Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation
Abstract
1. Introduction
2. Results and Discussion
2.1. Results of the Characterization
2.2. Catalytic Results
3. Methods and Materials
3.1. Materials
3.2. Preparation of the Catalyst
3.3. Characterization Methods
3.4. Catalytic Tests of the CaEquationtalyst in Nitrobenzene Hydrogenation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedetti, A.; Fagherazzi, G.; Pinna, F.; Rampazzo, G.; Selva, M.; Strukul, G. The Influence of a Second Metal Component (Cu, Sn, Fe) on Pd/SiO2 Activity in the Hydrogenation of 2,4-Dinitrotoluene. Catal. Lett. 1991, 10, 215–223. [Google Scholar] [CrossRef]
- Gelder, E.A.; Jackson, S.D.; Lok, C.M. A Study of Nitrobenzene Hydrogenation over Palladium/Carbon Catalysts. Catal. Lett. 2002, 84, 205–208. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Cao, X.; Hu, P.C. Surfaces, Interfaces, Porous Materials, and Catalysis Insights into Different Products of Nitrosobenzene and Nitrobenzene Hydrogenation on Pd (111) under the Realistic Reaction Condition Insights into Different Products of Nitrosobenzene and Nitr. J. Phys. Chem. C 2018, 122, 20337–20350. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, J.; Shi, W.; Xia, S.; Ni, Z.; Xiao, X. RSC Advances Nitrobenzene to Aniline on Pd 3 / Pt (111): A Density. RSC Adv. 2015, 5, 34319–34326. [Google Scholar] [CrossRef]
- Figueras, F.; Coq, B. Hydrogenation and Hydrogenolysis of Nitro-, Nitroso-, Azo-, Azoxy- and Other Nitrogen-Containing Compounds on Palladium. J. Mol. Catal. A Chem. 2001, 173, 223–230. [Google Scholar] [CrossRef]
- Tang, Q.; Yuan, Z.; Jin, S.; Yao, K.; Yang, H. Biomass-derived carbon-supported Ni catalyst: An effective heterogeneous non-noble metal catalyst for the hydrogenation of nitro compounds. React. Chem. Eng. 2020, 5, 58–65. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Q.; Li, X.; Wang, X.; Dong, S.; Li, J.; Hou, L.; Jiao, T.; Wang, Y.; Gao, F. Three-Dimensional Network Pd-Ni/γ-Al2O3Catalysts for Highly Active Catalytic Hydrogenation of Nitrobenzene to Aniline under Mild Conditions. ACS Omega 2021, 6, 9780–9790. [Google Scholar] [CrossRef]
- Ara, N.P.; Nunes, P.; Ara, P. Commercial Catalysts Screening for Liquid Phase Nitrobenzene Hydrogenation; Elsevier B.V.: Amsterdam, The Netherlands, 2016; ISBN 3512250815. [Google Scholar]
- Prekob, Á.; Muránszky, G.; Hutkai, Z.G.; Pekker, P.; Kristály, F.; Fiser, B.; Viskolcz, B.; Vanyorek, L. Hydrogenation of Nitrobenzene over a Composite Catalyst Based on Zeolite Supported N-Doped Carbon Nanotubes Decorated with Palladium. React. Kinet. Mech. Catal. 2018, 125, 583–593. [Google Scholar] [CrossRef]
- Redner, H.; Dondale, D. Kinetics of the Catalytic Hydrogenation of Nitro Group on Platinum; Department of Chemistry, University of Tennessee: Knoxville, TN, USA, 1966; Volume 49, pp. 1–2. [Google Scholar]
- Turáková, M.; Salmi, T.; Eränen, K.; Wärnå, J.; Murzin, D.Y.; Králik, M. Liquid Phase Hydrogenation of Nitrobenzene. Appl. Catal. A Gen. 2015, 499, 66–76. [Google Scholar] [CrossRef]
- Xia, J.; He, G.; Zhang, L.; Sun, X.; Wang, X. Applied Catalysis B: Environmental Hydrogenation of Nitrophenols Catalyzed by Carbon Black-Supported Nickel Nanoparticles under Mild Conditions. Appl. Catal. B 2016, 180, 408–415. [Google Scholar] [CrossRef]
- Lee, H.; Phan, D.; Kim, M.; Sohn, D.; Oh, S.; Kim, S.H.; Kim, I.S. The Chemical Deposition Method for the Decoration of Palladium Particles on Carbon Nanofibers with Rapid Conductivity Changes. Nanomaterials 2016, 6, 226. [Google Scholar] [CrossRef] [PubMed]
- Meek, T.L.; Allen, L.C. Configuration Irregularities: Deviations from the Madelung Rule and Inversion of Orbital Energy Levels. Chem. Phys. Lett. 2002, 362, 362–364. [Google Scholar] [CrossRef]
- Li, C.H.; Yu, Z.X.; Yao, K.F.; Ji, S.F.; Liang, J. Nitrobenzene Hydrogenation with Carbon Nanotube-Supported Platinum Catalyst under Mild Conditions. J. Mol. Catal. A Chem. 2005, 226, 101–105. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Zhou, O.Z. Applications of Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Esteves, L.M.; Oliveira, H.A.; Passos, F.B. Carbon Nanotubes as Catalyst Support in Chemical Vapor Deposition Reaction: A Review. J. Ind. Eng. Chem. 2018, 65, 1–12. [Google Scholar] [CrossRef]
- Guo, S.; Pan, X.; Gao, H.; Yang, Z.; Zhao, J.; Bao, X. Probing the Electronic Effect of Carbon Nanotubes in Catalysis: NH3 Synthesis with Ru Nanoparticles. Chem. A Eur. J. 2010, 16, 5379–5384. [Google Scholar] [CrossRef]
- Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon Nanotubes and Catalysis: The Many Facets of a Successful Marriage. Catal. Sci. Technol. 2015, 5, 3859–3875. [Google Scholar] [CrossRef]
- Serp, P.; Corrias, M.; Kalck, P. Carbon Nanotubes and Nanofibers in Catalysis. Appl. Catal. A Gen. 2003, 253, 337–358. [Google Scholar] [CrossRef]
- Matus, E.V.; Suboch, A.N.; Lisitsyn, A.S.; Svinsitskiy, D.A.; Modin, E.; Chuvilin, A.; Ismagilov, Z.R.; Podyacheva, O.Y. Beneficial Role of the Nitrogen-Doped Carbon Nanotubes in the Synthesis of the Active Palladium Supported Catalyst. Diam. Relat. Mater. 2019, 98, 107484. [Google Scholar] [CrossRef]
- Villalpando-Páez, F.; Romero, A.H.; Muñoz-Sandoval, E.; Martínez, L.M.; Terrones, H.; Terrones, M. Fabrication of Vapor and Gas Sensors Using Films of Aligned CNx Nanotubes. Chem. Phys. Lett. 2004, 386, 137–143. [Google Scholar] [CrossRef]
- Philippe Serp, J.L.F. Carbon Materials for Catalysis; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470178850. [Google Scholar]
- Li, Z.; Li, J.; Liu, J.; Zhao, Z.; Xia, C.; Li, F. Palladium Nanoparticles Supported on Nitrogen-Functionalized Active Carbon: A Stable and Highly Efficient Catalyst for the Selective Hydrogenation of Nitroarenes. ChemCatChem 2014, 6, 1333–1339. [Google Scholar] [CrossRef]
- Chizari, K.; Janowska, I.; Houllé, M.; Florea, I.; Ersen, O.; Romero, T.; Bernhardt, P.; Ledoux, M.J.; Pham-Huu, C. Tuning of Nitrogen-Doped Carbon Nanotubes as Catalyst Support for Liquid-Phase Reaction. Appl. Catal. A Gen. 2010, 380, 72–80. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Z.; He, S.; Hao, F.; Yang, Y.; Lv, Y.; Zhang, W. Applied Catalysis B: Environmental Nitrogen-Doped Carbon Nanotubes as a Highly Active Metal-Free Catalyst for Nitrobenzene Hydrogenation. Appl. Catal. B 2020, 260, 118105. [Google Scholar] [CrossRef]
- Ding, L.; Qian, X.; Li, A.; Zhao, Y.; Li, Z.; He, X. PdNi Alloys with Surface Segregation of Pd@hydrophilic N, O Doped Carbons toward Hydrogen Production with High Current Densities. Appl. Surf. Sci. 2024, 643, 158652. [Google Scholar] [CrossRef]
- Kumbhara, P.S.; Rajadhyaksha, R.A. Liquid Phase Catalytic Hydrogenation of Benzophenone: Role of Metal Support Interaction, Bimetallic Catalysts, Solvents and Additives. Stud. Surf. Sci. Catal. 1993, 78, 251–258. [Google Scholar] [CrossRef]
- Frank, H.; Joseph, W.; McGregor, D.; López, G.E. The Electronic Structures of Nickel-Palladium Alloy Clusters: A Density Functional Theory Study. Chem. Lett. 2018, 47, 458–460. [Google Scholar] [CrossRef]
- Daǧalan, Z.; Behboudikhiavi, S.; Turgut, M.; Sevim, M.; Kasapoǧlu, A.E.; Nişanci, B.; Metin, Ö. Nickel-Palladium Alloy Nanoparticles Supported on Reduced Graphene Oxide Decorated with Metallic Aluminum Nanoparticles (Al-RGO/NiPd): A Multifunctional Catalyst for the Transfer Hydrogenation of Nitroarenes and Olefins Using Water as a Hydrogen Source. Inorg. Chem. Front. 2021, 8, 2200–2212. [Google Scholar] [CrossRef]
- Revathy, T.A.; Sivaranjani, T.; Dhanapal, K.; Narayanan, V.; Stephen, A. Electrochemical Behavior of Palladium Nickel Catalyst. Mater. Today Proc. 2018, 5, 8946–8949. [Google Scholar] [CrossRef]
- González-Vera, D.; Bustamante, T.M.; de León, J.N.D.; Dinamarca, R.; Morales, R.; Osorio-Vargas, P.A.; Torres, C.C.; Campos, C.H. Chemoselective Nitroarene Hydrogenation over Ni-Pd Alloy Supported on TiO2 Prepared from Ilmenite-Type PdxNi1−xTiO3. Mater. Today Commun. 2020, 24, 101091. [Google Scholar] [CrossRef]
- Herrera, J.; Gamallo, P.; Campos, C.H.; Alonso, G. The Importance of Solvent Adsorption in Liquid Phase Reaction Kinetics: Nitrobenzene Hydrogenation in Pd (111) as a Case Study. ChemPhysChem 2025, e202500110. [Google Scholar] [CrossRef]
- D’Angelo, J.V.H.; Francesconi, A.Z. Gas-Liquid Solubility of Hydrogen in n-Alcohols (1 ≤ n ≤ 4) at Pressures from 3.6 MPa to 10 MPa and Temperatures from 298.15 K to 525.15 K. J. Chem. Eng. Data 2001, 46, 671–674. [Google Scholar] [CrossRef]
- Kochetova, L.B.; Klyuev, M.V. Quantum Chemical Modelling of the Solvent Influence on Reactivity of Nitrobenzene and Products of Its Incomplete Reduction in Hydrogenation. J. Mol. Liq. 2001, 91, 255–260. [Google Scholar] [CrossRef]
- Sikora, E.; Muránszky, G.; Kristály, F.; Fiser, B.; Farkas, L.; Viskolcz, B.; Vanyorek, L. Development of Palladium and Platinum Decorated Granulated Carbon Nanocomposites for Catalytic Chlorate Elimination. Int. J. Mol. Sci. 2022, 23, 10514. [Google Scholar] [CrossRef] [PubMed]
- Prekob, A.; Hajdu, V.; Muránszky, G.; Fiser, B.; Sycheva, A.; Ferenczi, T.; Viskolcz, B.; Vanyorek, L. Application of Carbonized Cellulose-Based Catalyst in Nitrobenzene Hydrogenation. Mater. Today Chem. 2020, 17, 100337. [Google Scholar] [CrossRef]
- Couto, C.S.; Madeira, L.M.; Nunes, C.P.; Araújo, P. Hydrogenation of Nitrobenzene over a Pd/Al2O3 Catalyst-Mechanism and Effect of the Main Operating Conditions. Chem. Eng. Technol. 2015, 38, 1625–1636. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Chen, L.; Chou, L.; Wang, X. Green and Facile Synthesis of Carbon Nanotube Supported Pd Nanoparticle Catalysts and Their Application in the Hydrogenation of Nitrobenzene. J. Mater. Res. 2013, 28, 1326–1333. [Google Scholar] [CrossRef]
- Mironenko, R.M.; Belskaya, O.B.; Kryazhev, Y.G.; Gulyaeva, T.I.; Likholobov, V.A. Palladium Hydrogenation Catalysts Prepared Using Porous Carbon Materials Derived from Poly(Vinyl Chloride). In AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2019; Volume 2143. [Google Scholar]
Solvent | Cycle | XNB | YAN |
---|---|---|---|
240 min | 240 min | ||
MET | 1 | 95.7% | 86.7% |
2 | 87.2% | 83.1% | |
3 | 74.5% | 65.9% | |
ET | 1 | 97.8% | 99.9% |
2 | 85.7% | 82.0% | |
3 | 78.7% | 72.1% | |
IPA | 1 | 88.2% | 78.7% |
2 | 59.6% | 67.8% | |
3 | 54.4% | 43.2% | |
THF | 1 | 56.9% | 44.9% |
2 | 20.2% | 15.5% | |
3 | 21.8% | 12.9% | |
ACN | 1 | 54.8% | 53.9% |
2 | 32.8% | 25.9% | |
3 | 22.4% | 14.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, C.; Sikora, E.; Prekob, Á.; Gráczer, K.; Muránszky, G.; Vanyorek, L.; Kristály, F.; Fejes, Z. Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation. Int. J. Mol. Sci. 2025, 26, 5420. https://doi.org/10.3390/ijms26115420
Nagy C, Sikora E, Prekob Á, Gráczer K, Muránszky G, Vanyorek L, Kristály F, Fejes Z. Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation. International Journal of Molecular Sciences. 2025; 26(11):5420. https://doi.org/10.3390/ijms26115420
Chicago/Turabian StyleNagy, Csenge, Emőke Sikora, Ádám Prekob, Kitti Gráczer, Gábor Muránszky, László Vanyorek, Ferenc Kristály, and Zsolt Fejes. 2025. "Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation" International Journal of Molecular Sciences 26, no. 11: 5420. https://doi.org/10.3390/ijms26115420
APA StyleNagy, C., Sikora, E., Prekob, Á., Gráczer, K., Muránszky, G., Vanyorek, L., Kristály, F., & Fejes, Z. (2025). Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation. International Journal of Molecular Sciences, 26(11), 5420. https://doi.org/10.3390/ijms26115420