Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Fabrication of the Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film
3. Results and Discussion
3.1. Microstructure and Chemical Properties
3.2. Thermodynamic and Thermal-Responsive Shape Memory Performance
3.3. Electrical-Responsive Shape Memory Performance
3.4. Light-Responsive Shape Memory Performance
3.5. Water-Responsive Shape Memory Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, G.Q.; Xue, D.F. A multiscale view in functional materials. Prog. Nat. Sci. Mater. Int. 2022, 32, 674–683. [Google Scholar] [CrossRef]
- Zhang, H.T.; Zhang, T.; Zhang, X.Y. Perspective and prospects for ordered functional materials. Adv. Sci. 2023, 10, 2300193. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.M.; Tan, S.J.; Wang, L.Q.; Zhao, Y.; Ji, G.B. Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: Interfacial bridging. ACS Nano 2023, 17, 20525–20536. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, M.E.; Elbadawi, M.; Chapman, C.A.R.; Green, R.A.; Gaisford, S.; Orlu, M.; Basit, A.W. Electroactive polymers for on-demand drug release. Adv. Healthc. Mater. 2024, 13, 2301759. [Google Scholar] [CrossRef]
- Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611. [Google Scholar] [CrossRef]
- Shirakawa, H. The discovery of polyacetylene film: The dawning of an era of conducting polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2574–2580. [Google Scholar] [CrossRef]
- MacDiarmid, A.G. “Synthetic Metals”: A novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [Google Scholar] [CrossRef]
- Fujii, S. Synthesis of conductive polymer-based composite particles. Chem. Lett. 2023, 52, 631–639. [Google Scholar] [CrossRef]
- Acharya, R.; Dutta, S.D.; Patil, T.V.; Ganguly, K.; Randhawa, A.; Lim, K.T. A review on electroactive polymer–metal composites: Development and applications for tissue regeneration. J. Funct. Biomater. 2023, 14, 523. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Janczarek, M. UV and visible light-induced photocatalytic efficiency of polyaniline/titanium dioxide heterostructures. Molecules 2025, 30, 23. [Google Scholar] [CrossRef]
- Behera, S. A Review on polyaniline-supported catalyst for organic transformations. ACS Omega 2024, 9, 50097–50117. [Google Scholar] [CrossRef]
- Beygisangchin, M.; Hossein Baghdadi, A.; Kartom Kamarudin, S.; Abdul Rashid, S.; Jakmunee, J.; Shaari, N. Recent progress in polyaniline and its composites; Synthesis, properties, and applications. Eur. Polym. J. 2024, 210, 112948. [Google Scholar] [CrossRef]
- Ramohlola, K.E.; Modibane, K.D.; Ndipingwi, M.M.; Iwuoha, E.I. Polyaniline-based electrocatalysts for electrochemical hydrogen evolution reaction. Eur. Polym. J. 2024, 213, 113125. [Google Scholar] [CrossRef]
- Megdich, A.; Habibi, M.; Laperrière, L. A review on 4D printing: Material structures, stimuli and additive manufacturing techniques. Mater. Lett. 2023, 337, 133977. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T. From static to dynamic: Smart materials pioneering additive manufacturing in regenerative medicine. Int. J. Mol. Sci. 2023, 24, 15748. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Luan, F.X.; Yue, H.; Song, C.; Wang, S.; Feng, J.; Zhang, X.; Yang, W.; Li, Y.X.; Wei, W.; et al. Recent advances of smart materials for ocular drug delivery. Adv. Drug Delivery Rev. 2023, 200, 115006. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, F.H.; Wang, L.L.; Liu, Y.J.; Leng, J.S. Recent advances in shape memory polymers: Multifunctional materials, multiscale structures, and applications. Adv. Funct. Mater. 2024, 34, 2312036. [Google Scholar] [CrossRef]
- Tadge, T.; Garje, S.; Saxena, V.; Raichur, A.M. Application of shape memory and self-healable polymers/composites in the biomedical field: A review. ACS Omega 2023, 8, 32294–32310. [Google Scholar] [CrossRef]
- Wang, W.X.; Liu, Y.J.; Leng, J.S. Recent developments in shape memory polymer nanocomposites: Actuation methods and mechanisms. Coordin. Chem. Rev. 2016, 320–321, 38–52. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, X.; Ding, E.J.; Guo, Z.Y.; Luo, C.Y.; Zhang, H.; Yu, J.Y. Shape memory polyimide/carbon nanotube composite aerogels with physical and chemical crosslinking architectures for thermal insulating applications. Compos. Sci. Technol. 2024, 251, 110588. [Google Scholar] [CrossRef]
- Dai, J.Y.; Wang, Z.C.; Wu, Z.Z.; Fang, Z.Y.; Heliu, S.Y.; Yang, W.T.; Bai, Y.; Zhang, X. Shape memory polymer constructed by π–π stacking with ultrafast photoresponse and self-healing performance. ACS Appl. Polym. Mater. 2023, 5, 2575–2582. [Google Scholar] [CrossRef]
- Wu, P.; Yu, T.Y.; Chen, M.J.; Kang, N.; Mansori, M.E. Electrically/magnetically dual-driven shape memory composites fabricated by multi-material magnetic field-assisted 4D printing. Adv. Funct. Mater. 2024, 34, 2314854. [Google Scholar] [CrossRef]
- Yang, X.Q.; Han, Z.P.; Jia, C.Q.; Wang, T.J.; Wang, X.M.; Hu, F.Q.; Zhang, H.; Zhao, J.; Zhang, X.S. Preparation and characterization of body-temperature-responsive thermoset shape memory polyurethane for medical applications. Polymers 2023, 15, 3193. [Google Scholar] [CrossRef] [PubMed]
- Paunović, N.; Meyer, D.; Krivitsky, A.; Studart, A.R.; Bao, Y.; Leroux, J.C. 4D printing of biodegradable elastomers with tailorable thermal response at physiological temperature. J. Control. Release 2023, 361, 417–426. [Google Scholar] [CrossRef]
- Fallah, A.; Asif, S.; Gokcer, G.; Koc, B. 4D printing of continuous fiber-reinforced electroactive smart composites by coaxial additive manufacturing. Compos. Struct. 2023, 316, 117034. [Google Scholar] [CrossRef]
- Li, Z.H.; Li, Z.W.; Zhou, S.H.; Zhang, Z.M.; Zong, L. Biomimetic multiscale oriented PVA/NRL hydrogel enabled multistimulus responsive and smart shape. Small 2024, 20, 2311240. [Google Scholar] [CrossRef]
- Wang, W.X.; Du, L.W.; Xie, Y.; Zhang, F.H.; Li, P.; Xie, F.; Wan, X.; Pei, Q.B.; Leng, J.S.; Wang, N. Bioinspired four-dimensional polymeric aerogel with programmable temporal-spatial multiscale structure and functionality. Compos. Sci. Technol. 2021, 206, 108677. [Google Scholar] [CrossRef]
- Bisht, N.; Vishwakarma, J.; Jaiswal, S.; Kumar, P.; Srivastava, A.K.; Dhand, C.; Dwivedi, N. Synergizing chemistry: Unveiling the potential of hybrid fillers for enhanced performance in shape memory polymers. Adv. Compos. Hybrid Mater. 2024, 8, 7. [Google Scholar] [CrossRef]
- Hou, M.X.; Xia, B.H.; Qu, R.Y.; Dong, J.L.; Li, T.; Wang, S.B.; Wang, Y.; Dong, W.F. Preparation of the double cross-linking carbon dots-polyvinyl alcohol-carboxymethyl cellulose composite film for food active packaging application. Int. J. Biol. Macromol. 2024, 273, 132939. [Google Scholar] [CrossRef]
- Uto, K.; Liu, Y.H.; Mu, M.W.; Yamamoto, R.; Azechi, C.; Tenjimbayashi, M.; Kaeser, A.; Marliac, M.A.; Alam, M.M.; Sasai, J.; et al. Humidity-responsive polyvinyl alcohol/microcrystalline cellulose composites with shape memory features for hair-styling applications. Adv. Mater. Interfaces 2024, 11, 2300274. [Google Scholar] [CrossRef]
- Zhang, W.L.; Wu, X.H.; Peng, X.Y.; Zhu, L.; Wang, H.K.; Liu, H.; Yuan, H.Y. Construction of solution processable NUS-8/PANI nanosheets via template-directed polymerization for ultratrace gas sensing. Small 2024, 20, 2405636. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Yang, J.; Li, W.; Yao, Y.T.; Yan, Y.Q.; Wang, W.J.; Wang, N.; Leng, J.S. Synergistic water-driven shape memory performance and improving mechanism of grading photo-thermal curing shape memory composite. Mater. Des. 2022, 214, 110397. [Google Scholar] [CrossRef]
- Kovtun, A.; Casas, D.; Cuberes, T. Influence of glycerol on the surface morphology and crystallinity of polyvinyl alcohol films. Polymers 2024, 16, 2421. [Google Scholar] [CrossRef]
- Gao, H.; Li, J.R.; Kong, F.G.; Wang, Z.J.; Xu, F. Interpenetrating shape memory polyimide-polyaniline composites with electrical conductivity. Polym. Compos. 2023, 44, 4134–4141. [Google Scholar] [CrossRef]
- Morad, M.A.; Abo Ghazala, M.S.; El-Shaarawy, M.G.; Gouda, M.E.; Elrasasi, T.Y. Preparation and characterization of conjugated PVA/PANI blend films doped with functionalized graphene for thermoelectric applications. Sci. Rep. 2024, 14, 16722. [Google Scholar] [CrossRef]
- Friess, F.; Lendlein, A.; Wischke, C. Switching microobjects from low to high aspect ratios using a shape-memory effect. Soft Matter 2021, 17, 9326–9331. [Google Scholar] [CrossRef]
- Ni, C.J.; Chen, D.; Yin, Y.; Wen, X.; Chen, X.L.; Yang, C.; Chen, G.C.; Sun, Z.; Wen, J.H.; Jiao, Y.R.; et al. Shape memory polymer with programmable recovery onset. Nature 2023, 622, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Karthik, S.; Suresh, J.; Saravanan, P.; Arun, A. Highly conducting solid electrolyte films based on PVA and iron alum: Synthesis, characterization and electrical properties. J. Sci.-Adv. Mater. Dev. 2020, 5, 400–408. [Google Scholar] [CrossRef]
- Zhao, R.X.; Kang, S.B.; Wu, C.; Cheng, Z.J.; Xie, Z.M.; Liu, Y.Y.; Zhang, D.J. Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch. Adv. Sci. 2023, 10, 2205428. [Google Scholar] [CrossRef]
- Song, C.J.; Zhang, Y.H.; Bao, J.Y.; Wang, Z.Z.; Zhang, L.Y.; Sun, J.; Lan, R.C.; Yu, Z.; Zhu, S.Q.; Yang, H. Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv. Funct. Mater. 2023, 33, 2213771. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cheng, H.; Zhang, X.; Yang, H.; Ma, H.; Wang, Z.; Chen, Y.; Chen, X.; Pu, Y.; Shen, Y.; et al. Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film. Polymers 2025, 17, 759. https://doi.org/10.3390/polym17060759
Wang W, Cheng H, Zhang X, Yang H, Ma H, Wang Z, Chen Y, Chen X, Pu Y, Shen Y, et al. Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film. Polymers. 2025; 17(6):759. https://doi.org/10.3390/polym17060759
Chicago/Turabian StyleWang, Wenxin, Huiting Cheng, Xiaobin Zhang, Huan Yang, Haoxiang Ma, Zhiwen Wang, Yijun Chen, Xin Chen, Yihan Pu, Yijun Shen, and et al. 2025. "Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film" Polymers 17, no. 6: 759. https://doi.org/10.3390/polym17060759
APA StyleWang, W., Cheng, H., Zhang, X., Yang, H., Ma, H., Wang, Z., Chen, Y., Chen, X., Pu, Y., Shen, Y., & Chen, Q. (2025). Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film. Polymers, 17(6), 759. https://doi.org/10.3390/polym17060759