Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = Photo-Fenton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3925 KiB  
Article
Anchor Biochar from Potato Peels with Magnetite Nanoparticles for Solar Photocatalytic Treatment of Oily Wastewater Effluent
by Manasik M. Nour, Hossam A. Nabwey and Maha A. Tony
Catalysts 2025, 15(8), 731; https://doi.org/10.3390/catal15080731 - 31 Jul 2025
Viewed by 173
Abstract
The current work is established with the object of modifying the source of Fenton system and substituting iron source as a catalyst with magnetite/potato peels composite material (POT400-M) to be an innovative solar photocatalyst. The structural and morphological characteristics of the material are [...] Read more.
The current work is established with the object of modifying the source of Fenton system and substituting iron source as a catalyst with magnetite/potato peels composite material (POT400-M) to be an innovative solar photocatalyst. The structural and morphological characteristics of the material are assessed through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique is applied to treat oil spills that pollute seawater. The effectiveness of the operating parameters is studied, and numerical optimization is applied to optimize the most influential parameters on the system, including POT400-M catalyst (47 mg/L) and hydrogen peroxide reagent (372 mg/L) at pH 5.0, to maximize oil removal, reaching 93%. Also, the aqueous solution and wastewater temperature on the oxidation reaction is evaluated and the reaction exhibited an exothermic nature. Kinetic modeling is evaluated, and the reaction is found to follow the second-order kinetic model. Thermodynamic examination of the data exhibits negative enthalpy (ΔH′) values, confirming that the reaction is exothermic, and the system is verified to be able to perform at the minimal activation energy barrier (−51.34 kJ/mol). Full article
Show Figures

Graphical abstract

22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 309
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Figure 1

20 pages, 2909 KiB  
Article
Solar Photo-Fenton: An Effective Method for MCPA Degradation
by Alicia Martin-Montero, Argyro Maria Zapanti, Gema Pliego, Jose A. Casas and Alicia L. Garcia-Costa
Processes 2025, 13(7), 2257; https://doi.org/10.3390/pr13072257 - 15 Jul 2025
Viewed by 376
Abstract
The extensive use of herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA), coupled with its limited biodegradability, has led to its ubiquitous presence in aquatic environments. This work investigates the removal of MCPA (100 mg/L) in the aqueous phase via solar photo-Fenton. The process was carried out [...] Read more.
The extensive use of herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA), coupled with its limited biodegradability, has led to its ubiquitous presence in aquatic environments. This work investigates the removal of MCPA (100 mg/L) in the aqueous phase via solar photo-Fenton. The process was carried out in a 700 mL reactor using a Xe lamp that simulates solar radiation (λ: 250–700 nm). A parametric study was conducted to assess the influence of dissolved O2 on the reaction medium, Fe2+ dosage, H2O2 concentration and pH0. The results indicate that dissolved O2 boosts pollutant mineralization, even working at sub-stoichiometric H2O2 concentrations. Under optimal reaction conditions ([Fe2+]: 7.5 mg/L, [H2O2]0: 322 mg/L (stoichiometric dose), pH0: 3.5), the MCPA reached almost complete mineralization (XTOC: 98.40%) in 180 min. Phytotoxicity and ecotoxicity assessments of treated effluents revealed that even working at sub-stoichiometric H2O2 dosages, toxicity decreases with the solar photo-Fenton treatment. Finally, the solar photo-Fenton process was evaluated in relevant matrices (river water and WWTP secondary effluent) and a realistic pollutant concentration (100 µg/L). In all cases, the pollutant degradation was ≥70% in 60 min, demonstrating the potential of this technology as a tertiary treatment. Full article
(This article belongs to the Special Issue Recent Advances in Wastewater Treatment and Water Reuse)
Show Figures

Graphical abstract

13 pages, 537 KiB  
Review
An Overview of Electrochemical Advanced Oxidation Processes for Pesticide Removal
by Maiara A. P. Frigulio, Alexandre S. Valério and Juliane C. Forti
Processes 2025, 13(7), 2227; https://doi.org/10.3390/pr13072227 - 11 Jul 2025
Viewed by 384
Abstract
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising [...] Read more.
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising alternatives. They stand out for their efficiency in the degradation of organic compounds, minimal reliance on additional chemical reagents, and minimal generation of waste. The main methods addressed include anodic oxidation, photoelectro-oxidation, electro-Fenton and photoelectro-Fenton, which use hydroxyl radicals, a potent non-selective oxidant, to mineralize pollutants. A total of 165 studies were reviewed, with emphasis on the contributions of countries such as China, Spain, Brazil, and India. Factors such as electrode type, presence of catalysts, pH, and current density influence the effectiveness of treatments. Combined processes, especially those integrating UV light and renewable sources, have proven to be more efficient. Despite challenges related to electrode cost and durability, recent advances highlight the sustainability and scalability of EAOPs for the treatment of agricultural and industrial effluents contaminated with pesticides. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 287
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

21 pages, 3111 KiB  
Article
Iron Sludge-Derived Photo-Fenton Reaction for Laundry Wastewater Effluent Oxidation and Process Optimization into Industrial Ecology Symbiosis
by Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Shehab A. Mansour, Abdullah F. Al Naim, Adil Alshoaibi, Najeh Rekik, Manasik M. Nour and Maha A. Tony
Catalysts 2025, 15(7), 669; https://doi.org/10.3390/catal15070669 - 10 Jul 2025
Viewed by 440
Abstract
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed [...] Read more.
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed as treatment factors for their direct impact on the oxidation of organic compounds. Additionally, optimal oxidation conditions are determined using the response surface methodology (RSM) technique, and the ranges of treatment variables are analyzed. The optimum values of a pH of 2.0, Fe sludge concentration of 99 mg/L, and H2O2 content of 402 mg/L resulted in optimal organics removal of up to 98%, expressed as Chemical Oxygen Demand (COD) removal. The oxidation efficacy attained from the design is confirmed and the model validation is assessed, and the suggestive model is accepted since it possesses a correlation coefficient of 97.7%. The thermodynamic and kinetic models are also investigated, and the reaction showed that the temperature increases resulted in the oxidation efficiency being reduced. The oxidation efficiency expressed as COD reduction is clearly characterized by first-order reaction kinetics. The thermodynamic characteristics indicated that the oxidation reaction was exothermic and not spontaneous. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 6747 KiB  
Article
Fabrication of Metal–Organic Framework-Mediated Heterogeneous Photocatalyst Using Sludge Generated in the Classical Fenton Process
by Xiang-Yu Wang, Xu Liu, Wu Kuang and Hong-Bin Xiong
Nanomaterials 2025, 15(14), 1069; https://doi.org/10.3390/nano15141069 - 10 Jul 2025
Viewed by 291
Abstract
The sludge produced by the Fenton process contains mixed-valence iron particulates (hereafter called Fenton wastes). Using a solvothermal method, we fabricated a new heterogeneous photo-Fenton catalyst using Fenton wastes and metal–organic frameworks (MOFs). Nanoporous metal carboxylate (MIL-88) MOF impregnated with Fenton waste was [...] Read more.
The sludge produced by the Fenton process contains mixed-valence iron particulates (hereafter called Fenton wastes). Using a solvothermal method, we fabricated a new heterogeneous photo-Fenton catalyst using Fenton wastes and metal–organic frameworks (MOFs). Nanoporous metal carboxylate (MIL-88) MOF impregnated with Fenton waste was functionalized using 2,5-dihydroxyterephthalic acid (x-HO-MIL-88-C, x, concentration of the 2,5-dihydroxyterephthalic acid). The efficiency of x-HO-MIL-88-C was examined under visible light radiation using methylene blue (MB) as an index pollutant. We observed the best catalytic performance for MB degradation by 4-HO-MIL-88-C. In the photo-Fenton process, the simultaneous presence of singlet oxygen, superoxide, and hydroxyl radicals is confirmed by free radical quenching and electron spin resonance spectral data. These free radicals associate with holes in the non-selective degradation of MB. The 4-HO-MIL-88-C catalyst shows good stability and reusability, maintaining over 80% efficiency at the end of five consecutive cycles. This work opens up a new path for recycling Fenton wastes into usable products. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

19 pages, 2210 KiB  
Article
Kinetics of Hydroxyl Growth on Natural Rubber Depolymerization with H2O2/Fenton Using Infrared Spectroscopy
by Heri Budi Wibowo, Sutrisno Sutrisno, Hamonangan Rekso Diputro Sitompul, Retno Ardianingsih, Luthfia Hajar Abdilah, Kendra Hartaya and Ario Witjakso
Polymers 2025, 17(13), 1847; https://doi.org/10.3390/polym17131847 - 1 Jul 2025
Viewed by 300
Abstract
The kinetics of the depolymerization of natural rubber (NR) to hydroxyl-terminated natural rubber (HTNR) by hydrogen peroxide (H2O2) in the presence of a Fenton catalyst within an acidic milieu and under ultraviolet radiation has been rigorously examined utilizing infrared [...] Read more.
The kinetics of the depolymerization of natural rubber (NR) to hydroxyl-terminated natural rubber (HTNR) by hydrogen peroxide (H2O2) in the presence of a Fenton catalyst within an acidic milieu and under ultraviolet radiation has been rigorously examined utilizing infrared spectroscopy to determine the alterations in molar mass and the functional characteristics. The kinetic model was analyzed in accordance with the elementary reaction, encompassing the following mechanisms: the interaction between hydroxyl radicals and NR, producing radical NR and hydroxylated NR; the reaction wherein radical NR and hydroxyl radicals yield hydroxylated NR; and the subsequent reaction of hydroxylated NR with hydroxyl radicals producing lower radical NR, hydroxylated terminated NR, radical NR, and hydroxylated NR. The conversion of the NR polymer and the total hydroxyl content were discerned at the absorption bands of the CH2-CH2 and OH groups located at 850 cm−1 and 3400 cm−1, respectively. The absorption peak at 1850 cm−1 attributed to CH3 was employed as the reference group for calibration. The influence of the temperature on the depolymerization process conformed to the Arrhenius equation, characterized by activation energies of 750 K and 1200 K. The impact of the H2O2/Fenton ratio on the depolymerization process follows a power law with power coefficients of 1.97 and 1.82. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

20 pages, 6010 KiB  
Article
Modulating D-Band Center of SrTiO3 by Co Doping for Boosted Peroxymonosulfate (PMS) Activation Under Visible Light
by Kaining Sun, Xinyi Yang, Fei Qi, Yingjie Liu, Lijing Wang, Bo Feng, Jiankang Yu and Guangbo Che
Molecules 2025, 30(12), 2618; https://doi.org/10.3390/molecules30122618 - 17 Jun 2025
Viewed by 346
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO3, a typical perovskite metal [...] Read more.
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO3, a typical perovskite metal oxide, holds potential in the field of the photocatalytic degradation of pollutants, yet its application is limited by the wide bandgap and fast carrier recombination rates. This study optimized the photocatalytic performance of SrTiO3 by regulating its electronic structure and optical properties through cobalt (Co) doping. Experimental results (TRPL, TPV, UV–Vis DRS, ESR, etc.) and DFT calculations (GGA-PBE) demonstrated that Co doping shifted the d-band center of SrTiO3 upwards, optimized the adsorption energy of SO4, enhanced the sunlight response range, and significantly improved carrier extraction efficiency. Under visible light irradiation, 2,4-dichlorophenol (2,4-DCP) could be effectively degraded within 60 min in a wide pH range. Through Fukui function calculation (B3LYP/6-31G*) and experimental characterization analysis (HPLC-MS and IC), the possible degradation pathways of 2,4-DCP and the mechanism for photocatalysis were investigated. The toxicity analysis (T.E.S.T) confirmed the reduced toxicity of the degradation products of 2,4-DCPs. This study provides a reference for the catalyst design and optimization strategy of PMS-based advanced oxidation technology. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

28 pages, 5779 KiB  
Article
Theoretical Insight into Antioxidant Mechanisms of Trans-Isoferulic Acid in Aqueous Medium at Different pH
by Agnieszka Kowalska-Baron
Int. J. Mol. Sci. 2025, 26(12), 5615; https://doi.org/10.3390/ijms26125615 - 11 Jun 2025
Viewed by 410
Abstract
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for [...] Read more.
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for the three major pathways: hydrogen transfer (HT), radical adduct formation (RAF), and single electron transfer (SET). The results indicate that, at physiological pH, the RAF mechanism is both more exergonic and approximately eight-times faster than HT. At a higher pH, where the phenolate anion dominates, antioxidant activity is enhanced by an additional fast, diffusion-limited SET pathway. Isoferulic acid was also found to effectively chelate Fe2+ ions at pH 7.4 and above, forming stable complexes that could inhibit Fenton-type hydroxyl radical generation. Moreover, its strong UV absorption suggests a role in limiting photo-induced free radical formation. These findings not only clarify the antioxidant behavior of isoferulic acid but also provide novel theoretical insights applicable to related phenolic compounds. The compound’s multi-target antioxidant profile highlights its potential as a photoprotective agent in sunscreen formulations. Full article
(This article belongs to the Special Issue New Advances of Free-Radical Reactions in Organic Chemistry)
Show Figures

Graphical abstract

19 pages, 3536 KiB  
Article
Unlocking Synergistic Photo-Fenton Catalysis with Magnetic SrFe12O19/g-C3N4 Heterojunction for Sustainable Oxytetracycline Degradation: Mechanisms and Applications
by Song Cui, Yaocong Liu, Xiaolong Dong and Xiaohu Fan
Nanomaterials 2025, 15(11), 833; https://doi.org/10.3390/nano15110833 - 30 May 2025
Viewed by 477
Abstract
The widespread contamination of aquatic environments by tetracycline antibiotics (TCs) poses a substantial threat to public health and ecosystem stability. Although photo-Fenton processes have demonstrated remarkable efficacy in degrading TCs, their practical application is limited by challenges associated with catalyst recyclability. This study [...] Read more.
The widespread contamination of aquatic environments by tetracycline antibiotics (TCs) poses a substantial threat to public health and ecosystem stability. Although photo-Fenton processes have demonstrated remarkable efficacy in degrading TCs, their practical application is limited by challenges associated with catalyst recyclability. This study reports the development of a novel magnetic recoverable SrFe12O19/g-C3N4 heterostructure photocatalyst synthesized via a facile one-step co-calcination method using industrial-grade precursors. Comprehensive characterization revealed that nitrogen defects and the formation of heterojunction structures significantly suppress electron (e)–hole (h+) pair recombination, thereby markedly enhancing catalytic activity. The optimized 7-SFO/CN composite removes over 90% of oxytetracycline (OTC) within 60 min, achieving degradation rate constants of 0.0393 min−1, which are 9.1 times higher than those of SrFe12O19 (0.0043 min−1) and 4.2 times higher than those of g-C3N4 (0.0094 min−1). The effectively separated e play three critical roles: (i) directly activating H2O2 to generate ·OH radicals, (ii) promoting the redox cycling of Fe2+/Fe3+ ions, and (iii) reducing dissolved oxygen to form ·O2 species. Concurrently, h+ directly oxidize OTC molecules through surface-mediated reactions. Furthermore, the 7-SFO/CN composite exhibits exceptional operational stability and applicability, offering a transformative approach for scalable photocatalytic water treatment systems. This work provides an effective strategy for designing efficient and recoverable photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Catalysis for Pollution Control)
Show Figures

Graphical abstract

22 pages, 2097 KiB  
Systematic Review
An Overview of 20 Years of Pisco Spirit Research: Trends and Gaps Revealed by a Systematic Review
by Erick Saldaña, Jennifer Alvarez, Jaime Laqui-Estaña, Karina Eduardo, Juan D. Rios-Mera, César Augusto Napa-Almeyda and Jhony Mayta-Hancco
Beverages 2025, 11(3), 77; https://doi.org/10.3390/beverages11030077 - 27 May 2025
Viewed by 1135
Abstract
Pisco is an emblematic spirit in Peru and Chile, made from fermented grapes, gaining growing scientific interest over the last two decades. This study aimed to map 20 years of research on Pisco through a systematic bibliometric review. A search was conducted in [...] Read more.
Pisco is an emblematic spirit in Peru and Chile, made from fermented grapes, gaining growing scientific interest over the last two decades. This study aimed to map 20 years of research on Pisco through a systematic bibliometric review. A search was conducted in the Scopus database covering the period from 2004 to 2024, applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology for the transparent selection of scientific articles. The search strategy considered titles, abstracts, and keywords, using the terms “Pisco” and “schnapps”, excluding unrelated fields such as geology (basin, seismic, fossil). The initial search yielded 360 records. After removing non-original articles (books, book chapters, conference papers, and reviews), 101 articles remained. A further screening excluded irrelevant studies (e.g., those referring to the city of Pisco rather than the beverage), resulting in 78 articles included for final analysis. It was observed that 19% of the studies focus on the history, culture, and appellation of origin; 14% on environmental sustainability; 10% on innovation and quality; and 9% on the bioactive properties of by-products. Other areas include extraction technologies (9%), distillation process modeling (8%), and marketing and economics (8%), among others. Recent trends are related to clean production practices. Thus, Pisco by-products and their components can be exploited by applying technologies such as supercritical fluids, drying, and biofilms, while, for waste management, the processes of composting, solar photo-Fenton, and ozonation can be applied. Moreover, it is important to highlight that the valorization of Pisco by-products opens opportunities for translation into the market, particularly in developing cosmetics, nutritional supplements, and bio-packaging materials, contributing to sustainability and innovation in new industries. However, a more holistic view is still needed in Pisco research. These findings suggest that future research should prioritize the integration of consumer-based sensory evaluations and sustainable production innovations to optimize Pisco’s quality, enhance market acceptance, and promote environmentally responsible industry practices. Full article
Show Figures

Figure 1

14 pages, 2119 KiB  
Article
Hydrodynamic Cavitation-Assisted Photo-Fenton Pretreatment and Yeast Co-Culture as Strategies to Produce Ethanol and Xylitol from Sugarcane Bagasse
by Carina Aline Prado, Ana Júlia E. B. da Silva, Paulo A. F. H. P. Fernandes, Vinicius P. Shibukawa, Fanny M. Jofre, Bruna G. Rodrigues, Silvio Silvério da Silva, Solange I. Mussatto and Júlio César Santos
Catalysts 2025, 15(5), 418; https://doi.org/10.3390/catal15050418 - 24 Apr 2025
Viewed by 530
Abstract
This study explored innovative approaches to produce ethanol and xylitol from sugarcane bagasse using a hydrodynamic cavitation-assisted photo-Fenton process as the pretreatment, and yeast co-culture for hydrolysate fermentation. Pretreatment conditions were optimized (20 mg/L of iron sulfate, pH 5.0, and reaction time of [...] Read more.
This study explored innovative approaches to produce ethanol and xylitol from sugarcane bagasse using a hydrodynamic cavitation-assisted photo-Fenton process as the pretreatment, and yeast co-culture for hydrolysate fermentation. Pretreatment conditions were optimized (20 mg/L of iron sulfate, pH 5.0, and reaction time of 14 min) resulting in glucan and xylan hydrolysis yields of 96% and 89%, respectively. The hydrolysate produced under these conditions was fermented using a co-culture of Saccharomyces cerevisiae IR2 (an ethanol-producing strain) and Candida tropicalis UFMGBX12 (a xylitol-producing strain). Optimal co-culture conditions consisted of using an inoculum concentration of 1.5 g/L for each yeast strain. After 36 h of fermentation, ethanol and xylitol concentrations reached 20 g/L and 13 g/L, respectively. These results demonstrate the potential of combining hydrodynamic cavitation-assisted photo-Fenton pretreatment with co-culture fermentation to simultaneously produce ethanol and xylitol. This strategy presents a promising approach for enhancing the efficiency of lignocellulosic biorefineries. Full article
Show Figures

Graphical abstract

16 pages, 1934 KiB  
Article
Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation
by Unai Duoandicoechea, Elisabeth Bilbao-García and Natalia Villota
Appl. Sci. 2025, 15(8), 4531; https://doi.org/10.3390/app15084531 - 19 Apr 2025
Viewed by 508
Abstract
This study presents a comprehensive kinetic analysis of sulfamethoxazole (SMX) degradation by the photo-Fenton process, highlighting its potential for removing emerging micropollutants in water treatment. The degradation of SMX followed pseudo-first-order kinetics, with increasing Fe(II) concentrations significantly accelerating the oxidation rate. A kinetic [...] Read more.
This study presents a comprehensive kinetic analysis of sulfamethoxazole (SMX) degradation by the photo-Fenton process, highlighting its potential for removing emerging micropollutants in water treatment. The degradation of SMX followed pseudo-first-order kinetics, with increasing Fe(II) concentrations significantly accelerating the oxidation rate. A kinetic model was developed to describe SMX removal, aromaticity loss, and color changes during treatment. Although SMX was rapidly eliminated, intermediate aromatic and chromophoric compounds persisted, requiring extended reaction times for complete mineralization. The kinetic modeling of aromaticity and color revealed distinct degradation pathways and rate constants, showing a strong dependence on iron dosage. The formation of nitrate and sulfate was used to monitor nitrogen and sulfur mineralization, respectively. Optimal nitrate formation was achieved at 22 mol SMX: 1 mol Fe(II), beyond which excessive iron promoted radical scavenging and the formation of stable Fe–aminophenol complexes, inhibiting complete nitrogen oxidation and aromatic degradation. Moreover, excessive Fe(II) led to increased water coloration due to complexation with partially oxidized aromatic byproducts. These findings emphasize the need for optimized catalyst dosing to balance degradation efficiency and minimize secondary effects. The proposed kinetic models offer a predictive tool for improving photo-Fenton-based treatments and integrating them with biological processes to enhance micropollutant bioremediation. Full article
(This article belongs to the Special Issue Advancing Bioremediation Technologies for Emerging Micropollutants)
Show Figures

Figure 1

32 pages, 16925 KiB  
Review
Recent Advances in Iron Oxide-Based Heterojunction Photo-Fenton Catalysts for the Elimination of Organic Pollutants
by Yiqian Wu, Cong Wang, Lan Wang and Chen Hou
Catalysts 2025, 15(4), 391; https://doi.org/10.3390/catal15040391 - 17 Apr 2025
Cited by 1 | Viewed by 931
Abstract
Organic pollutants released into water bodies have posed a serious threat to aquatic ecosystems. The elimination of organic pollutants from water through the photo-Fenton process has attracted extensive attention. Among various photo-Fenton catalysts, iron oxides have been intensively studied due to their environmentally [...] Read more.
Organic pollutants released into water bodies have posed a serious threat to aquatic ecosystems. The elimination of organic pollutants from water through the photo-Fenton process has attracted extensive attention. Among various photo-Fenton catalysts, iron oxides have been intensively studied due to their environmentally benign characteristics and abundance. However, the rapid recombination of photogenerated charge carriers (e–h+) and slow Fe(III)/Fe(II) cycling of iron oxides restrict their catalytic performance. Thus, this state-of-the-art review focuses on the recent research development regarding iron oxide-based heterojunctions with enhanced catalytic performance to eliminate organic pollutants. This review provides a fundamental understanding of the iron-based heterogeneous photo-Fenton reaction. In addition, various heterojunctions for photocatalytic applications are comprehensively summarized. A thorough discussion is held on the material design for iron oxide-based heterojunctions with improved photo-Fenton catalytic performance. Ultimately, the challenges and prospects of iron oxide-based heterojunction catalysts for photo-Fenton water decontamination are outlined. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Wastewater Treatment)
Show Figures

Graphical abstract

Back to TopTop