Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = PVDF membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 180
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 336
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 272
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

25 pages, 6336 KiB  
Article
Treatment of Industrial Brine Using a Poly (Vinylidene Fluoride) Membrane Modified with Carbon Nanotubes
by Tshifhiwa T. Tshauambea, Soraya P. Malinga and Patrick G. Ndungu
Membranes 2025, 15(8), 220; https://doi.org/10.3390/membranes15080220 - 23 Jul 2025
Viewed by 381
Abstract
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, [...] Read more.
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM). The desired membranes were obtained by casting from a solution of N-Methyl-2-pyrrolidone, PVDF, various weight percentages of MWCNTs, and a small amount of polyvinylpyrrolidone. The acid treatment of the MWCNTs introduced oxygen moieties on the surface, and increased pore volume and surface area while maintaining crystallinity and structural integrity remain preserved. The maximum rejection rate achieved was 41.82% with 1 wt.% of acid-treated MWCNTs in the PVDF membrane. Acid-treated MWCNTs loaded membranes had an improved rejection rate, which was 5× higher than membranes without MWCNTs. Full article
Show Figures

Figure 1

14 pages, 6077 KiB  
Article
Fabrication of Green PVDF/TiO2 Composite Membrane for Water Treatment
by Shuhang Lu and Dong Zou
Membranes 2025, 15(7), 218; https://doi.org/10.3390/membranes15070218 - 21 Jul 2025
Viewed by 483
Abstract
PVDF/TiO2 composite membranes show some potential to be used for water treatment as they combine the advantages of polymers and ceramics. However, conventional PVDF-based composite membranes are always fabricated by using conventional toxic solvents. Herein, PolarClean was used as a green solvent [...] Read more.
PVDF/TiO2 composite membranes show some potential to be used for water treatment as they combine the advantages of polymers and ceramics. However, conventional PVDF-based composite membranes are always fabricated by using conventional toxic solvents. Herein, PolarClean was used as a green solvent to fabricate PVDF/TiO2 composite membranes via the phase inversion method. In this process, Pluronic F127 was used as a dispersion agent to distribute TiO2 particles in the PVDF matrix and to serve as a pore former on the membrane surface. TiO2 particles were well distributed on the membrane surface and bulk. TiO2 particles in the PVDF matrix enhanced the mechanical strength and hydrophilic characteristics of the resulting composite membrane, facilitating water transport through the composite membranes and enhancing their water permeability. Membrane microstructures and mechanical strength of the composite membranes were finely tuned by varying the PVDF concentration, TiO2 concentration, and coagulation bath temperature. It was demonstrated that the resulting green PVDF/TiO2 composite membrane showed a high water permeance compared with those using conventional toxic solvents in terms of its small pore size. In addition, the particle rejection of green PVDF/TiO2 membrane showed a 99.9% rejection rate in all the filtration process, while those using NMP showed 91.1% after 30 min of filtration. The water flux was similar at 121 and 130 Lm−2h−1 for green and conventional solvents, respectively. This work provides important information for the future application of sustainable membranes. Full article
Show Figures

Figure 1

14 pages, 3055 KiB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 371
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 275
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

12 pages, 2165 KiB  
Article
Flexible Piezoresistive Sensors Based on PANI/rGO@PDA/PVDF Nanofiber for Wearable Biomonitoring
by Hong Pan, Yuxiao Wang, Guangzhong Xie, Chunxu Chen, Haozhen Li, Fang Wu and Yuanjie Su
J. Compos. Sci. 2025, 9(7), 339; https://doi.org/10.3390/jcs9070339 - 30 Jun 2025
Viewed by 417
Abstract
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) [...] Read more.
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) nanofiber piezoresistive sensor (PNPS) capable of versatile wearable biomonitoring. The PNPS was fabricated by integrating rGO sheets and PANI particles into a PDA-modified PVDF nanofiber network, where PDA was implemented to boost the interaction between the nanofiber networks and functional materials, PANI particles were deposited on a nanofiber substrate to construct electroactive nanofibers, and rGO sheets were utilized to interconnect nanofibers to strengthen in-plane charge carrier transport. Benefitting from the synergistic effect of multi-dimensional electroactive materials in piezoresistive membranes, the as-fabricated PNPS exhibits a high sensitivity of 13.43 kPa−1 and a fast response time of 9 ms, which are significantly superior to those without an rGO sheet. Additionally, a wide pressure detection range from 0 to 30 kPa and great mechanical reliability over 12,000 cycles were attained. Furthermore, the as-prepared PNPS demonstrated the capability to detect radial arterial pulses, subtle limb motions, and diverse respiratory patterns, highlighting its potential for wearable biomonitoring and healthcare assessment. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

14 pages, 4047 KiB  
Article
Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances
by Marek Gryta and Piotr Woźniak
Membranes 2025, 15(7), 192; https://doi.org/10.3390/membranes15070192 - 27 Jun 2025
Viewed by 526
Abstract
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused [...] Read more.
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused by the cleaning solutions, a pilot plant study was carried out for almost two years. The installation included an industrial module with FP100 tubular membranes made of polyvinylidene fluoride (PVDF). The module was fed with synthetic effluent obtained by mixing foaming agents and hydrowax. To limit the fouling phenomenon, the membranes were cleaned cyclically with P3 Ultrasil 11 solution (pH = 11.7) or Insect solution (pH = 11.5). During plant shutdowns, the membrane module was maintained with a sodium metabisulphite solution. Changes in the permeate flux, turbidity, COD, and surfactant rejection were analysed during the study. Scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) analysis were used to determine the changes in the membrane structure. As a result of the repeated chemical cleaning, the pore size increased, resulting in a more than 50% increase in permeate flux. However, the quality of the recovered wash water did not deteriorate, as an additional separation layer was formed on the membrane surface due to the fouling phenomenon. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 273
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 555
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

18 pages, 3081 KiB  
Article
Development of Antifouling Polyvinylidene Fluoride and Cellulose Acetate Nanocomposite Membranes for Wastewater Treatment Using a Membrane Bioreactor
by Nabi Bakhsh Mallah, Ayaz Ali Shah, Abdul Majeed Pirzada, Imran Ali, Jeffrey Layton Ullman, Rasool Bux Mahar and Mohammad Ilyas Khan
Water 2025, 17(12), 1767; https://doi.org/10.3390/w17121767 - 12 Jun 2025
Viewed by 428
Abstract
Membrane technology has received great attention in the desalination and water treatment sectors over the last few decades. However, membrane fouling remains a critical issue that affects membrane performance, a phenomenon common in membrane bioreactors (MBRs). This major drawback can be overcome by [...] Read more.
Membrane technology has received great attention in the desalination and water treatment sectors over the last few decades. However, membrane fouling remains a critical issue that affects membrane performance, a phenomenon common in membrane bioreactors (MBRs). This major drawback can be overcome by the preparation of antifouling membranes using an electrospinning technique that generates a hydrophilic modification of membranes. In this study, nanocomposite polyvinylidene fluoride (PVDF) and cellulose acetate (CA) polymer was fabricated to mitigate membrane fouling. Surface and mechanical characterization of the electrospun membrane was performed to assess morphology, chemical composition, and hydrophilic/hydrophobic properties. Anti-fouling performance of the composite PVDF/CA membrane was evaluated versus a neat PVDF membrane through bench-scale experiments. The PVDF/CA nanofiber membrane displayed a more hydrophilic nature, demonstrated by a lower water contact angle (101° vs. 115°) and increased wastewater flux (190 L/m2·h. vs. 160 L/m2·h), although the composite membrane demonstrated lower tensile strength (2.0 ± 0.1 MPa vs. 1.7 ± 0.1 MPa). The new material demonstrated greater anti-fouling performance compared to the neat PVDF membrane. Results suggest that this nanofiber material shows promise as an enhanced antifouling membrane that can overcome membrane fouling limitations. Full article
Show Figures

Figure 1

23 pages, 1533 KiB  
Article
Oil and Water Recovery from Palm Oil Mill Effluent: A Comparative Study of PVDF and α-Al2O3 Ultrafiltration Membranes
by Saqr A. A. Al-Muraisy, Jiamin Wu, Mingliang Chen, Begüm Tanis, Sebastiaan G. J. Heijman, Shahrul bin Ismail, Jules B. van Lier and Ralph E. F. Lindeboom
Membranes 2025, 15(6), 176; https://doi.org/10.3390/membranes15060176 - 10 Jun 2025
Viewed by 1016
Abstract
Recovering oil and water from palm oil mill effluent reduces environmental pollution and promotes sustainable practices. An effective method to achieve this is ultrafiltration (UF), which uses semi-permeable membranes to separate oil, solids, and other contaminants from wastewater under pressure. To assess the [...] Read more.
Recovering oil and water from palm oil mill effluent reduces environmental pollution and promotes sustainable practices. An effective method to achieve this is ultrafiltration (UF), which uses semi-permeable membranes to separate oil, solids, and other contaminants from wastewater under pressure. To assess the most effective recovery method, an experimental comparison was conducted between PVDF and α-Al2O3 UF membranes at constant permeate of 20–50 LMH for PVDF and 20–70 LMH for α-Al2O3 membranes. Both membranes achieved 99.8% chemical oxygen demand (COD) rejection, with oil concentration factor (Fo) of 186.8% and 253.0%, and water recovery (Rw) of 46.6% and 60.5%, respectively. The permeate water quality was superior to the Malaysian discharge standards, and the fat, oil, and grease (FOG) content was suitable for phase separation processes. The optimal permeate fluxes, with stable transmembrane pressures (TMP), were observed at 40 LMH (PVDF) and 60 LMH (α-Al2O3). Total resistance (Rt) values were 1.30 × 1012 m−1 (PVDF) and 1.59 × 1012 m−1 (α-Al2O3). The ratio of irreversible to total resistances (Rir/Rt) was 0.02 (PVDF) and 0.06 (α-Al2O3), indicating minimal irreversible fouling. Overall, the α-Al2O3 membrane demonstrated superior performance in oil and water recovery with more stable operation compared to the PVDF membrane. UF membrane technology emerges as an efficient technique for recovering oil and water compared to conventional methods. Full article
Show Figures

Graphical abstract

17 pages, 2670 KiB  
Article
Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes
by Rianyza Gayatri, Erna Yuliwati, Tuty Emilia Agustina, Nor Afifah Khalil, Md Sohrab Hossain, Wirach Taweepreda, Muzafar Zulkifli and Ahmad Naim Ahmad Yahaya
Polymers 2025, 17(12), 1598; https://doi.org/10.3390/polym17121598 - 8 Jun 2025
Viewed by 939
Abstract
Natural rubber skim latex is commonly discarded as waste or turned into skim natural rubber products such as skim crepe and skim blocks. It is challenging to retrieve all residual rubbers in skim latex since it has a very low rubber content and [...] Read more.
Natural rubber skim latex is commonly discarded as waste or turned into skim natural rubber products such as skim crepe and skim blocks. It is challenging to retrieve all residual rubbers in skim latex since it has a very low rubber content and many non-rubber components like protein. Manufacturers conventionally utilize concentrated sulfuric acid as a coagulant. This method generates many effluents and hazardous pollutants that negatively impact the environment. This work presents an innovative method for enhancing the skim latex’s value by employing an ultrafiltration membrane. This study aims to establish a hydrophilic PVDF-TiO2 mixed-matrix membrane. The skim latex was processed through a membrane-based ultrafiltration process, which yielded two products: skim latex concentrate and skim serum. Skim latex deposits that cause fouling on the membrane surface can be identified by SEM-EDX and FTIR analysis. The PVDF–PVP-TiO2 mixed-matrix membrane generated the maximum skim serum flux of 12.72 L/m2h in contrast to the PVDF pure membranes, which showed a lower flux of 8.14 L/m2h. CHNS analysis shows that a greater amount of nitrogen, which is indicative of the protein composition, was successfully extracted by the membrane separation process. These particles may adhere to the membrane surface during filtration, obstructing or decreasing the number of fluid flow channels. The deposition reduces the effective size of membrane pores, leading to a decline in flux rate. The hydrophilic PVDF-TiO2 mixed-matrix membrane developed in this study shows strong potential for application in the latex industry, specifically for treating natural rubber skim latex, a challenging by-product known for its high fouling potential. This innovative ultrafiltration approach offers a promising method to enhance the value of skim latex by enabling more efficient separation and recovery. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

12 pages, 2463 KiB  
Article
Metal–Organic Frameworks (MOF)-Derived Gel Electrolyte via UV Cross-Linking for High-Performance Lithium Metal Batteries
by Naiyao Mao, Lingxiao Lan, Qiankun Hun, Jianghua Wei, Xinghua Liang and Yifeng Guo
Gels 2025, 11(6), 409; https://doi.org/10.3390/gels11060409 - 29 May 2025
Viewed by 633
Abstract
Gel electrolytes (GEs) play a pivotal role in the advancement of lithium metal batteries by offering high energy density and enhanced rate capability. Nevertheless, their real-world application is hampered by relatively low ionic conductivity and significant interfacial resistance at room temperatures. In this [...] Read more.
Gel electrolytes (GEs) play a pivotal role in the advancement of lithium metal batteries by offering high energy density and enhanced rate capability. Nevertheless, their real-world application is hampered by relatively low ionic conductivity and significant interfacial resistance at room temperatures. In this work, we developed a gel electrolyte membrane (GEM) by embedding Zeolitic Imidazolate Framework-8 (ZIF-8) metal–organic frameworks (MOFs) material into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix through UV curing. The composite membrane, with 4 wt% ZIF-8, exhibited an ionic conductivity of 1.17 × 10−3 S/cm, an electrochemical stability window of 4.7 V, and a lithium-ion transference number of 0.7. The test results indicate that the electrochemical performance of LFP//GEM//Li battery has an initial specific capacity of 168 mAh g−1 at 0.1 C rate. At 1 C, the discharge capacity was 88 mAh g−1, and at 2 C, it was 68 mAh g−1. Enhanced ionic transport, improved electrochemical stability, and optimized lithium-ion migration collectively contributed to superior rate performance and prolonged cycle life. This study offers novel insights and methodological advances for next-generation lithium metal batteries technologies. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

Back to TopTop