Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = PVA blend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 (registering DOI) - 1 Aug 2025
Viewed by 253
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

14 pages, 1649 KiB  
Article
Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend
by Masaya Omura, Keiko Kobayashi, Kanji Nagai and Shu Shimamoto
Polymers 2025, 17(15), 2118; https://doi.org/10.3390/polym17152118 - 31 Jul 2025
Viewed by 159
Abstract
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin [...] Read more.
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin (TA)) and polyvinyl alcohol (PVA) followed by selective removable of TA and PVA. As implied by semi-theoretical equation previously established by Wu (Wu’s equation), particle size decreased with increasing shear rate or decreasing viscosity ratio of polymers. CA microparticles with a controlled size of 2–8 μm, narrow particle size distribution, and smooth surface were successfully obtained. Efforts were made to determine the numerical solution of Wu’s equation to compare them with observed particle size. To this end, interfacial tension between dispersed and matrix phases to be incorporated in the equation was determined by group contribution methods. The root mean squared error (RMSE) between the observed and calculated particle size was unsatisfactorily large, 4.46 μm. It was found that one of the possible reasons for the limited prediction accuracy was migration of TA from the dispersed to matrix phase affecting the viscosity ratio. Further efforts will be required to achieve a better prediction. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 336
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

24 pages, 2455 KiB  
Article
Impact of Glycerol and Heating Rate on the Thermal Decomposition of PVA Films
by Ganna Kovtun and Teresa Cuberes
Polymers 2025, 17(15), 2095; https://doi.org/10.3390/polym17152095 - 30 Jul 2025
Viewed by 181
Abstract
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol [...] Read more.
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol films in air, deconvolution of the differential thermogravimetry (DTG) curves during the main degradation stage revealed distinct peaks attributable to the degradation of glycerol, PVA/glycerol complexes, and PVA itself. Isoconversional methods showed that, for pure PVA in air, the apparent activation energy (Ea) increased with conversion, suggesting the simultaneous occurrence of multiple degradation mechanisms, including oxidative reactions, whose contribution changes over the course of the degradation process. In contrast, under an inert atmosphere, Ea remained nearly constant, consistent with degradation proceeding through a single dominant mechanism, or through multiple steps with similar kinetic parameters. For glycerol-plasticized films in air, Ea exhibited reduced dependence on conversion compared with that of pure PVA in air, with values similar to those of pure PVA under inert conditions. These results indicate that glycerol influences the oxidative degradation pathways in PVA films. These findings are relevant to high-temperature processing of PVA-based materials and to the design of thermal treatments—such as sterilization or pyrolysis—where control over degradation mechanisms is essential. Full article
Show Figures

Figure 1

20 pages, 3007 KiB  
Article
Hydrophobic Collagen/Polyvinyl Alcohol/V2CTx Composite Aerogel for Efficient Oil Adsorption
by Erhui Ren, Jiatong Yan, Fan Yang, Hongyan Xiao, Biyu Peng, Ronghui Guo and Mi Zhou
Polymers 2025, 17(14), 1949; https://doi.org/10.3390/polym17141949 - 16 Jul 2025
Viewed by 344
Abstract
The development of effective oil adsorbents has attracted a great deal of attention due to the increasingly serious problem of oil pollution. A light and porous collagen (COL)/polyvinyl alcohol (PVA)/vanadium carbide (V2CTx) composite aerogel was synthesized using a simple [...] Read more.
The development of effective oil adsorbents has attracted a great deal of attention due to the increasingly serious problem of oil pollution. A light and porous collagen (COL)/polyvinyl alcohol (PVA)/vanadium carbide (V2CTx) composite aerogel was synthesized using a simple method of blending, directional freezing, and drying. After modification with methyltriethoxysilane (MTMS) via chemical vapor deposition, the aerogel possessed an excellent hydrophobicity and its water contact angle reached 135°. The hydrophobic COL/PVA/V2CTx composite aerogel exhibits a porous structure with a specific surface area of 49 m2/g. It also possesses prominent mechanical properties with an 80.5 kPa compressive stress at 70% strain, a low density (about 28 mg/cm3), and outstanding thermal stability, demonstrating a 61.02% weight loss from 208 °C to 550 °C. Importantly, the hydrophobic COL/PVA/V2CTx aerogel exhibits a higher oil absorption capacity and stability, as well as a faster absorption rate, than the COL/PVA aerogel when tested with various oils. The hydrophobic COL/PVA/V2CTx aerogel has the capacity to adsorb 80 times its own weight of methylene chloride, with help from hydrophobic interactions, Van der Waals forces, intermolecular interactions, and capillary action. Compared with the pseudo first-order model, the pseudo second-order model is more suitable for oil adsorption kinetics. Therefore, the hydrophobic COL/PVA/V2CTx aerogel can be used as an environmentally friendly and efficient oil adsorbent. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

14 pages, 4370 KiB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Viewed by 404
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

26 pages, 4898 KiB  
Article
Antibacterial Crosslinker for Ternary PCL-Reinforced Hydrogels Based on Chitosan, Polyvinyl Alcohol, and Gelatin for Tissue Engineering
by Karina Del Angel-Sánchez, Ana Victoria Treviño-Pacheco, Imperio Anel Perales-Martínez, Oscar Martínez-Romero, Daniel Olvera-Trejo and Alex Elías-Zúñiga
Polymers 2025, 17(11), 1520; https://doi.org/10.3390/polym17111520 - 29 May 2025
Cited by 1 | Viewed by 800
Abstract
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and [...] Read more.
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and chitosan (CH), with gentamicin sulfate (GS) as an antimicrobial agent and a crosslinker. The hydrogels were produced using two crosslinking methods, the freeze/thaw and heated cycles, and reinforced with forcespun polycaprolactone (PCL) nanofiber to improve mechanical performance. Chemical characterization revealed that GS forms weak hydrogen bonds with the ternary polymers, leading to esterification with PVA, and covalent bonds are formed as the result of the free amino group (-NH2) of chitosan that reacts with the carboxylic acid group (-COOH) of gelatin. SEM images help us to see how the hydrogels are reinforced with polycaprolactone (PCL) fibers produced via force spinning technology, while mechanical properties were evaluated via uniaxial tensile and compressive tests. Water retention measurements were performed to examine the crosslinking process’s influence on the hydrogel’s water retention, while the hydrogel surface roughness was obtained via confocal microscopy images. A constitutive model based on non-Gaussian strain energy density was introduced to predict experimental mechanical behavior data of the hydrogel, considering a non-monotonous softening function. Loading and unloading tests demonstrated that GS enhanced crosslinking without compromising water retention or biocompatibility because of the reaction between the free amino group of CH and the carboxylic group of gelatin. The PCL-reinforced PVA/GL/CH hydrogel shows strong potential for cartilage repair and tissue engineering applications. Full article
Show Figures

Figure 1

17 pages, 8236 KiB  
Article
Polyvinyl Alcohol Composite Films Containing Flame-Retardant DOPO-VTES and α-ZrP
by Jiayou Xu, Minyi Luo, Riyan Lin and Shu Lv
Polymers 2025, 17(8), 1011; https://doi.org/10.3390/polym17081011 - 9 Apr 2025
Viewed by 594
Abstract
Polyvinyl alcohol (PVA) is used in various fields; however, its highly flammable property greatly limits its application. In order to improve the flame-retardant properties of PVA, one method is by adding flame retardants directly, while another method is through grafting, cross-linking and hydrogen [...] Read more.
Polyvinyl alcohol (PVA) is used in various fields; however, its highly flammable property greatly limits its application. In order to improve the flame-retardant properties of PVA, one method is by adding flame retardants directly, while another method is through grafting, cross-linking and hydrogen bonding. A flame retardant, 9, 10-dihydro-9, 10-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-vinyltrimethoxysilane (VTES), was synthesized through the addition reaction of a P–H bond on the DOPO and unsaturated carbon–carbon double bonds on the VTES. Then, the DOPO-VTES and zirconium phosphate (α-ZrP) were blended with PVA to cast a film, in which DOPO-VTES was grafted onto the PVA by cross-linking the hydroxyl group in the molecular structure of DOPO-VTES with the hydroxyl group in PVA; α-ZrP was used as a cooperative agent of DOPO-VTES. The cone calorimetry test (CCT) showed a significant reduction in both the heat release rate (HRR) and total heat release rate (THR) for the flame-retardant PVA films compared to pure PVA. Additionally, thermogravimetric analysis (TGA) revealed a higher residual char content in the flame-retardant PVA films than in pure PVA. These findings suggested that the combination of DOPO-VTES and α-ZrP could improve the flame retardancy of PVA. The cooperative flame-retardant mode of action at play was possibly that DOPO in the DOPO-VTES acted as a mainly gas-phase flame retardant, which yielded a PO radical; VTES in the DOPO-VTES produced silicon dioxide (SiO2), which acted as a thermal insulator; and α-ZrP catalyzed the carbonization of the PVA. By combining DOPO-VTES with α-ZrP, a continuous dense carbon layer was formed, which effectively inhibited oxygen and heat exchange, resulting in a flame-retardant effect. It is expected that flame-retardant films for PVA have a broad development prospect and potential in the fields of packaging materials, electronic appliances, and lithium-ion battery separators. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymeric Materials and Composites)
Show Figures

Figure 1

9 pages, 2407 KiB  
Proceeding Paper
Investigation of Structural, Optical, and Frequency-Dependent Dielectric Properties of Barium Zirconate (BaZrO3) Ceramic Prepared via Wet Chemical Auto-Combustion Technique
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Eng. Proc. 2025, 87(1), 22; https://doi.org/10.3390/engproc2025087022 - 19 Mar 2025
Cited by 1 | Viewed by 334
Abstract
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray [...] Read more.
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray diffractometer, a scanning electron microscope (SEM)-EDAX, an LCR meter, and a UV–visible spectrometer were employed to study the structural, morphological, optical, and electrical properties of the prepared barium zirconate sample. Using data derived from XRD, the perovskite phase was confirmed, and the average value of the crystallite size was found to be 17.68 nm. The lattice constant, crystallinity, unit cell volume, tolerance factor, and X-ray density were also calculated. SEM-EDAX confirmed the elemental composition of the product and verified that it contained only the major constituents (Ba, Zr, and O). The vibrational modes of the prepared sample were investigated using FTIR in wavelengths ranging from 400 to 4000 cm−1. Energy bandgap was observed using Tauc’s plot, where a graph was prepared for photon energy (hυ) and (αhυ)2. The powder sample was blended with PVA and made into pellets of 13 mm diameter using a pelletizer to explore dielectric parameters like the dielectric constant, while the loss factor was recorded at a frequency ranging from 100 Hz to 4 MHz at room temperature. With its high dielectric constant and low dielectric loss factor, barium zirconate ceramic stands as an excellent material for several microwave applications. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 3478 KiB  
Article
Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film
by Wenxin Wang, Huiting Cheng, Xiaobin Zhang, Huan Yang, Haoxiang Ma, Zhiwen Wang, Yijun Chen, Xin Chen, Yihan Pu, Yijun Shen and Qi Chen
Polymers 2025, 17(6), 759; https://doi.org/10.3390/polym17060759 - 13 Mar 2025
Viewed by 652
Abstract
There is a growing demand for multifunctional materials that can meet the increasingly complex needs of modern society. The combination of functionalization and intellectualization promotes the development of multifunctional smart materials. These materials are not only required to possess excellent basic properties, but [...] Read more.
There is a growing demand for multifunctional materials that can meet the increasingly complex needs of modern society. The combination of functionalization and intellectualization promotes the development of multifunctional smart materials. These materials are not only required to possess excellent basic properties, but also need to integrate multiple functions to adapt to various application scenarios. In this study, a simple solution co-blending method for preparing a polyaniline-based multifunctional conductive composite film was proposed. This methodology employs polyvinyl alcohol (PVA) as a stimuli-responsive matrix, combined with polyaniline (PANI) serving as a functional component, while glutaraldehyde (GA) acts as the crosslinking agent. This PANI-based composite film overcomes the disadvantage that PANI does not easily form a uniform film. The maximum conductivity of this film can reach 0.034 S·cm−1. It is worth noting that the combination of PANI with the stimuli-responsive PVA film resulted in a composite film that not only retained good electrical conductivity, but also exhibited multiple stimuli-responsive properties. These stimuli-responsive properties can be controlled by external stimuli such as heat, voltage, light, or water. The PANI-based composite film could recover its original shape within 25 s when the applied voltage reached 30 V. These characteristics open up possibilities of potential applications where controlled deformation is desired. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 6027 KiB  
Article
Study on Blended Terpolymer Electrolyte Membrane for Enhanced Safety and Performance in Lithium-Ion Batteries
by Wansu Bae, Sabuj Chandra Sutradhar, Subeen Song, Kijong Joo, Doyul Lee, Donghoon Kang, Hyewon Na, Jiye Lee, Whangi Kim and Hohyoun Jang
Batteries 2025, 11(3), 103; https://doi.org/10.3390/batteries11030103 - 11 Mar 2025
Cited by 1 | Viewed by 820
Abstract
The persistent emphasis on safety issues in lithium-ion batteries (LIBs) with organic liquid electrolytes revolves around thermal runaway and dendrite formation. The high thermal stability and non-leakage properties of polymer electrolytes (PEs) make them attractive as next-generation electrolytes for LIBs. This study presents [...] Read more.
The persistent emphasis on safety issues in lithium-ion batteries (LIBs) with organic liquid electrolytes revolves around thermal runaway and dendrite formation. The high thermal stability and non-leakage properties of polymer electrolytes (PEs) make them attractive as next-generation electrolytes for LIBs. This study presents a blended terpolymer electrolyte (BTPE) membrane, integrating the high ionic conductivity of dual ion conducting polymer electrolytes (DICPEs) with the elevated lithium transference number (t+) of single-ion conducting polymer electrolytes (SICPEs). The BTPE was synthesized by blending PAA–PVA with lithiated acrylic acid (LiAA), lithiated 2–acrylamido–2–methylpropane sulfonic acid (LiAMPS), and a 2–hydroxyethyl methacrylate (HEMA)–based terpolymer, using lithium bis(fluorosulfonyl)imide (LiFSI) as the lithium salt. The synthesized BTPE showed excellent physical and electrochemical stability; it also exhibited an enhanced lithium transference number (t+ = 0.47) and high ionic conductivity (5.21 × 10−4 S cm−1 at 30 °C), attributed to the interaction between the FSI anion and the NH group of AMPS. This research presents an innovative strategy for the design of next-generation LIB electrolytes by integrating polymer electrolytes. Full article
(This article belongs to the Special Issue Rechargeable Batteries)
Show Figures

Figure 1

15 pages, 4224 KiB  
Article
Obtaining and Characterization of Biodegradable Polymer Blends Based on Polyvinyl Alcohol, Starch, and Chitosan
by Galiya Irmukhametova, Khaldun M. Al Azzam, Grigoriy A. Mun, Lyazzat Bekbayeva, Zhetpisbay Dinara, Bayana B. Yermukhambetova, Sergey V. Nechipurenko, Sergey A. Efremov, El-Sayed Negim and Moshera Samy
Polymers 2025, 17(4), 479; https://doi.org/10.3390/polym17040479 - 12 Feb 2025
Cited by 5 | Viewed by 1710
Abstract
Although chitosan (CS) is used in many industries because of its low cost, biodegradability, nontoxic, antibacterial, and antioxidant qualities, it lacks sufficient mechanical and barrier properties. Biodegradable polymers based on CS, polyvinyl alcohol (PVA), and starch (S) were prepared at various ratios (1/3/6 [...] Read more.
Although chitosan (CS) is used in many industries because of its low cost, biodegradability, nontoxic, antibacterial, and antioxidant qualities, it lacks sufficient mechanical and barrier properties. Biodegradable polymers based on CS, polyvinyl alcohol (PVA), and starch (S) were prepared at various ratios (1/3/6 and 1/5/4) via a blending polymerization process in the presence of water as the solvent and glacial acetic acid as the catalyst. The obtained biodegradable polymers were characterized via FTIR, TGA, SEM, and mechanical tests. The biodegradable polymers were mixed with rice straw and carbon black to study the effects of rice straw and carbon black on the physicomechanical properties of the biodegradable polymer films, including viscosity, tensile strength, elongation, and contact angle. The incorporation of rice straw and carbon black into a polymer blend significantly enhanced the physical and mechanical properties while also boosting their biodegradability by 36% and 15%, respectively, due to their biological activity. Notably, the CS/PVA/S blend with a ratio of 1/5/4, combined with rice straw, emerged as the standout performer. It exhibited superior mechanical strength and the shortest degradation time, outperforming the CS/PVA/S blended with a ratio of 1/3/6 mixed with carbon black. According to these findings, the biodegradable polymers became more soluble as the temperature increased from 30 to 45 °C. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 4060 KiB  
Article
Influence of the Cellulose Purification Method on the Properties of PVA Composites with Almond Shell Fibres
by Irene Gil-Guillén, Chelo González-Martínez and Amparo Chiralt
Molecules 2025, 30(2), 372; https://doi.org/10.3390/molecules30020372 - 17 Jan 2025
Cited by 1 | Viewed by 1442
Abstract
Almond shells (ASs) are a potential source of cellulose that could be obtained through sustainable methods for their valorisation. Biocomposites (BCs) from polyvinyl alcohol (PVA) and cellulose are interesting materials for developing sustainable packaging materials. BC based on PVA and AS cellulose were [...] Read more.
Almond shells (ASs) are a potential source of cellulose that could be obtained through sustainable methods for their valorisation. Biocomposites (BCs) from polyvinyl alcohol (PVA) and cellulose are interesting materials for developing sustainable packaging materials. BC based on PVA and AS cellulose were obtained by melt blending and compression moulding, by using subcritical water extraction at 160 or 180 °C, and subsequent bleaching with sodium chlorite (C) or hydrogen peroxide (P) to purify cellulose. The influence of the purification method on the properties of BC was analysed. Fibres treated with C were better dispersed in composites than those bleached with P. Residual phenolic compounds in the fibres provide the composite with ABTS∙+ scavenging capacity in line with the residual lignin content of the fibres. Both the presence of phenols and dispersed fibres reduced the film transparency, mainly in the UV range. Fibres enhanced the oxygen barrier capacity of composites, and those treated with HP also improved the water vapour barrier capacity. Fibres treated with C better promoted the increase in the elastic modulus of the composites, due to their highest crystallinity and dispersibility, while favoured the PVA crystallisation. Therefore, the obtained AS cellulose fibres could be used to obtain thermoprocessed PVA biocomposites for food packaging applications. Full article
Show Figures

Figure 1

13 pages, 1868 KiB  
Article
Evaluation of Sericin/Polyvinyl Alcohol Mixtures for Developing Porous and Stable Structures
by Maria C. Arango, Leander Vásquez Vásquez, Akemy Carolina Homma Parra, Santiago Rueda-Mira, Natalia Jaramillo-Quiceno, Josep Pasqual Cerisuelo, Amparo Cháfer and Catalina Álvarez-López
Biomimetics 2025, 10(1), 27; https://doi.org/10.3390/biomimetics10010027 - 5 Jan 2025
Viewed by 961
Abstract
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous [...] Read more.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded. However, SS has garnered attention for its antioxidant, antibacterial, biocompatible, and anticancer properties as well as its excellent moisture absorption, making it a promising polymer for biomedical applications. Owing to its functional groups (carboxyl, amino, and hydroxyl), SS can blend and crosslink with other polymers, thereby improving the mechanical properties of sericin-based materials. This study explored the effects of different SS/polyvinyl alcohol (PVA) ratios on porous scaffolds fabricated via freeze-drying, focusing on the mechanical stability, water absorption, and protein release in phosphate-buffered saline (PBS). The scaffold morphology revealed reduced porosity with higher SS content, while increased PVA content led to material folding and layering. A greater PVA content enhanced water absorption, mechanical properties, and thermal stability, although SS release decreased. These results demonstrate that scaffold properties can be tailored by optimizing the SS/PVA ratio to suit specific biomedical applications. Full article
(This article belongs to the Special Issue Bioinspired Materials for Tissue Engineering)
Show Figures

Figure 1

21 pages, 7907 KiB  
Article
Encapsulation of Hydrogen Peroxide in PVA/PVP Hydrogels for Medical Applications
by Natalie Mounayer, Sivan Shoshani, Elena Afrimzon, Taly Iline-Vul, Moris Topaz, Ehud Banin and Shlomo Margel
Gels 2025, 11(1), 31; https://doi.org/10.3390/gels11010031 - 2 Jan 2025
Cited by 2 | Viewed by 2086
Abstract
Researchers have been investigating the physical and morphological properties of biodegradable polymer and copolymer films, blending them with other chemicals to solve challenges in medical, industrial, and eco-environmental fields. The present study introduces a novel, straightforward method for preparing biodegradable hydrogels based on [...] Read more.
Researchers have been investigating the physical and morphological properties of biodegradable polymer and copolymer films, blending them with other chemicals to solve challenges in medical, industrial, and eco-environmental fields. The present study introduces a novel, straightforward method for preparing biodegradable hydrogels based on polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) for medical applications. The resulting PVA/PVP-based hydrogel uniquely combines the water absorbency, biocompatibility, and biodegradability of the polymer composite. For hygiene products and medical uses, such as wound healing, hydrogen peroxide (HP) was encapsulated in the PVA/PVP hydrogels for controlled release application. Incorporating PVP into PVA significantly enhances the hydrogel water absorbency and improves the mechanical properties. However, to mitigate the disadvantage of high water absorbency which could result in undesired early dissolution, efforts were made to increase the water resistance and the mechanical characteristics of these hydrogels using freeze–thaw (F/T) cycles and chemical crosslinking PVA chains with trisodium trimetaphosphate (STMP). The resulting hydrogels serve as environmentally friendly bio-based polymer blends, broadening their applications in medical and industrial products. The structural and morphological properties of the hydrogel were characterized using Fourier transform infrared spectroscopy (FTIR), environmental scanning electron microscope analysis (E-SEM), and water-swelling tests. The HP controlled release rate was evaluated through kinetic release experiments using the ex vivo skin model. The antibacterial activity of the hydrogel films was examined on four medically relevant bacteria: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa, with an adapted disk diffusion assay. Using this assay, we also evaluated the antibacterial effect of the hydrogel films over the course of days, demonstrating the HP controlled release from these hydrogels. These findings support further in vivo investigation into controlled HP release systems for improved wound-healing outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop