Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (449)

Search Parameters:
Keywords = PSR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 21306 KiB  
Article
Study on the Spatio-Temporal Differentiation and Driving Mechanism of Ecological Security in Dongping Lake Basin, Shandong Province, China
by Yibing Wang, Ge Gao, Mingming Li, Kuanzhen Mao, Shitao Geng, Hongliang Song, Tong Zhang, Xinfeng Wang and Hongyan An
Water 2025, 17(15), 2355; https://doi.org/10.3390/w17152355 - 7 Aug 2025
Viewed by 225
Abstract
Ecological security evaluation serves as the cornerstone for ecological management decision-making and spatial optimization. This study focuses on the Dongping Lake Basin. Based on the Pressure–State–Response (PSR) model framework, it integrates ecological risk, ecosystem health, and ecosystem service indicators. Utilizing methods including Local [...] Read more.
Ecological security evaluation serves as the cornerstone for ecological management decision-making and spatial optimization. This study focuses on the Dongping Lake Basin. Based on the Pressure–State–Response (PSR) model framework, it integrates ecological risk, ecosystem health, and ecosystem service indicators. Utilizing methods including Local Indicators of Spatial Association (LISA), Transition Matrix, and GeoDetector, it analyzes the spatio-temporal evolution characteristics and driving mechanisms of watershed ecological security from 2000 to 2020. The findings reveal that the Watershed Ecological Security Index (WESI) exhibited a trend of “fluctuating upward followed by periodic decline”. In 2000, the status was “relatively unsafe”. It peaked in 2015 (index 0.332, moderately safe) and experienced a slight decline by 2020. Spatially, a significantly clustered pattern of “higher in the north and lower in the south, higher in the east and lower in the west” was observed. In 2020, “High-High” clusters of ecological security aligned closely with Shandong Province’s ecological conservation red line, concentrating in core protected areas such as the foothills of the Taihang Mountains and Dongping Lake Wetland. Level transitions were characterized by “predominant continuous improvement in low levels alongside localized reverse fluctuations in middle and high levels,” with the “relatively unsafe” and “moderately safe” levels experiencing the largest transfer areas. Geographical detector analysis indicates that the Human Interference Index (HI), Ecosystem Service Value (ESV), and Annual Afforestation Area (AAA) were key drivers of watershed ecological security change, influenced by dynamic interactive effects among multiple factors. This study advances watershed-scale ecological security assessment methodologies. The revealed spatio-temporal patterns and driving mechanisms provide valuable insights for protecting the ecological barrier in the lower Yellow River and informing ecological security strategies within the Dongping Lake Watershed. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 97817 KiB  
Article
Compression of 3D Optical Encryption Using Singular Value Decomposition
by Kyungtae Park, Min-Chul Lee and Myungjin Cho
Sensors 2025, 25(15), 4742; https://doi.org/10.3390/s25154742 - 1 Aug 2025
Viewed by 286
Abstract
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same [...] Read more.
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics. Full article
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
INTEGRAL/ISGRI Post 2024-Periastron View of PSR B1259-63
by Aleksei Kuzin, Denys Malyshev, Maria Chernyakova, Brian van Soelen and Andrea Santangelo
Universe 2025, 11(8), 254; https://doi.org/10.3390/universe11080254 - 31 Jul 2025
Viewed by 158
Abstract
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the [...] Read more.
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the analysis of INTEGRAL observations of the system following its last periastron passage in June 2024. We aim to study the spectral evolution of this gamma-ray binary in the soft (0.3–10 keV) and hard (30–300 keV) X-ray energy bands. We performed a joint analysis of the data taken by INTEGRAL/ISGRI in July–August 2024 and quasi-simultaneous Swift/XRT observations. The spectrum of the system in the 0.3–300 keV band is well described by an absorbed power law with a photon index of Γ=1.42±0.03. We place constraints on potential spectral curvature, limiting the break energy Eb>30 keV for ΔΓ>0.3 and cutoff energy Ecutoff>150 keV at a 95% confidence level. For one-zone leptonic emission models, these values correspond to electron distribution spectral parameters of Eb,e>0.8 TeV and Ecutoff,e>1.7 TeV, consistent with previous constraints derived by H.E.S.S. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

19 pages, 5198 KiB  
Article
Research on a Fault Diagnosis Method for Rolling Bearings Based on the Fusion of PSR-CRP and DenseNet
by Beining Cui, Zhaobin Tan, Yuhang Gao, Xinyu Wang and Lv Xiao
Processes 2025, 13(8), 2372; https://doi.org/10.3390/pr13082372 - 25 Jul 2025
Viewed by 412
Abstract
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms [...] Read more.
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms one-dimensional bearing vibration data into a three-dimensional space. Euclidean distances between phase points are calculated and mapped into a Color Recurrence Plot (CRP) to represent the bearings’ operational state. This approach effectively reduces feature extraction ambiguity compared to RP, GAF, and MTF methods. Fault features are extracted and classified using DenseNet’s densely connected topology. Compared with CNN and ViT models, DenseNet improves diagnostic accuracy by reusing limited features across multiple dimensions. The training set accuracy was 99.82% and 99.90%, while the test set accuracy is 97.03% and 95.08% for the CWRU and JNU datasets under five-fold cross-validation; F1 scores were 0.9739 and 0.9537, respectively. This method achieves highly accurate diagnosis under conditions of non-smooth signals and inconspicuous fault characteristics and is applicable to fault diagnosis scenarios for precision components in aerospace, military systems, robotics, and related fields. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Inversely Designed Silicon Nitride Power Splitters with Arbitrary Power Ratios
by Yang Cong, Shuo Liu, Yanfeng Liang, Haoyu Wang, Huanlin Lv, Fangxu Liu, Xuanchen Li and Qingxiao Guo
Photonics 2025, 12(8), 744; https://doi.org/10.3390/photonics12080744 - 24 Jul 2025
Viewed by 258
Abstract
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The [...] Read more.
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The devices are designed with ultra-compact dimensions using three-dimensional finite-difference time-domain (3D FDTD) analysis and an inverse design algorithm. Within a 50 nm bandwidth (1525 nm to 1575 nm), we demonstrated a 1 × 2 OPS with splitting ratios of 1:1, 1:1.5, and 1:2; a 1 × 3 OPS with ratios of 1:2:1 and 2:1:2; and a 1 × 4 OPS with ratios of 1:1:1:1 and 2:1:2:1. The target splitting ratios are achieved by optimizing pixel distributions in the coupling region. The dimensions of the designed devices are 1.96 × 1.96 µm2, 2.8 × 2.8 µm2, and 2.8 × 4.2 µm2, respectively. The designed devices achieve transmission efficiencies exceeding 90% and exhibit excellent power splitting ratios (PSRs). Full article
Show Figures

Figure 1

30 pages, 5734 KiB  
Article
Evaluating Remote Sensing Products for Pasture Composition and Yield Prediction
by Karen Melissa Albacura-Campues, Izar Sinde-González, Javier Maiguashca, Myrian Herrera, Judith Zapata and Theofilos Toulkeridis
Remote Sens. 2025, 17(15), 2561; https://doi.org/10.3390/rs17152561 - 23 Jul 2025
Viewed by 411
Abstract
Vegetation and soil indices are able to indicate patterns of gradual plant growth. Therefore, productivity data may be used to predict performance in the development of pastures prior to grazing, since the morphology of the pasture follows repetitive cycles through the grazing of [...] Read more.
Vegetation and soil indices are able to indicate patterns of gradual plant growth. Therefore, productivity data may be used to predict performance in the development of pastures prior to grazing, since the morphology of the pasture follows repetitive cycles through the grazing of animals. Accordingly, in recent decades, much attention has been paid to the monitoring and development of vegetation by means of remote sensing using remote sensors. The current study seeks to determine the differences between three remote sensing products in the monitoring and development of white clover and perennial ryegrass ratios. Various grass and legume associations (perennial ryegrass, Lolium perenne, and white clover, Trifolium repens) were evaluated in different proportions to determine their yield and relationship through vegetation and soil indices. Four proportions (%) of perennial ryegrass and white clover were used, being 100:0; 90:10; 80:20 and 70:30. Likewise, to obtain spectral indices, a Spectral Evolution PSR-1100 spectroradiometer was used, and two UAVs with a MAPIR 3W RGNIR camera and a Parrot Sequoia multispectral camera, respectively, were employed. The data collection was performed before and after each cut or grazing period in each experimental unit, and post-processing and the generation of spectral indices were conducted. The results indicate that there were no significant differences between treatments for yield or for vegetation indices. However, there were significant differences in the index variables between sensors, with the spectroradiometer and Parrot obtaining similar values for the indices both pre- and post-grazing. The NDVI values were closely correlated with the yield of the forage proportions (R2 = 0.8948), constituting an optimal index for the prediction of pasture yield. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

21 pages, 3142 KiB  
Article
Influence of Biosurfactants on the Efficiency of Petroleum Hydrocarbons Biodegradation in Soil
by Katarzyna Wojtowicz, Teresa Steliga, Tomasz Skalski and Piotr Kapusta
Sustainability 2025, 17(14), 6520; https://doi.org/10.3390/su17146520 - 16 Jul 2025
Viewed by 361
Abstract
Soil contamination with petroleum hydrocarbons is a serious environmental issue, necessitating the development of effective and environmentally friendly remediation methods that align with the principles of sustainable development. This study investigated the impact of selected biosurfactants on the efficiency of the biodegradation of [...] Read more.
Soil contamination with petroleum hydrocarbons is a serious environmental issue, necessitating the development of effective and environmentally friendly remediation methods that align with the principles of sustainable development. This study investigated the impact of selected biosurfactants on the efficiency of the biodegradation of total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Six biosurfactants—poly-γ-glutamic acid (γ-PGA), rhamnolipid, surfactin, a mixture of γ-PGA, rhamnolipids, and surfactin (PSR), as well as two commercial formulations (JBR 425 and JBR 320)—were evaluated in combination with a bacterial consortium. Biodegradation experiments were conducted under laboratory conditions for a 90-day period. The effectiveness of the tested biosurfactants was assessed using respirometric analysis, the chromatographic determination of the residual hydrocarbon content, and toxicity assays. The results showed that the application of a bacterial consortium enriched with a mixture of biosurfactants PSR (a biosurfactant concentration in the inoculating mixture: 5 g/dm3) was the most effective approach, resulting in an oxygen uptake of 5164.8 mgO2/dm3 after 90 days, with TPH and PAH degradation rates of 77.3% and 70.32%, respectively. Phytotoxicity values decreased significantly, with TU values ranging from 6.32 to 4.62 (growth inhibition) and 3.77 to 4.13 (germination). Toxicity also decreased in the ostracodtoxkit test (TU = 4.35) and the Microtox SPT test (TU = 4.91). Among the tested biosurfactants, surfactin showed the least improvement in its bioremediation efficiency. Under the same concentration as in the PSR mixture, the oxygen uptake was 3446.7 mgO2/dm3, with TPH and PAH degradation rates of 60.64% and 52.64%, respectively. In the system inoculated with the bacterial consortium alone (without biosurfactants), the biodegradation efficiency reached 44.35% for TPH and 36.97% for PAHs. The results demonstrate that biosurfactants can significantly enhance the biodegradation of petroleum hydrocarbons in soil, supporting their potential application in sustainable bioremediation strategies. Full article
Show Figures

Figure 1

29 pages, 1878 KiB  
Article
Comprehensive Resilience Assessment and Obstacle Analysis of Cities Based on the PSR-TOPSIS Model: A Case Study of Jiangsu Cities
by Zikai Zhao, Chao Liu, Wenye Chang and Yangjun Ren
Land 2025, 14(7), 1437; https://doi.org/10.3390/land14071437 - 9 Jul 2025
Viewed by 518
Abstract
As global urbanization accelerates amidst compounding risks, comprehensive urban resilience assessment has emerged as a pivotal issue in optimizing risk governance pathways. Grounded in the Pressure–State–Response (PSR) theoretical framework, this study constructs a multidimensional evaluation system for comprehensive urban resilience. Through the integration [...] Read more.
As global urbanization accelerates amidst compounding risks, comprehensive urban resilience assessment has emerged as a pivotal issue in optimizing risk governance pathways. Grounded in the Pressure–State–Response (PSR) theoretical framework, this study constructs a multidimensional evaluation system for comprehensive urban resilience. Through the integration of a combined weighting method and the TOPSIS model, we systematically measure resilience levels across 13 prefecture-level cities in Jiangsu Province, with the obstacle degree model employed to identify critical resilience constraints. The findings reveal significant spatial heterogeneity in regional resilience patterns. High-resilience cities establish positive feedback mechanisms through economic foundations, innovation-driven strategies, and institutional coordination. Conversely, low-resilience cities face multidimensional constraints, including industrial structure imbalance, inadequate social security systems, and infrastructure deficiencies. The resilience disparity stems from the coupling effects of systemic multidimensional elements, with three core obstacles identified: energy consumption and population pressure in the Pressure dimension, medical resource scarcity and innovation deficit in the State dimension, and fiscal expenditure inefficiency in the Response dimension. The study proposes strategic interventions, including fiscal structure optimization, cross-regional resource coordination enhancement, and innovation–translation mechanism improvement, to facilitate urban systems’ transformation from passive resistance to proactive adaptation. This research provides novel perspectives for analyzing complex system resilience evolution and offers scientific grounds for urban agglomeration risk prevention and sustainable development. Full article
Show Figures

Figure 1

20 pages, 2948 KiB  
Article
Bridging Subjective and Objective Dimensions of Resilience: A Space Syntax Approach to Analyzing Urban Public Spaces
by Yunyan Li, Miao Wang, Binyan Wang and Yuchen Liang
Sustainability 2025, 17(13), 5937; https://doi.org/10.3390/su17135937 - 27 Jun 2025
Cited by 1 | Viewed by 342
Abstract
Public spaces are fundamental spatial units within cities, serving as essential venues for residents’ daily activities and as resilient environments for responding to emergencies. They play a crucial role in enhancing urban resilience and promoting sustainable urban development. However, existing research predominantly focuses [...] Read more.
Public spaces are fundamental spatial units within cities, serving as essential venues for residents’ daily activities and as resilient environments for responding to emergencies. They play a crucial role in enhancing urban resilience and promoting sustainable urban development. However, existing research predominantly focuses on objective spatial entities, often neglecting users’ behavioral and psychological perceptions. Studies that incorporate perceived resilience typically necessitate extensive, time-consuming, and costly fieldwork. To address these gaps, this study innovatively integrates space syntax into the Public Space Resilience (PSR) analytical framework, thereby bridging the subjective and objective dimensions of resilience in the evaluation process. A comprehensive resilience measurement framework is developed, linking ‘material entities’, ‘spatial perception (via space syntax)’, and ‘spatial resilience’. Using the Yuzhong Peninsula in Chongqing, China, as a case study, this research employs indicators such as integration, connectivity, and comprehensibility to quantitatively evaluate PSR. Based on the findings, this study also proposes strategies and recommendations to enhance PSR. The results contribute to both a practical measurement method and a theoretical framework for advancing PSR in urban planning and design. Full article
Show Figures

Figure 1

18 pages, 8142 KiB  
Article
Influence of Principal Stress Orientation on Cyclic Degradation of Soft Clay Under Storm Wave Loading
by Chengcong Hu, Feng Gao, Biao Huang, Peipei Li, Zheng Hu and Kun Pan
J. Mar. Sci. Eng. 2025, 13(7), 1227; https://doi.org/10.3390/jmse13071227 - 26 Jun 2025
Viewed by 330
Abstract
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. [...] Read more.
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. This study employs hollow cylinder apparatus testing to investigate the undrained cyclic loading behavior of reconstituted soft clay under controlled α0 and PSR conditions, simulating storm wave-induced stress paths. Results demonstrate that α0 governs permanent pore pressure and vertical strain accumulation with distinct mechanisms, e.g., a tension-dominated response with gradual pore pressure rise at α0 < 45° transitions to a compression-driven rapid strain accumulation at α0 > 45°. Rotational loading with PSR significantly intensifies permanent strain accumulation and stiffness degradation rates, exacerbating soil’s anisotropic behavior. Furthermore, the stiffness degradation index tends to uniquely correlate with the permanent axial or shear strain, which can be quantified by an exponential relationship that is independent of α0 and PSR, providing a unified framework for normalizing stiffness evolution across diverse loading paths. These findings advance the understanding of storm wave-induced degradation behavior of soft clay and establish predictive tools for optimizing marine foundation design under cyclic loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

28 pages, 1293 KiB  
Article
A Lightweight Double-Deep Q-Network for Energy Efficiency Optimization of Industrial IoT Devices in Thermal Power Plants
by Shuang Gao, Yuntao Zou and Li Feng
Electronics 2025, 14(13), 2569; https://doi.org/10.3390/electronics14132569 - 25 Jun 2025
Cited by 1 | Viewed by 424
Abstract
Industrial Internet of Things (IIoT) deployments in thermal power plants face significant energy efficiency challenges due to harsh operating conditions and device resource constraints. This paper presents gradient memory double-deep Q-network (GM-DDQN), a lightweight reinforcement learning approach for energy optimization on resource-constrained IIoT [...] Read more.
Industrial Internet of Things (IIoT) deployments in thermal power plants face significant energy efficiency challenges due to harsh operating conditions and device resource constraints. This paper presents gradient memory double-deep Q-network (GM-DDQN), a lightweight reinforcement learning approach for energy optimization on resource-constrained IIoT devices. At its core, GM-DDQN introduces the gradient memory mechanism, a novel memory-efficient alternative to experience replay. This core innovation, combined with a simplified neural network architecture and efficient parameter quantization, collectively reduces memory requirements by 99% and computation time by 85–90% compared to standard methods. Experimental evaluations across three realistic simulated thermal power plant scenarios demonstrate that GM-DDQN improves energy efficiency by 42% compared to fixed policies and 27% compared to threshold-based approaches, extending battery lifetime from 8–9 months to 14–15 months while maintaining 96–97% PSR. The method enables sophisticated reinforcement learning directly on IIoT edge devices without requiring cloud connectivity, reducing maintenance costs and improving monitoring reliability in industrial environments. Full article
Show Figures

Figure 1

20 pages, 1555 KiB  
Article
Nethotrons: Exploring the Possibility of Measuring Relativistic Spin Precessions, from Earth’s Satellites to the Galactic Centre
by Lorenzo Iorio
Universe 2025, 11(6), 189; https://doi.org/10.3390/universe11060189 - 11 Jun 2025
Viewed by 743
Abstract
By “nethotron”, from the ancient Greek verb for “to spin”, it is meant here a natural or artificial rotating object, like a pulsar or an artificial satellite, whose rotational axis is cumulatively displaced by the post-Newtonian static (gravitoelectric) and stationary (gravitomagnetic) components of [...] Read more.
By “nethotron”, from the ancient Greek verb for “to spin”, it is meant here a natural or artificial rotating object, like a pulsar or an artificial satellite, whose rotational axis is cumulatively displaced by the post-Newtonian static (gravitoelectric) and stationary (gravitomagnetic) components of the gravitational field of some massive body around which it freely moves. Until now, both relativistic effects have been measured only by the dedicated space-based mission Gravity Probe B in the terrestrial environment. It detected the gravitoelectric de Sitter and gravitomagnetic Pugh–Schiff spin precessions of four superconducting gyroscopes accumulated within a year after about 50 years from conception to completion of data analysis at a cost of 750 million US dollars to 0.3 and 19 percent accuracy, respectively. The perspectives to measure them with Earth’s long-lived laser-ranged geodetic satellites, like those of the LAGEOS family or possibly one or more of them to be built specifically from scratch, and pulsars orbiting the supermassive black hole in the Galactic Centre, yet to be discovered, are preliminarily investigated. The double pulsar PSR J0737-3039A/B is examined as well. Full article
Show Figures

Figure 1

18 pages, 1849 KiB  
Article
A Cloud Model-Based Evaluation of Renovation Decisions for Old Urban Communities from the Perspective of Resilience—A Case Study of a Community in Nanjing, China
by Xisheng Li, Xiang Zhang and Jiaying Zhang
Buildings 2025, 15(12), 1985; https://doi.org/10.3390/buildings15121985 - 9 Jun 2025
Viewed by 440
Abstract
The renovation of old communities is a major measure taken to promote urban development and transformation and can improve the quality of urban space and the living environment of residents, as well as promote economic development and bring new economic growth to the [...] Read more.
The renovation of old communities is a major measure taken to promote urban development and transformation and can improve the quality of urban space and the living environment of residents, as well as promote economic development and bring new economic growth to the city. Decision-making regarding the updating of old communities is the starting point of the whole renovation process, and can be classified into two aspects: resilience assessment and renewal-potential evaluation. In order to standardize the retrofit evaluation index system, enhance the guidance of renovation decision plans for community renewal practices, and consider the randomness of evaluation indicators and the visualization of evaluation results, this paper proposes a method for evaluating the potential of old-urban-community renovation from the perspective of resilience. Based on an analysis of the relationship of the PSR (pressure–state–response) model and community resilience, as well as literature statistics, an evaluation index for the potential of old-community renovation according to the PSR model is established. Furthermore, vague set theory is applied to reduce the initial evaluation index system; then, entropy weight and the g1 method are used to determine objective and subjective weights, respectively, before determining the combination weight value. And the cloud model comprehensive evaluation method is applied to determine the membership degrees of resilience levels for the indicator, sub-criteria, criteria, and target layer in sequence. Finally, taking Nanjing Yinlun Garden Community as an example, the proposed method is adopted to identify the community’s resilience and renovation priorities, verifying the applicability of the method. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 2619 KiB  
Article
Influence of Fuel Types and Equivalence Ratios on NOx Emissions in Combustion: A Comparative Analysis of Methane, Methanol, Propane, and Hydrogen Blends
by Amr Abbass
Clean Technol. 2025, 7(2), 42; https://doi.org/10.3390/cleantechnol7020042 - 21 May 2025
Viewed by 1252
Abstract
This study utilizes a zero-dimensional, constant-pressure, perfectly stirred reactor (PSR) model within the Cantera framework to examine the combustion characteristics of hydrogen, methane, methanol, and propane, both singly and in hydrogen-enriched mixtures. The impact of the equivalence ratio (ϕ = 0.75, 1.0, 1.5), [...] Read more.
This study utilizes a zero-dimensional, constant-pressure, perfectly stirred reactor (PSR) model within the Cantera framework to examine the combustion characteristics of hydrogen, methane, methanol, and propane, both singly and in hydrogen-enriched mixtures. The impact of the equivalence ratio (ϕ = 0.75, 1.0, 1.5), fuel composition, and residence duration on temperature increase, heat release, ignition delay, and emissions (NOx and CO2) is methodically assessed. The simulations are performed under steady-state settings to emulate the ignition and flame propagation processes within pre-chambers and primary combustion zones of internal combustion engines. The results demonstrate that hydrogen significantly improves combustion reactivity, decreasing ignition delay and increasing peak flame temperature, especially at short residence times. The incorporation of hydrogen into hydrocarbon fuels, such as methane and methanol, enhances ignition speed, improves thermal efficiency, and stabilizes lean combustion. Nevertheless, elevated hydrogen concentrations result in increased NOx emissions, particularly at stoichiometric equivalence ratios, due to higher flame temperatures. The examination of fuel mixtures at varying hydrogen concentrations (10–50% by mole) indicates that thermal performance is optimal under stoichiometric settings and diminishes in both fuel-lean and fuel-rich environments. A thermodynamic model was created utilizing classical combustion theory to validate the heat release estimates based on Cantera. The model computes the heat release per unit volume (MJ/m3) by utilizing stoichiometric oxygen demand, nitrogen dilution, fuel mole fraction, and higher heating values (HHVs). The thermodynamic estimates—3.61 MJ/m3 for H2–CH3OH, 3.43 MJ/m3 for H2–CH4, and 3.35 MJ/m3 for H2–C3H8—exhibit strong concordance with the Cantera results (2.82–3.02 MJ), thereby validating the physical consistency of the numerical methodology. This comparison substantiates the Cantera model for the precise simulation of hydrogen-blended combustion, endorsing its use in the design and development of advanced low-emission engines. Full article
Show Figures

Figure 1

22 pages, 511 KiB  
Article
Changes in Emission Properties Associated with the Emission Shifts in PSR J0344−0901
by Rai Yuen and Habtamu M. Tedila
Universe 2025, 11(5), 165; https://doi.org/10.3390/universe11050165 - 21 May 2025
Viewed by 237
Abstract
We investigate changes in the emission properties in association with the emission shifts observed in PSR J0344−0901 and their implications for the underlying emission mechanism. By decomposing the averaged pulse profile into multiple Gaussian components, the observed emission shift can be modeled through [...] Read more.
We investigate changes in the emission properties in association with the emission shifts observed in PSR J0344−0901 and their implications for the underlying emission mechanism. By decomposing the averaged pulse profile into multiple Gaussian components, the observed emission shift can be modeled through the variation in the peak phase of each component in relation to the plasma flow in a pulsar magnetosphere of multiple emission states based on the model by Melrose and Yuen. From the arrangements of the Gaussian components to fit the two averaged profiles, we show that the emission shift is due to (i) shifting of the Gaussian components toward later longitudinal phases and (ii) an increase in the plasma density. We show that the plasma flow is not uniform, which may be the reason for the irregular drifting subpulses observed. In addition, the change in the plasma density can either positively or negatively affect the pulse amplitude, depending on the amount of change. We demonstrate that an emission shift should be more prominent when it occurs at a lower emission height, where the plasma density is higher. This suggests that this phenomenon should be common, but it is more likely detected in pulsars with small impact parameters. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

Back to TopTop