Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Kinetic Model for Sulfamethoxazole Oxidation
- [SMX]0: initial concentration of SMX contained in the water (=50.0 mg/L)
- [SMX]: concentration of SMX contained in the water (mg/L)
- kSMX: first-order kinetic constant for the degradation of SMX (1/min)
- t: time (min)
3.2. Kinetic Model for Water Aromaticity Loss
- [Arom]0: aromaticity of initial aqueous solution of SMX (AU).
- [Arom]: aromaticity of water (AU).
- [Arom]final: aromaticity of treated water (AU).
- kArom: first-order kinetic constant for the degradation of aromatic load contained in water solutions (1/min).
3.3. Kinetic Model for Water Color Changes
3.4. Analysis of the Mineralization System by Sulfate and Nitrate Markers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- Mofijur, M.; Hasan, M.M.; Ahmed, S.F.; Djavanroodi, F.; Fattah, I.M.R.; Silitonga, A.S.; Kalam, M.A.; Zhou, J.L.; Khan, T.M.Y. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environ. Pollut. 2024, 341, 122889. [Google Scholar] [CrossRef] [PubMed]
- Picinini-Zambelli, J.; Garcia, A.L.H.; Da Silva, J. Emerging pollutants in the aquatic environments: A review of genotoxic impacts. Mutat. Res. Rev. Mutat. Res. 2025, 795, 108519. [Google Scholar] [CrossRef] [PubMed]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, N.; Li, Y.; Hu, C.; Yuan, P. Source, transport, and toxicity of emerging contaminants in aquatic environments: A review on recent studies. Environ. Sci. Pollut. Res. Int. 2023, 30, 121420–121437. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Yao, B.; Zhou, Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. Sci. Total Environ. 2024, 923, 171388. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Gulkowska, A.; Leung, H.W.; So, M.K.; Taniyasu, S.; Yamashita, N.; Yeung, L.W.Y.; Richardson, B.J.; Lei, A.P.; Giesy, J.P.; Lam, P.K.S. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res. 2008, 42, 395–403. [Google Scholar] [CrossRef]
- López-Roldán, R.; de Alda, M.L.; Gros, M.; Petrovic, M.; Martín-Alonso, J.; Barceló, D. Advanced monitoring of pharmaceuticals and estrogens in the Llobregat River basin (Spain) by liquid chromatography–triple quadrupole-tandem mass spectrometry in combination with ultra performance liquid chromatography–time of flight-mass spectrometry. Chemosphere 2010, 80, 1337–1344. [Google Scholar] [CrossRef]
- Hu, F.; Dong, F.; Yin, L.; Wang, H.; Zheng, M.; Fu, S.; Zhang, W. Effects of sulfamethoxazole on the growth, oxidative stress and inflammatory response in the liver of juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 543, 736935. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Qin, F.; Luo, Y.; Yu, Q.; Cheng, J.; Qin, Q.; Zhu, X.; Feng, W. Enhanced Charge Transfer and Photocatalytic Activity of BiOBr/Bi₂WO₆ p–n Heterojunctions. J. Mol. Struct. 2024, 1304, 137719. [Google Scholar] [CrossRef]
- Kamenická, B.; Weidlich, T. A Comparison of Different Reagents Applicable for Destroying Halogenated Anionic Textile Dye Mordant Blue 9 in Polluted Aqueous Streams. Catalysts 2023, 13, 460. [Google Scholar] [CrossRef]
- Skalska-Tuomi, K.; Kaijanen, L.; Monteagudo, J.M.; Mänttäri, M. Efficient removal of pharmaceuticals from wastewater: Comparative study of three advanced oxidation processes. J. Environ. Manag. 2025, 375, 124276. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, R.; Zhao, Y. Self-Powered advanced oxidation processes for removing contaminants from wastewater. Chem. Eng. J. 2025, 510, 161443. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Q.; Chen, S.; Yang, R.; Fang, M.; Xu, Z. Advanced oxidation processes for the removal of artificial sweeteners from aqueous environments: A comprehensive review. Process Saf. Environ. Prot. 2025, 197, 107049. [Google Scholar] [CrossRef]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced oxidation processes for water and wastewater treatment—Guidance for systematic future research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S. Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr. Opin. Green Sustain. Chem. 2021, 29, 100458. [Google Scholar] [CrossRef]
- Amado-Piña, D.; Romero, R.; Salazar Carmona, E.; Ramírez-Serrano, A.; Gómez-Oliván, L.M.; Elizalde-Velázquez, G.; Natividad, R. Photo-Fenton Treatment under UV and Vis Light Reduces Pollution and Toxicity in Water from Madín Dam, Mexico. Catalysts 2024, 14, 620. [Google Scholar] [CrossRef]
- Całus-Makowska, K.; Dziubińska, J.; Grosser, A.; Grobelak, A. Application of the Fenton and photo-Fenton processes in pharmaceutical removal: New perspectives in environmental protection. Desalin. Water Treat. 2025, 321, 100949. [Google Scholar] [CrossRef]
- O’Dowd, K.; Pillai, S.C. Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances. J. Environ. Chem. Eng. 2020, 8, 104063. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, Y.; Liu, K.; Kong, D.; Lu, J. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Res. 2015, 87, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Moussavi, G. Investigation of chemical-less UVC/VUV process for advanced oxidation of sulfamethoxazole in aqueous solutions: Evaluation of operational variables and degradation mechanism. Sep. Purif. Technol. 2018, 190, 90–99. [Google Scholar] [CrossRef]
- Trovó, A.G.; Nogueira, R.F.P.; Agüera, A.; Fernandez-Alba, A.R.; Sirtori, C.; Malato, S. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 2009, 43, 3922–3931. [Google Scholar] [CrossRef]
- Rostami, F.; Ramavandi, B.; Arfaeinia, H.; Nasrzadeh, F.; Hashemi, S. Sulfamethoxazole antibiotic removal from aqueous solution and hospital wastewater using photo-Fenton process. Desalin. Water Treat. 2020, 184, 388–394. [Google Scholar] [CrossRef]
- López-Vinent, N.; Cruz-Alcalde, A.; Santacruz, A.P.; Sans, C. Green approach for micropollutants removal: Study of constructed wetlands as pretreatment of solar photo-Fenton catalyzed by organic fertilizers. Catal. Today 2024, 430, 114540. [Google Scholar] [CrossRef]
- Kavitha, V.; Palanivelu, K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 2004, 55, 1235–1243. [Google Scholar] [CrossRef]
- da Silva, L.R.; Araujo, T.J.R.; da Fonseca, M.T.S.; Santos, N.C.; Gomes, G.E.; Gomes, J.P.; de Araujo, G.T.; Rocha, A.P.T. Application of Photo-Fenton oxidative process followed by adsorption in dairy effluents treatment. J. Water Process Eng. 2024, 68, 106365. [Google Scholar] [CrossRef]
- Duesterberg, C.K.; Mylon, S.E.; Waite, T.D. pH Effects on Iron-Catalyzed Oxidation Using Fenton’s Reagent. Environ. Sci. Technol. 2008, 42, 8522–8527. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Wu, C.H.; Dong, C.D.; Chen, C.W.; Lin, Y.L. Mineralization of sulfamethoxazole by ozone-based and Fenton/Fenton-like-based processes. Reac. Kinet. Mech. Cat. 2024, 135, 441–457. [Google Scholar] [CrossRef]
- Villota, N.; Duoandicoechea, U.; Lombraña, J.I.; De Luis, A.M. Kinetic modelling of aromaticity and colour changes during the degradation of sulfamethoxazole using photo-Fenton technology. Catalysts 2024, 14, 718. [Google Scholar] [CrossRef]
- Villota, N.; Jankelevitch, S.; Lomas, J.M. Kinetic modelling of colour and turbidity formation in aqueous solutions of sulphamethoxazole degraded by UV/H2O2. Environ. Technol. 2024, 45, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hao, G.; Liu, L.; Zhang, H.; Zhao, D.; Li, X.; Yang, Z.; Xu, J.; Ruan, Z.; Mu, Y. Biodegradation and metabolic pathway of sulfamethoxazole by Sphingobacterium mizutaii. Sci. Rep. 2021, 11, 23130. [Google Scholar] [CrossRef]
- Benito, A.; Penadés, A.; Lliberia, J.L.; Gonzalez-Olmos, R. Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H₂O₂ treatment. Chemosphere 2017, 166, 230–237. [Google Scholar] [CrossRef]
- Mijangos, F.; Varona, F.; Villota, N. Changes in Solution Color during Phenol Oxidation by Fenton Reagent. Environ. Sci. Technol. 2006, 40, 5538–5543. [Google Scholar] [CrossRef]
- Massacesi, M.; Ponticelli, G.; Maxia, V.; Serci, S. 2,5-Diphenyloxazole, 3,5-diphenylisoxazole and 3-amino, 5-methylisoxazole complexes with iron(III) salts. Spectrochim. Acta A Mol. Spectrosc. 1981, 37, 1035–1040. [Google Scholar] [CrossRef]
- Vasconcellos, L.C.G.; Oliveira, C.P.; Castellano, E.E.; Ellena, J.; Moreira, Í.S. Structure and Properties of Iron–Cyclam Complex of 2-Aminophenol. Polyhedron 2001, 20, 493–499. [Google Scholar] [CrossRef]
[Fe(II)]0 (mg/L) | kSMX (1/min) | kArom (1/min) | [Arom]0 (AU) | [Arom]final (AU) |
---|---|---|---|---|
0.5 | 0.3661 | 0.050 | 2.054 | 0.066 |
1.0 | 0.6498 | 0.052 | 1.920 | 0.222 |
2.0 | 0.6695 | 0.060 | 1.998 | 0.184 |
3.0 | 0.9790 | 0.075 | 2.250 | 0.219 |
4.0 | 0.9859 | 0.075 | 2.153 | 0.052 |
5.0 | 1.3079 | 0.098 | 2.200 | 0.113 |
[Fe(II)]0 (mg/L) | kf,color (1/min) | kd,color (1/min) | [Color]0 (AU) | [Color]final (AU) | α (AU L/mg) |
---|---|---|---|---|---|
0.5 | 0.0010 | 0.045 | 0.007 | 0.021 | 1.090 |
1.0 | 0.0015 | 0.055 | 0.007 | 0.020 | 1.100 |
2.0 | 0.0019 | 0.060 | 0.014 | 0.031 | 1.105 |
3.0 | 0.0035 | 0.060 | 0.010 | 0.014 | 1.020 |
4.0 | 0.0027 | 0.080 | 0.013 | 0.012 | 0.995 |
5.0 | 0.0042 | 0.100 | 0.013 | 0.001 | 0.930 |
[Fe(II)]0 (mg/L) | ]total (mg/L) | ]catalyst (mg/L) | ]oxidation (mg/L) | ] (mg/L) |
---|---|---|---|---|
0.0 | 19 | 0.0 | 19 | 2.3 |
0.5 | 19 | 0.9 | 18 | 3.8 |
1.0 | 19 | 1.7 | 17 | 2.5 |
2.0 | 21 | 3.4 | 18 | 2.3 |
3.0 | 23 | 5.2 | 18 | 0.9 |
4.0 | 25 | 6.9 | 18 | 0.6 |
5.0 | 29 | 8.6 | 20 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duoandicoechea, U.; Bilbao-García, E.; Villota, N. Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation. Appl. Sci. 2025, 15, 4531. https://doi.org/10.3390/app15084531
Duoandicoechea U, Bilbao-García E, Villota N. Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation. Applied Sciences. 2025; 15(8):4531. https://doi.org/10.3390/app15084531
Chicago/Turabian StyleDuoandicoechea, Unai, Elisabeth Bilbao-García, and Natalia Villota. 2025. "Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation" Applied Sciences 15, no. 8: 4531. https://doi.org/10.3390/app15084531
APA StyleDuoandicoechea, U., Bilbao-García, E., & Villota, N. (2025). Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation. Applied Sciences, 15(8), 4531. https://doi.org/10.3390/app15084531