, Ru, and Pr), and halogens (Br, Cl, and I)). The main focus (and thus the most detailed information on variation within a given food group) is on foods that are currently the largest contributors to dietary cadmium exposure in Sweden, such as pasta, rice, potato products, and different sorts of bread. Additionally, elemental concentrations in selected food varieties regarded as relatively new or “novel” to the Swedish market are provided, including teff flour, chia seeds, algae products, and gluten-free products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 4415 KiB  
Article
Geochemical Evidence of Ediacaran Phosphate Nodules in the Volyno-Podillya-Moldavia Basin, Ukraine
by Ahmet Sasmaz, Bilge Sasmaz, Yevheniia Soldatenko, Abderrazak El Albani, Edward Zhovinsky and Nataliya Kryuchenko
Minerals 2023, 13(4), 539; https://doi.org/10.3390/min13040539 - 12 Apr 2023
Cited by 2 | Viewed by 2917
Abstract
The sedimentary basin of Podillya (Volyno-Podillya-Moldavia) is situated in the southwest of the Ukrainian crystalline shield and belongs to the middle part of the Upper Neoproterozoic section of the Moguiliv-Podilska Group. By analyzing the primary oxide, trace, and rare-earth element compositions of the [...] Read more.
The sedimentary basin of Podillya (Volyno-Podillya-Moldavia) is situated in the southwest of the Ukrainian crystalline shield and belongs to the middle part of the Upper Neoproterozoic section of the Moguiliv-Podilska Group. By analyzing the primary oxide, trace, and rare-earth element compositions of the phosphate nodules in the area, this study sought to shed light on the potential precipitation characteristics of the Ediacaran Sea, where phosphate nodules were created. The mean major oxide contents of the nodules were 50.8 wt.% CaO, 34.2 wt.% P2O5, 5.29 wt.% SiO2, 4.77 wt.% LOI, 1.69 wt% Fe2O3, 1.63 wt% Al2O3, and 0.35 wt.% MnO. The average trace element concentrations were 183 ppm Ba, 395 ppm Sr, 13.4 ppm Ni, 32.7 ppm Cr, 62.2 ppm Zn, 764 ppm Y, 16 ppm V, 10.8 ppm As, 75.8 ppm Cu, 84 ppm Pb, 2.1 ppm U, 1.7 ppm Th, and 4.2 ppm Co. The trace element contents were generally low and indicated an assemblage of Cu, Y, As, Cd, and Pb enrichments in comparison to PAAS. The total REE concentrations varied from 1638 ppm to 3602 ppm. The nodules had medium REE (MREE) enrichments and showed similar REE patterns normalized to PAAS. All the nodules had strongly negative Ce, Pr, and Y anomalies and substantially negative Eu anomalies, with four samples being exceptions. These abnormalities suggest that oxic and suboxic sea conditions existed at the time the nodules formed. The extremely high REE concentrations are thought to be the result of REEs being redistributed between the authigenic and detrital phases that were created during the diagenetic equilibration of phosphate with pore water. The genetic hypothesis for phosphate nodule formation states that the nodules were generally formed in oxic and suboxic seawater and were precipitated on slopes in response to a significant upwelling from a deeper basin with abundant organic matter under anoxic/suboxic conditions. The majority of the organic material at the water–sediment interface of the seafloor underwent oxidation before phosphate was released into the pore water of the sediment. Full article
(This article belongs to the Special Issue Formation, Mineralogy, Geochemistry of Phosphate Deposits)
Show Figures

Figure 1

13 pages, 2374 KiB  
Article
Characterization and Differentiation of Wild and Cultivated Berries Based on Isotopic and Elemental Profiles
by Gabriela Cristea, Adriana Dehelean, Romulus Puscas, Florina-Dorina Covaciu, Ariana Raluca Hategan, Csilla Müller Molnár and Dana Alina Magdas
Appl. Sci. 2023, 13(5), 2980; https://doi.org/10.3390/app13052980 - 25 Feb 2023
Cited by 1 | Viewed by 2327
Abstract
The isotopic content (δ13C, δ2H, δ18O) and concentrations of 30 elements (Li, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Ag, Cd, Ba, Pb, La, Ce, Pr, Nd, [...] Read more.
The isotopic content (δ13C, δ2H, δ18O) and concentrations of 30 elements (Li, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Ag, Cd, Ba, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, and Tb) were determined in different wild and cultivated berries (raspberry, seaberry, blackberry, cranberry, and blueberry). Partial least squares discriminant analysis (PLS-DA) was applied in order to develop models for differentiating berries according to their botanical origin and growing system. δ13C, δ2H, δ18O, Li, Na, Mg, P, Ca, V, Mn, Co, Ni, Zn, As, Rb, Sr, Ba, and Eu were identified as significant elements for the differentiation of berry species, based on which an 85% PLS-DA model accuracy was obtained. Similarly, the PLS-DA model developed for the growing system differentiation correctly classified 94.4% of the cultivated berries and 77.2% of the wild ones, based on the main predictors: δ13C, δ18O, Li, Na, Ca, Cr, Mn, Ni, Rb, and Ba. The developed PLS-DA model for the discrimination of wild blueberries from cultivated ones showed excellent levels of sensitivity (100%), specificity (100%), and accuracy (100%). Full article
(This article belongs to the Special Issue Emerging Technologies in Food and Beverages Authentication)
Show Figures

Figure 1

22 pages, 8958 KiB  
Article
Geochemical Approach to Determine the Possible Precipitation Parameters of the Coniacian–Santonian Mazıdağı Phosphates, Mardin, Turkey
by Derya Yildirim Gundogar and Ahmet Sasmaz
Minerals 2022, 12(12), 1544; https://doi.org/10.3390/min12121544 - 30 Nov 2022
Cited by 12 | Viewed by 3471
Abstract
The Tethyan phosphates were formed during the Upper Cretaceous and Eocene interval as a result of the collision of the African–Arabian and Eurasian plates and the closing of the Neo-Tethys Ocean. This study aimed to reveal the possible precipitation parameters of these phosphates [...] Read more.
The Tethyan phosphates were formed during the Upper Cretaceous and Eocene interval as a result of the collision of the African–Arabian and Eurasian plates and the closing of the Neo-Tethys Ocean. This study aimed to reveal the possible precipitation parameters of these phosphates by examining the main oxide, trace element, and rare earth element contents of the phosphates in the study region. The mean major oxide concentrations of the phosphates were found to be 51.6 wt.% CaO, 21.2 wt.% P2O5, 8.03 wt.% SiO2, 18.1 wt.% CO2, 0.51 wt.% K2O, 0.12 wt.% Fe2O3, 0.05 wt.% Al2O3, 0.18 wt.% MgO, and 0.02 wt.% MnO. The average trace element concentrations were 79 ppm Ba, 1087 ppm Sr, 0.23 ppm Rb, 14.7 ppm Ni, 108 ppm Cr, 262 ppm Zn, 27 ppm Cd, 21.6 ppm Y, 58 ppm V, 6.43 ppm As, 30.3 ppm Cu, 1.36 ppm Pb, 6.32 ppm Zr, 39 ppm U, 0.21 ppm Th, and 1.33 ppm Co. The average trace element contents were 1742 ppm, with this indicating an enrichment assemblage of Sr, Cd, As, and Zn in comparison to PAAS (The Post-Archean Australian Shale). The total REE concentrations in the Mazıdağı phosphates varied from 3.30 to 43.1 ppm, with a mean of 22.1 ppm recorded. All phosphates showed heavy REE (HREE) enrichments and had similar REE patterns to PAAS (The Post-Archean Australian Shale). All samples had strongly negative Ce and positive Eu, Pr, and Y anomalies. These anomalies indicate the existence of oxic and suboxic marine conditions during the formation of the phosphates. According to the proposed genetic model, the phosphates mostly formed in the oxic and suboxic zones of the Tethys Ocean and were precipitated on slopes that depended on strong upwelling from an organic-rich basin in anoxic/suboxic conditions from deeper seawater. The Pb isotope data obtained also indicate the existence of a deep-sea hydrothermal contribution to this phosphate formation. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

Back to TopTop