Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = Palladium nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3682 KiB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 696
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

20 pages, 5044 KiB  
Review
Cocktail of Catalysts: A Dynamic Advance in Modern Catalysis
by Mikhail P. Egorov, Vladimir Ya. Lee and Igor V. Alabugin
Chemistry 2025, 7(4), 109; https://doi.org/10.3390/chemistry7040109 - 26 Jun 2025
Viewed by 831
Abstract
Cocktail-type catalysis represents a significant shift in the understanding of catalytic processes, recognizing that multiple interconverting species—such as metal complexes, clusters, and nanoparticles—can coexist and cooperate within a single reaction environment. Originating from mechanistic studies on palladium-catalyzed systems, this concept challenges the classical [...] Read more.
Cocktail-type catalysis represents a significant shift in the understanding of catalytic processes, recognizing that multiple interconverting species—such as metal complexes, clusters, and nanoparticles—can coexist and cooperate within a single reaction environment. Originating from mechanistic studies on palladium-catalyzed systems, this concept challenges the classical division between homogeneous and heterogeneous catalysis. Instead, it introduces a dynamic framework where catalysts adapt and evolve under reaction conditions, often enhancing efficiency, selectivity, and durability. Using advanced spectroscopic, microscopic, and computational techniques, researchers have visualized the formation and transformation of catalytic species in real time. The cocktail-type approach has since been extended to platinum, nickel, copper, and other transition metals, revealing a general principle in catalysis. This approach not only resolves long-standing mechanistic inconsistencies, but also opens new directions for catalyst design, green chemistry, and sustainable industrial applications. Embracing the complexity of catalytic systems may redefine future strategies in both fundamental research and applied catalysis. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Figure 1

15 pages, 3289 KiB  
Article
Enhancing the Catalytic Performance of PdNPs for Cr(VI) Reduction by Increasing Pd(0) Content
by Hongfei Lai, Ling Tan, Zhenkun Shi, Shiyi Huang, Wenjia Yu, Guotong Wei, Jianping Xie, Shuang Zhou and Chaoyu Tian
Microorganisms 2025, 13(6), 1346; https://doi.org/10.3390/microorganisms13061346 - 10 Jun 2025
Viewed by 407
Abstract
Hexavalent chromium [Cr(VI)] is a hazardous environmental contaminant, and palladium nanoparticles (PdNPs) have shown promise as catalysts for its reduction. This study explores the primary factor influencing the catalytic performance of PdNPs in Cr(VI) reduction by investigating the crystal structure and composition of [...] Read more.
Hexavalent chromium [Cr(VI)] is a hazardous environmental contaminant, and palladium nanoparticles (PdNPs) have shown promise as catalysts for its reduction. This study explores the primary factor influencing the catalytic performance of PdNPs in Cr(VI) reduction by investigating the crystal structure and composition of PdNPs in fungal-based catalysts. Five Pd-loaded catalysts were synthesized by treating fungal biomass with different chemical reagents, resulting in varying Pd(0) contents. The nanoparticle morphology, chemical states, and functional group interactions during Pd adsorption and reduction were investigated using multiple analytical techniques. The results showed that fungal hyphae remained structurally intact throughout the treatment process. PdNPs smaller than 2 nm were observed, with both Pd(0) and PdO present. The proportion of Pd(0) ranged from 6.4% to 37.2%, depending on the chemical reagent used. In addition, functional groups such as phosphate, amine, hydroxyl, and carboxyl were found to play key roles in palladium binding, underscoring the importance of surface chemistry in the adsorption and reduction process. A strong positive correlation was observed between the Pd(0) content and catalytic activity. Notably, the NCPdSF sample (palladium-loaded biomass treated with sodium formate) exhibited the highest Pd(0) content of 59.2% and achieved the most effective Cr(VI) reduction. These results suggest that Pd(0) content is a key determinant of catalytic efficiency in Cr(VI) reduction and that optimizing chemical treatments to enhance Pd(0) levels can substantially improve catalyst performance. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

22 pages, 3948 KiB  
Article
Self-Standing Carbon Fiber Electrodes Doped with Pd Nanoparticles as Electrocatalysts in Zinc–Air Batteries
by Cristian Daniel Jaimes-Paez, Miguel García-Rollán, Francisco José García-Mateos, Ramiro Ruiz-Rosas, Juana M. Rosas, José Rodríguez-Mirasol, Tomás Cordero, Emilia Morallón and Diego Cazorla-Amorós
Molecules 2025, 30(12), 2487; https://doi.org/10.3390/molecules30122487 - 6 Jun 2025
Viewed by 605
Abstract
In this work, the effect of the palladium precursor on the Oxygen Reduction Reaction (ORR) performance of lignin-based electrospun carbon fibers was studied. The fibers were spun from a lignin-ethanol solution free of any binder, where different Pd salts were added at two [...] Read more.
In this work, the effect of the palladium precursor on the Oxygen Reduction Reaction (ORR) performance of lignin-based electrospun carbon fibers was studied. The fibers were spun from a lignin-ethanol solution free of any binder, where different Pd salts were added at two concentration levels. The system implemented to perform the spinning was a coaxial setup in which the internal flow contains the precursor dispersion with the metallic precursor, and ethanol was used as external flow to help fiber formation and prevent drying before generating the Taylor cone. The obtained cloths were thermostabilized in air at 200 °C and carbonized in nitrogen at 900 °C. The resulting carbon fibers were characterized by physicochemical and electrochemical techniques. The palladium precursor significantly affects nanoparticle distribution and size, fiber diameter, pore distribution, surface area and electrochemical behavior. The fibers prepared with palladium acetylacetonate at high Pd loading and carbonized at 900 °C under a CO2 atmosphere showed high mechanical stability and the best ORR activity, showing near total selectivity towards the 4-electron path. These features are comparable to those of the commercial Pt/C catalyst but much lower metal loading (10.6 wt.% vs. 20 wt.%). The most promising fibers have been evaluated as cathodes in a zinc–air battery, delivering astonishing stability results that surpassed the performance of commercial Pt/C materials in both charging and discharging processes. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices—2nd Edition)
Show Figures

Figure 1

12 pages, 2997 KiB  
Communication
Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation
by Csenge Nagy, Emőke Sikora, Ádám Prekob, Kitti Gráczer, Gábor Muránszky, László Vanyorek, Ferenc Kristály and Zsolt Fejes
Int. J. Mol. Sci. 2025, 26(11), 5420; https://doi.org/10.3390/ijms26115420 - 5 Jun 2025
Viewed by 568
Abstract
A separable bamboo-like carbon nanotube-based catalyst was prepared by the spherfication method using sodium alginate and nickel. The spheres were carbonized and then decorated with palladium nanoparticles before they were tested in nitrobenzene hydrogenation. The test was repeated with five different commonly used [...] Read more.
A separable bamboo-like carbon nanotube-based catalyst was prepared by the spherfication method using sodium alginate and nickel. The spheres were carbonized and then decorated with palladium nanoparticles before they were tested in nitrobenzene hydrogenation. The test was repeated with five different commonly used solvents (methanol, ethanol, isopropanol, tetrahydrofuran, and acetonitrile). According to the results, polar solvents showed a significantly higher aniline yield than the more apolar solvents and exceptional results were reported for ethanol (~100%). The catalyst was reused two more times (four hours each) to check the Pd leaching where the spheres kept their shape (despite the high mechanical friction caused by the mixer) and only a relatively low Pd amount was lost (5.48 rel.%). The catalyst was easily retrievable. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 8428 KiB  
Article
The Role of Pd-Pt Bimetallic Catalysts in Ethylene Detection by CMOS-MEMS Gas Sensor Dubbed GMOS
by Hanin Ashkar, Sara Stolyarova, Tanya Blank and Yael Nemirovsky
Micromachines 2025, 16(6), 672; https://doi.org/10.3390/mi16060672 - 31 May 2025
Cited by 1 | Viewed by 2988
Abstract
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic [...] Read more.
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic composition of metallic nanoparticles. The paper presents a study on ethylene and ethanol sensing using a miniature catalytic sensor fabricated by Complementary Metal Oxide Semiconductor–Silicon-on-Insulator–Micro-Electro-Mechanical System (CMOS-SOI-MEMS) technology. The GMOS performance with bimetallic palladium–platinum (Pd-Pt) and monometallic palladium (Pd) and platinum (Pt) catalysts is compared. The synergetic effect of the Pd-Pt catalyst is observed, which is expressed in the shift of combustion reaction ignition to lower catalyst temperatures as well as increased sensitivity compared to monometallic components. The optimal catalysts and their temperature regimes for low and high ethylene concentrations are chosen, resulting in lower power consumption by the sensor. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

21 pages, 4589 KiB  
Article
Palladium Nanoparticles Immobilized on the Amine-Functionalized Lumen of Halloysite for Catalytic Hydrogenation Reactions
by Santiago Bedoya, Daniela González-Vera, Edgardo A. Leal-Villarroel, J. N. Díaz de León, Marcelo E. Domine, Gina Pecchi, Cecilia C. Torres and Cristian H. Campos
Catalysts 2025, 15(6), 533; https://doi.org/10.3390/catal15060533 - 27 May 2025
Viewed by 752
Abstract
Supported Pd-based catalysts have been widely applied in the hydrogenation of specific functional groups. Recent trends have focused on employing Pd-based heterogeneous catalysts supported on inorganic nanotubes, wherein inner surface functionalization modulates both palladium nanoparticle (Pd-NP) dispersion and the interaction between reactants and [...] Read more.
Supported Pd-based catalysts have been widely applied in the hydrogenation of specific functional groups. Recent trends have focused on employing Pd-based heterogeneous catalysts supported on inorganic nanotubes, wherein inner surface functionalization modulates both palladium nanoparticle (Pd-NP) dispersion and the interaction between reactants and the catalyst surface, thereby influencing catalytic properties. This study aims to develop a catalytic system using amine-lumened halloysite nanotubes immobilizing Pd-NPs (Pd/HNTA) as catalysts for hydrogenation reactions. The formation of Pd-NPs within the organo-functionalized lumen—modified by 3-aminopropyltrimethoxysilane—is confirmed by transmission electron microscopy (TEM) imaging, which reveals a particle size of 2.2 ± 0.4 nm. For comparison, Pd-NPs supported on pristine halloysite (Pd/HNTP) were used as control catalysts, displaying a metal particle size of 2.8 ± 0.8 nm and thereby demonstrating the effect of organic functionalization on the halloysite nanotubes. Both catalysts were employed in the hydrogenation of furfural (FUR) and nitrobenzene (NB) as model reactions. Pd/HNTA demonstrated superior catalytic performance for both substrates, with TOF values of 880 h−1 for FUR and 946 h−1 for NB, and selectivities exceeding 98% for tetrahydrofurfuryl alcohol (THFOH) and aniline (AN), respectively. However, recyclability studies displayed that Pd/HNTA was deactivated at the 10 catalytic cycles during the hydrogenation of FUR, whereas, in the hydrogenation of NB, 5 catalytic cycles were achieved with maximum conversion and selectivity at 360 min. These results revealed that the liquid-phase environment plays a pivotal role in catalyst stability. In the hydrogenation of NB, the coproduction of H2O adversely affects the interaction between the Pd particles and the inner amine-modified surface, increasing the deactivation of the catalyst with reuse. Thus, the Pd/HNTA catalyst holds significant promise for the development of noble-metal-based catalysts and their application in the transformation of other reducible organic functional groups via hydrogenation reaction. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 779 KiB  
Article
Balancing Yields and Sustainability: An Eco-Friendly Approach to Losartan Synthesis Using Green Palladium Nanoparticles
by Edith M. Antunes, Yusuf A. Adegoke, Sinazo Mgwigwi, John J. Bolton, Sarel F. Malan and Denzil R. Beukes
Molecules 2025, 30(11), 2314; https://doi.org/10.3390/molecules30112314 - 25 May 2025
Viewed by 751
Abstract
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield [...] Read more.
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield (98%) via Suzuki–Miyaura coupling between 2-bromobenzonitrile and 4-methylphenylboronic acid, catalyzed using bio-derived PdNPs under mild conditions. Subsequent bromination using N-bromosuccinimide (NBS) under LED light, followed by imidazole coupling and tetrazole ring formation, allowed for the production of losartan with an overall yield of 27%. The PdNP catalyst exhibited high stability and recyclability, as well as strong catalytic activity, even at lower loadings, and nitrosamine formation was not detected. While the overall yield was lower than that of traditional industrial methods, this was due to the deliberate avoidance of the use of toxic reagents, hazardous solvents, and protection/deprotection steps commonly used in conventional routes. This trade-off marks a shift in pharmaceutical process development, where environmental and safety considerations are increasingly prioritized in line with green chemistry and regulatory frameworks. This study provides a foundation for green scaling up strategies, incorporating sustainability principles into drug synthesis. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

15 pages, 10805 KiB  
Article
DFT-Based Investigation of Pd-Modified WO3/Porous Silicon Composites for NO2 Gas Sensors: Enhanced Synergistic Effect and High-Performance Sensing
by Xiaoyong Qiang, Zhipeng Wang, Yongliang Guo and Weibin Zhou
Coatings 2025, 15(5), 570; https://doi.org/10.3390/coatings15050570 - 9 May 2025
Viewed by 455
Abstract
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental [...] Read more.
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental stability. The hierarchical PSi framework with uniform nanopores (200–500 nm) serves as a robust substrate for WO3 nanorod growth (50–100 nm diameter), while Pd decoration (15%–20% surface coverage) strengthens Pd–O–W interfacial bonds, amplifying electron density at the Fermi level by 2.22-fold. Systematic computational analysis reveals that Pd-induced d-p orbital hybridization near the Fermi level (−2 to +1 eV) enhances charge delocalization, optimizing interfacial charge transfer. Experimentally, these modifications enhance the coating’s response to environmental degradation, showing less than 3% performance decay over 30 days under cyclic humidity (45 ± 3% RH). Although designed for gas sensing, the coating’s high surface-to-volume ratio and delocalized charge transport channels demonstrate broader applicability in catalytic and high-stress environments. This work provides a paradigm for designing multifunctional coatings through synergistic interface engineering. Full article
Show Figures

Figure 1

12 pages, 5306 KiB  
Communication
Development of Palladium and Magnetite-Coated Diatomite as a Magnetizable Catalyst for Hydrogenation of Benzophenone
by Ádám Prekob, Balázs Szeleczki, Zsolt Veréb, Csenge Nagy, László Vanyorek, Ferenc Kristály and Zsolt Fejes
Int. J. Mol. Sci. 2025, 26(7), 3157; https://doi.org/10.3390/ijms26073157 - 28 Mar 2025
Viewed by 380
Abstract
A naturally derived silicate, diatomaceous earth has been endowed with magnetic properties by depositing magnetite nanoparticles on its surface. Palladium crystallites were created on the resulting magnetizable catalyst support. The support provided high specific surface area with high porosity which were ideal for [...] Read more.
A naturally derived silicate, diatomaceous earth has been endowed with magnetic properties by depositing magnetite nanoparticles on its surface. Palladium crystallites were created on the resulting magnetizable catalyst support. The support provided high specific surface area with high porosity which were ideal for the binding of both the magnetic particles and the palladium. The catalyst was successfully tested in the hydrogenation of benzophenone in three different solvents (methanol, ethanol, and isopropanol). Significant differences in catalytic activity were observed, allowing selective production of benzhydrol (BH) or diphenylmethane (DPM) by a simple solvent change. Beside the excellent selectivity, the featured catalyst also provided an easy and fast method for catalyst recoverability using a simple magnet. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

11 pages, 2582 KiB  
Article
N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide
by Yue Zhang, Shi Zheng, Jian Xiao and Jiangbo Xi
Catalysts 2025, 15(4), 298; https://doi.org/10.3390/catal15040298 - 21 Mar 2025
Viewed by 605
Abstract
Graphene film has excellent electrical conductivity and flexibility, with which it can be used as a versatile substrate to load active species to construct free-standing electrochemical sensors. In this work, Pd nanoparticle-decorated N-doped porous graphene film (Pd/NPGF) was prepared by a simple and [...] Read more.
Graphene film has excellent electrical conductivity and flexibility, with which it can be used as a versatile substrate to load active species to construct free-standing electrochemical sensors. In this work, Pd nanoparticle-decorated N-doped porous graphene film (Pd/NPGF) was prepared by a simple and mild strategy to enhance the electrochemical behavior of graphene film-based free-standing electrodes. The morphological structure and surface component of the Pd/NPGF were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy measurements. The results revealed that the Pd/NPGF contained abundant pores and uniformly dispersed Pd nanoparticles, which could bring a favorable electrochemical response. Due to the synergetic effects of abundant pores, uniform Pd nanoparticles and the substitutional doping of the graphene framework with N, the novel free-standing Pd/NPGF electrode provides a high active site exposure, a high specific area and fast electron/mass diffusion during electrochemical reactions. Considering the favorable flexibility and excellent electrical conductivity of Pd/NPGF, we selected hydrogen peroxide, a significant biomarker, as a model to investigate its electrochemical performance in neutral conditions. The electrochemical biosensor based on the Pd/NPGF electrode exhibited enhanced activity relative to the NPGF and porous graphene film (PGF) with different concentrations of H2O2. The Pd/NPGF electrode displayed a high sensitivity (176.7 μA·mM−1·cm−2), a large linear range from 5 μM to 36.3 mM, a low limit of detection (LOD) of 2.3 μM, excellent stability and a short response time, all of which qualify the Pd/NPGF electrode for a promising sensor for H2O2 sensing. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

13 pages, 1893 KiB  
Article
Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water
by Jan W. Farag, Ragaa Khalil, Edwin Avila and Young-Seok Shon
Nanomaterials 2025, 15(5), 405; https://doi.org/10.3390/nano15050405 - 6 Mar 2025
Viewed by 741
Abstract
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, [...] Read more.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

10 pages, 5309 KiB  
Article
Photo-Induced Hydrogen Production from Formic Acid Using a Palladium Catalyst
by Tarek M. Abdel-Fattah, Erik Biehler, Michelle A. Smeaton, Thomas Gennett and Noemi Leick
Catalysts 2025, 15(3), 213; https://doi.org/10.3390/catal15030213 - 24 Feb 2025
Viewed by 965
Abstract
Liquid organic hydrogen carriers (LOHCs) are recognized as promising sustainable hydrogen (H2) carriers due to their high volumetric capacity and ability to store H2 at ambient conditions, eliminating the need for energy-intensive liquefaction or compression processes associated with H2 [...] Read more.
Liquid organic hydrogen carriers (LOHCs) are recognized as promising sustainable hydrogen (H2) carriers due to their high volumetric capacity and ability to store H2 at ambient conditions, eliminating the need for energy-intensive liquefaction or compression processes associated with H2 or ammonia gas. One of the main current drawbacks, however, is LOHCs’ high energy demand for H2 release. This work presents the photo-induced liberation of H2 from formic acid (FA) as a liquid H2 carrier, using visible light and well-established 5 wt% palladium nanoparticles supported over carbon (Pd/C). We show that low-power light-emitting diodes (LEDs) produced higher gas flow than their thermal baseline (35 °C), with 27.2 mL/min and 7.72 mL/min, respectively. Further, the rate of gas evolved with light intensity, catalyst loading, and the concentration of FA. Light-induced dehydrogenation shows similar deactivation as the known thermal mechanisms, such as the decreased Pd2+/Pd0 ratio and Pd nanoparticle agglomeration. Hence, these observations suggest a photothermal mechanism, whereby the LED provides heat efficiently absorbed by the Pd/C catalyst and enhanced by Pd’s ability to absorb light, thereby driving the FA dehydrogenation reaction at ambient conditions. Full article
(This article belongs to the Special Issue Novel Catalytic Materials for Hydrogen Storage and Generation)
Show Figures

Graphical abstract

18 pages, 2189 KiB  
Review
Noble Metal Complexes in Cancer Therapy: Unlocking Redox Potential for Next-Gen Treatments
by Alina Stefanache, Alina Monica Miftode, Marcu Constantin, Roxana Elena Bogdan Goroftei, Iulia Olaru, Cristian Gutu, Alexandra Vornicu and Ionut Iulian Lungu
Inorganics 2025, 13(2), 64; https://doi.org/10.3390/inorganics13020064 - 19 Feb 2025
Cited by 1 | Viewed by 1134
Abstract
(1) Context: Cancer is still a major problem worldwide, and traditional therapies like radiation and chemotherapy often fail to alleviate symptoms because of side effects, systemic toxicity, and mechanisms of resistance. Beneficial anticancer effects that spare healthy tissues are made possible by [...] Read more.
(1) Context: Cancer is still a major problem worldwide, and traditional therapies like radiation and chemotherapy often fail to alleviate symptoms because of side effects, systemic toxicity, and mechanisms of resistance. Beneficial anticancer effects that spare healthy tissues are made possible by the distinctive redox characteristics of noble metal complexes, especially those containing palladium, gold, silver, and platinum. (2) Methods: The redox processes, molecular targets, and therapeutic uses of noble metal complexes in cancer have been the subject of much study over the last 20 years; novel approaches to ligand design, functionalization of nanoparticles, and tumor-specific drug delivery systems are highlighted. (3) Results: Recent developments include Pt(IV) prodrugs and terpyridine-modified Pt complexes for enhanced selectivity and decreased toxicity; platinum complexes, like cisplatin, trigger reactive oxygen species (ROS) production and DNA damage. Functionalized gold nanoparticles (AuNPs) improve targeted delivery and theranostic capabilities, while gold complexes, particularly Au(I) and Au(III), inhibit redox-sensitive processes such as thioredoxin reductase (TrxR). (4) Conclusions: Ag(I)-based compounds and nanoparticles (AgNPs) induce DNA damage and mitochondrial dysfunction by taking advantage of oxidative stress. As redox-based anticancer medicines, noble metal complexes have the ability to transform by taking advantage of certain biochemical features to treat cancer more effectively and selectively. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Graphical abstract

45 pages, 7981 KiB  
Review
Emerging Trends in Palladium Nanoparticles: Sustainable Approaches for Enhanced Cross-Coupling Catalysis
by Jude I. Ayogu, Numair Elahi and Constantinos D. Zeinalipour-Yazdi
Catalysts 2025, 15(2), 181; https://doi.org/10.3390/catal15020181 - 14 Feb 2025
Cited by 1 | Viewed by 2059
Abstract
Palladium nanoparticles (PdNPs) are transforming the landscape of modern catalysis and offer sustainable and efficient alternatives to traditional catalysts for cross-coupling reactions. Owing to their exceptional surface area-to-volume ratio, PdNPs exhibit superior catalytic activity, selectivity, and recyclability, making them ideal for greener chemical [...] Read more.
Palladium nanoparticles (PdNPs) are transforming the landscape of modern catalysis and offer sustainable and efficient alternatives to traditional catalysts for cross-coupling reactions. Owing to their exceptional surface area-to-volume ratio, PdNPs exhibit superior catalytic activity, selectivity, and recyclability, making them ideal for greener chemical processes. Recent innovations have focused on improving the stability and reusability of PdNPs through environmentally benign approaches, such as water-based reactions, renewable stabilizers, and magnetic nanoparticle supports. Advances in catalyst design, including PdNP immobilization on magnetic nanosilica for enhanced recyclability in Suzuki–Miyaura reactions, nitrogen-doped carbon nanosheets achieving up to ninefold improvements in turnover frequencies, and biodegradable biopolymer matrices that reduce environmental impact, have effectively addressed key challenges such as catalyst leaching, support degradation, and agglomeration. The shift from conventional catalysis to these cutting-edge nanocatalytic techniques signifies a critical movement toward sustainable chemistry, positioning PdNPs at the forefront of industrial applications and the future of eco-friendly chemical synthesis. Full article
(This article belongs to the Special Issue Palladium Catalysis)
Show Figures

Figure 1

Back to TopTop