Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = PN diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5179 KB  
Article
P–N Nanoporous Silicon Fabrication Using Photoelectrochemical Etching and Ultrasonic Vibration and Liquid-Phase Bonding for Optoelectronic Applications
by Chao-Ching Chiang and Philip Nathaniel Immanuel
Micromachines 2026, 17(1), 73; https://doi.org/10.3390/mi17010073 - 4 Jan 2026
Viewed by 568
Abstract
We systematically investigated the optical properties of P-N nanoporous silicon (NPS) diodes fabricated using photoelectrochemical etching and ultrasonic vibration (PEEU), followed by liquid-phase bonding and thermal treatment. Ultrasonic vibration during etching promoted uniform pore formation by enhancing reactant diffusion and suppressing hydrogen bubble [...] Read more.
We systematically investigated the optical properties of P-N nanoporous silicon (NPS) diodes fabricated using photoelectrochemical etching and ultrasonic vibration (PEEU), followed by liquid-phase bonding and thermal treatment. Ultrasonic vibration during etching promoted uniform pore formation by enhancing reactant diffusion and suppressing hydrogen bubble accumulation, while laser-induced photocarriers improved etching selectivity, facilitating the formation of NPS with pronounced quantum confinement. The fabricated NPS devices exhibited significantly enhanced photoluminescence (PL) and electroluminescence (EL) properties, with an average external quantum efficiency of 7.3% at a bias of 10 V. Subsequent liquid-phase bonding and thermal annealing further enhanced structural stability and interface quality, resulting in an 180% increase in PL intensity. These results demonstrate that the combination of PEEU with liquid-phase bonding and thermal annealing yields a versatile approach to tailor the optical and electrical properties of P–N porous silicon nanostructures for high-performance light-emitting diodes and quantum-confined silicon photonics, highlighting the critical role of process-induced nanostructures and thermal modifications in device performance. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

8 pages, 965 KB  
Brief Report
Integrated PbTe Quantum Dots for Two-Color Detection in II–VI Wide-Bandgap Diodes
by Jakub M. Głuch, Michał Szot and Grzegorz Karczewski
Nanomaterials 2026, 16(1), 7; https://doi.org/10.3390/nano16010007 - 19 Dec 2025
Viewed by 255
Abstract
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered [...] Read more.
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered by depositing 20 alternating thin layers of CdTe and PbTe, then thermal annealing under ultrahigh vacuum. As revealed by cross-sectional scanning electron microscopy (SEM), the initially continuous PbTe layers transformed into arrays of zero-dimensional nanostructures, namely PbTe QDs. The formation of PbTe QDs in a CdTe matrix arises from the structural mismatch between the zinc blende and rock-salt crystal structures of the two materials. Electron beam-induced current (EBIC) scans confirmed that the QDs are localized within the depleted charge region between the p-ZnTe and n-CdTe layers. The resulting wide-gap diodes containing narrow-band QDs show pronounced sensitivity to infrared radiation in the spectral range of 1–4.5 μm, with a peak responsivity of approximately 8 V/W at a wavelength of ~2.0 μm and a temperature of 200 K. A red-shift in the cutoff wavelength when temperature decreases indicates that the infrared (IR) response is governed by band-to-band optical transitions in the PbTe QDs. In addition, the devices show sensitivity to visible radiation, with a maximum responsivity of 20 V/W at 0.69 μm. These results demonstrate that wide-bandgap p–n junctions incorporating narrow-bandgap QDs can function as dual-wavelength (visible and infrared) photodetectors, with potential applications in two-color detection and infrared solar cells. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Photodetectors)
Show Figures

Figure 1

16 pages, 3028 KB  
Article
Simulation of a Multiband Stacked Antiparallel Solar Cell with over 70% Efficiency
by Rehab Ramadan, Kin Man Yu and Nair López Martínez
Materials 2025, 18(24), 5625; https://doi.org/10.3390/ma18245625 - 15 Dec 2025
Viewed by 303
Abstract
Multiband solar cells offer a promising route to surpass the Shockley-Queisser limit by harnessing sub-bandgap photons through three active energy band transitions. However, realizing their full potential requires overcoming key challenges in material design and device architecture. Here, we propose a novel multiband [...] Read more.
Multiband solar cells offer a promising route to surpass the Shockley-Queisser limit by harnessing sub-bandgap photons through three active energy band transitions. However, realizing their full potential requires overcoming key challenges in material design and device architecture. Here, we propose a novel multiband stacked anti-parallel junction solar cell structure based on highly mismatched alloys (HMAs), in particular dilute GaAsN with ~1–4% N. An anti-parallel junction consists of two semiconductor junctions connected with opposite polarity, enabling bidirectional current control. The structures of the proposed devices are based on dilute GaAsN with anti-parallel junctions, which allow the elimination of tunneling junctions—a critical yet complex component in conventional multijunction solar cells. Semiconductors with three active energy bands have demonstrated the unique properties of carrier transport through the stacked anti-parallel junctions via tunnel currents. By leveraging highly mismatched alloys with tailored electronic properties, our design enables bidirectional carrier generation through forward- and reverse-biased diodes in series, significantly enhancing photocurrent extraction. Through detailed SCAPS-1D simulations, we demonstrate that strategically placed blocking layers prevent carrier recombination at contacts while preserving the three regions of photon absorption in a single multiband semiconductor p/n junction. Remarkably, our optimized five-stacked anti-parallel junctions structure achieves a maximum theoretical conversion efficiency of 70% under 100 suns illumination, rivaling the performance of state-of-the-art six-junctions III-V solar cells—but without the fabrication complexity of multijunction solar cells associated with tunnel junctions. This work establishes that highly mismatched alloys are a viable platform for high efficiency solar cells with simplified structures. Full article
Show Figures

Figure 1

16 pages, 2120 KB  
Article
Analysis of Superjunction MOSFET (CoolMOS™) Concept Limitations—Part I: Theory
by Zbigniew Lisik and Jacek Podgórski
Materials 2025, 18(23), 5451; https://doi.org/10.3390/ma18235451 - 3 Dec 2025
Cited by 1 | Viewed by 487
Abstract
The CoolMOS™ (Infineon Technologies AG, Munich, Germany) has been considered a device that alleviates high-voltage limitations of unipolar power devices, but although the theoretical considerations seem to confirm such a possibility, this expectation has not been fulfilled until now. This paper identifies limitations [...] Read more.
The CoolMOS™ (Infineon Technologies AG, Munich, Germany) has been considered a device that alleviates high-voltage limitations of unipolar power devices, but although the theoretical considerations seem to confirm such a possibility, this expectation has not been fulfilled until now. This paper identifies limitations of the CoolMOS™ concept. The analysis was carried out in two steps. The first step aimed at the theory of high-voltage superjunction and its implementation into a power VDMOS transistor, which resulted in the modified construction called CoolMOS™. The investigations have shown that the superjunction effect is not an inherent feature of high voltage junctions formed as a characteristic meander-like p-n junction. Such a junction starts to work in SuperJunction Mode (SJM) just when the electric field strength reaches the magnitude of the threshold electric field Eth. Also, other theoretical constraints concerning the SJ diode and CoolMOS™ design have been presented. The second step aimed at the physical and technological limitations that have been identified, taking advantage of numerical investigations for CoolMOS™ structures developed on the basis of a typical VDMOS one. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors: Synthesis, Structure, and Applications)
Show Figures

Figure 1

12 pages, 2274 KB  
Article
Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET
by Jiangang Yu, Ziwei Li, Fengchao Li, Haibing Qiu, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(9), 771; https://doi.org/10.3390/cryst15090771 - 29 Aug 2025
Viewed by 990
Abstract
In this paper, a novel enhancement-mode β-Ga2O3-based FinFET structure with a gate formed by the NiO/β-Ga2O3 heterojunction named HJ-FinFET has been proposed, and the excellent performance of the device has also been demonstrated. The primary operational [...] Read more.
In this paper, a novel enhancement-mode β-Ga2O3-based FinFET structure with a gate formed by the NiO/β-Ga2O3 heterojunction named HJ-FinFET has been proposed, and the excellent performance of the device has also been demonstrated. The primary operational mechanism of this structure involves integrating p-type NiO on both sides of the fin-shaped channel, which forms p-n junctions with β-Ga2O3. The depletion regions thus generated are utilized to establish electron channels, enabling enhancement-mode operation. The reverse p-NiO/n-Ga2O3 heterojunction diode is integrated to reduce the reverse free-wheeling loss. Compared with the conventional devices, the threshold voltage of the HJ-FinFET is greatly improved, and normally off operation is realized, showing a positive threshold voltage of 2.14 V. Meanwhile, the simulated breakdown voltage of the HJ-FinFET reaches 2.65 kV with specific on-resistance (Ron,sp) of 2.48 mΩ·cm2 and the power figure of merit (PFOM = BV2/Ron,sp) reaches 2840 MW/cm2, respectively. In addition, the influence of the doping concentration of the heterojunction layer constituting the gate, the doping concentration of the drift layer, and the channel width on the electrical characteristics of the devices were focused on. This structure provides a feasible idea for high-performance β-Ga2O3-based FinFET. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 1027 KB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Cited by 4 | Viewed by 3956
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

15 pages, 6418 KB  
Article
Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate
by Seung-Woo Lee, Ju-Seong Lee, Hyeon-Wook Yu, Tae-Hee Kim and Hyun-Seok Kim
Polymers 2025, 17(13), 1825; https://doi.org/10.3390/polym17131825 - 30 Jun 2025
Cited by 2 | Viewed by 1254
Abstract
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing [...] Read more.
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing capabilities. This study introduces a multifunctional sensor that combines high stretchability for strain and pressure detection with ultraviolet (UV) sensing capability. To achieve simultaneous detection of strain, pressure, and UV light, a multi-sensing approach was employed: a capacitive method for strain and pressure detections and a resistive method utilizing a pn-heterojunction diode for UV detection. In the capacitive method, polyaniline (PANI) served as parallel-plate electrodes, while silicon-based elastomer acted as the dielectric layer. This configuration enabled up to 100% elongation and enhanced operational stability through encapsulation. The sensor demonstrated a strong linear relationship between capacitance value changes reasonably based on the area of PANI, and showed a good linearity with an R-squared value of 0.9918. It also detected pressure across a wide range, from low (0.4 kPa) to high (9.4 kPa). Furthermore, for wearable applications, the sensor reliably captured capacitance variations during finger bending at different angles. For UV detection, a pn-heterojunction diode composed of p-type silicon and n-type zinc oxide nanorods exhibited a rapid response time of 6.1 s and an on/off ratio of 13.8 at −10 V. Durability under 100% tensile strain was confirmed through Von Mises stress calculations using finite element modeling. Overall, this multifunctional sensor offers significant potential for a variety of applications, including human motion detection, wearable technology, and robotics. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

23 pages, 4593 KB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 1228
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

23 pages, 7289 KB  
Review
Analysis of Edge Termination Techniques for Gallium Nitride Pseudo-Vertical p-n Diodes: Modeling Based on Technology Computer-Aided Design and Review of Current Developments
by Mohammed El Amrani, Julien Buckley, Daniel Alquier, Philippe Godignon and Matthew Charles
Electronics 2025, 14(6), 1188; https://doi.org/10.3390/electronics14061188 - 18 Mar 2025
Cited by 1 | Viewed by 2764
Abstract
Edge termination techniques play a crucial role in enhancing the breakdown voltage (BV) and managing electric field distribution in GaN-based power devices. This review explores six key termination methods—field plate (FP), mesa, bevel, trench, ion implantation, and guard ring (GR)—with a focus on [...] Read more.
Edge termination techniques play a crucial role in enhancing the breakdown voltage (BV) and managing electric field distribution in GaN-based power devices. This review explores six key termination methods—field plate (FP), mesa, bevel, trench, ion implantation, and guard ring (GR)—with a focus on their performance, fabrication complexity, and insights derived from TCAD simulations. FP and trench terminations excel in high-voltage applications due to their superior electric field control but are accompanied by significant fabrication challenges. Mesa and bevel terminations, while simpler and cost-effective, are more suited for medium-voltage applications. Ion implantation and GR techniques strike a balance, offering customizable parameters for improved BV performance. TCAD simulations provide a robust framework for analyzing these techniques, highlighting optimal configurations and performance trade-offs. The choice of edge termination depends on the specific application, balancing BV requirements with manufacturing feasibility. This review offers a comprehensive comparison, emphasizing the critical role of simulations in guiding the selection and design of edge termination techniques for GaN power devices. Full article
(This article belongs to the Special Issue Feature Review Papers in Electronics)
Show Figures

Figure 1

17 pages, 3900 KB  
Article
The Effects of Light Duration and Intensity with Supplemental Light-Emitting Diode Lights on Grape Photosynthesis, Yield, and Fruit Quality
by Yu Yuan, Shuqing Liu, Yuming Xie, Jun Nie, Xin Yang and Rutao Huang
Agronomy 2025, 15(3), 518; https://doi.org/10.3390/agronomy15030518 - 20 Feb 2025
Cited by 1 | Viewed by 2269
Abstract
‘Shine muscat’ grapevines must be cultivated in a protected facility to avoid insects and rain during the rainy season; however, this decreases the light intensity falling on the canopy of grapes. The use of light-emitting diodes (LEDs), with their high efficiency in converting [...] Read more.
‘Shine muscat’ grapevines must be cultivated in a protected facility to avoid insects and rain during the rainy season; however, this decreases the light intensity falling on the canopy of grapes. The use of light-emitting diodes (LEDs), with their high efficiency in converting electricity to light, is a useful method to supplement light for plant growth. This study was designed to primarily investigate the effect of the light duration and intensity of supplemental LED lights on grape growth. The photosynthetic and chlorophyll fluorescence measurements of leaves were used to evaluate the performance of photosynthesis. Grape yield and fruit quality were also investigated. Seven different light treatments were utilized to determine the proper light duration and intensity of supplemental LED lights. The results show that the supplemental LED light intensity with the photosynthetic photon flux density (PPFD) of 300 μmol/(m2·s) at 18:00–24:00 showed the highest grape yield, sugar–acid ratio, and economic benefit, with improvement values of 45.1%, 51.4%, and 23.6%, respectively, compared to unsupplemented control vines (CK). The difference between the net photosynthetic rate (Pn), the max net photosynthetic rate (Pmax), and the leaf photosynthetic efficiency (α) between the treatments was negligible. Meanwhile, prolonging the light duration at night was more effective in improving the grape yield and fruit quality than increasing the light intensity in the daytime using supplemental LED lights. The results prove that the supplemental LED lights significantly optimized the light environment and improved grape yield and fruit quality. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

13 pages, 2081 KB  
Communication
Diffusion-Improved Recrystallization of Ammonia Doping to Enhancing the Optoelectronic and Thermoelectric Effects of Multi-Junction Carbon Nanotube Paper Diodes
by Jih-Hsin Liu and Cheng-Jhe Yen
C 2025, 11(1), 12; https://doi.org/10.3390/c11010012 - 12 Feb 2025
Cited by 1 | Viewed by 1516
Abstract
This study focuses on fabricating flexible multi-junction diodes using carbon nanotubes (CNTs) as the base material, employing doping engineering and recrystallization-driven thermal diffusion techniques to enhance optoelectronic and thermoelectric properties. N-type CNTs are synthesized through ammonia doping and combined with intrinsic P-type CNTs [...] Read more.
This study focuses on fabricating flexible multi-junction diodes using carbon nanotubes (CNTs) as the base material, employing doping engineering and recrystallization-driven thermal diffusion techniques to enhance optoelectronic and thermoelectric properties. N-type CNTs are synthesized through ammonia doping and combined with intrinsic P-type CNTs to create PN multi-junction “buckypaper”. Post-diffusion processes improve junction crystallinity and doping gradients, significantly boosting the rectification ratio and optoelectronic and thermoelectric response. The device follows the superposition principle, achieving notable increases in thermoelectric and photovoltaic outputs, with the Seebeck coefficient rising from 5.7 μV/K to 24.4 μV/K. This study underscores the potential of flexible carbon-based devices for energy harvesting applications and advancing optoelectronic and thermoelectric systems. Full article
(This article belongs to the Special Issue Carbon Functionalization: From Synthesis to Applications)
Show Figures

Graphical abstract

14 pages, 14732 KB  
Communication
A CMOS Optoelectronic Transceiver with Concurrent Automatic Power Control for Short-Range LiDAR Sensors
by Yejin Choi, Juntong Li, Dukyoo Jung, Seonhan Choi and Sung-Min Park
Sensors 2025, 25(3), 753; https://doi.org/10.3390/s25030753 - 26 Jan 2025
Viewed by 1541
Abstract
This paper presents an optoelectronic transceiver (OTRx) realized in a 180 nm CMOS technology for applications of short-range LiDAR sensors, in which a modified current-mode single-ended VCSEL driver (m-CMVD) is exploited as a transmitter (Tx) and a voltage-mode fully differential transimpedance amplifier (FD-TIA) [...] Read more.
This paper presents an optoelectronic transceiver (OTRx) realized in a 180 nm CMOS technology for applications of short-range LiDAR sensors, in which a modified current-mode single-ended VCSEL driver (m-CMVD) is exploited as a transmitter (Tx) and a voltage-mode fully differential transimpedance amplifier (FD-TIA) is employed as a receiver (Rx). Especially for Tx, a concurrent automatic power control (APC) circuit is incorporated to compensate for the inevitable increase in the threshold current in a VCSEL diode. For Rx, two on-chip spatially modulated P+/N- well avalanche photodiodes (APDs) are integrated with the FD-TIA to achieve circuit symmetry. Also, an extra APD is added to facilitate the APC operations in Tx, i.e., concurrently adjusting the bias current of the VCSEL diode by the action of the newly proposed APC path in Rx. Measured results of test chips demonstrate that the proposed OTRx causes the DC bias current to increase from 0.93 mA to 1.42 mA as the input current decreases from 250 µApp to 3 µApp, highlighting its suitability for short-range sensor applications utilizing a cost-effective CMOS process. Full article
(This article belongs to the Special Issue Optoelectronic Functional Devices for Sensing Applications)
Show Figures

Figure 1

14 pages, 3212 KB  
Article
Designs of Charge-Balanced Edge Termination Structures for 3.3 kV SiC Power Devices Using PN Multi-Epitaxial Layers
by Sangyeob Kim and Ogyun Seok
Micromachines 2025, 16(1), 47; https://doi.org/10.3390/mi16010047 - 30 Dec 2024
Cited by 1 | Viewed by 2561
Abstract
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P+ rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively [...] Read more.
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P+ rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively control the effective charge (Qeff) in the termination structures. The TRA-JTE forms with the identical P-type epitaxial layer, which enables high-efficiency hole injection and conductivity modulation. The effects of major design parameters for the TRA-JTE, such as the number of trenches (Ntrench) and depth of trenches (Dtrench), were analyzed to obtain reliable blocking capabilities. Furthermore, the single-zone-JTE (SZ-JTE), ring-assisted-JTE (RA-JTE), and trenched-JTE (T-JTE) were also evaluated for comparative analysis. Our results show that the TRA-JTE exhibited the highest breakdown voltage (BV), exceeding 4.2 kV, and the strongest tolerance against variance in doping concentration for the JTE (NJTE) compared to both the RA-JTE and T-JTE due to the charge-balanced edge termination by multiple P+ rings and trench structures. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

10 pages, 3244 KB  
Article
Study on Electrical and Temperature Characteristics of β-Ga2O3-Based Diodes Controlled by Varying Anode Work Function
by Yunlong He, Baisong Sheng, Xiaoli Lu, Guran Chen, Peng Liu, Ying Zhou, Xichen Wang, Weiwei Chen, Lei Wang, Jun Yang, Xuefeng Zheng, Xiaohua Ma and Yue Hao
Nanomaterials 2024, 14(24), 2035; https://doi.org/10.3390/nano14242035 - 18 Dec 2024
Viewed by 1518
Abstract
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-Ga2O3-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco [...] Read more.
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-Ga2O3-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the Von of the Ti/Au anode SBD is merely 0.2 V, which is the lowest recorded value in the existing literature. The Von and current trend of two types of PNDs are nearly consistent, confirming that the contact between Ti/Au or Ni/Au and NiOx is ohmic. A theoretical derivation reveals the basic principles of the different contact resistances and current variations. With the combination of SBD and PND, the Von, current density, and variation rate of the JBSD lie between those of the SBD and PND. In terms of temperature characteristics, all diodes can work well at 200 °C, with both current density and Von showing a decreasing trend as the temperature increases. Among them, the PND with a Ni/Au anode exhibits the best thermal stability, with reductions in Von and current density of 8.20% and 25.31%, respectively, while the SBD with a Ti/Au anode shows the poorest performance, with reductions of 98.56% and 30.73%. Finally, the reverse breakdown (BV) characteristics of all six devices are tested. The average BV values for the PND with Ti/Au and Ni/Au anodes reach 1575 V and 1550 V, respectively. Moreover, although the Von of the JBSD decreases to 0.24 V, its average BV is approximately 220 V. This work could provide valuable insights for the future application of β-Ga2O3-based diodes in high-power and low-power consumption systems. Full article
Show Figures

Figure 1

8 pages, 1950 KB  
Communication
Creation of Flexible Heterogeneously-Doped Carbon Nanotube Paper PN Diodes to Enhance Thermoelectric and Photovoltaic Effects
by Jih-Hsin Liu and Chen-Yu Yen
Processes 2024, 12(12), 2898; https://doi.org/10.3390/pr12122898 - 18 Dec 2024
Cited by 1 | Viewed by 1073
Abstract
This study investigates the fabrication and characterization of flexible PN diode devices using phosphorus- and boron-doped carbon nanotube (CNT) paper, also known as Buckypaper (BP). The BP substrate is fabricated from multi-walled carbon nanotubes (MWCNTs) and doped with phosphorus and boron to form [...] Read more.
This study investigates the fabrication and characterization of flexible PN diode devices using phosphorus- and boron-doped carbon nanotube (CNT) paper, also known as Buckypaper (BP). The BP substrate is fabricated from multi-walled carbon nanotubes (MWCNTs) and doped with phosphorus and boron to form N-type and P-type semiconductors, respectively. Various experimental techniques, including Raman spectroscopy, Hall effect measurements, and scanning electron microscopy (SEM), are employed to analyze the properties of the doped BP. The results reveal that the current-voltage (I-V) and capacitance-voltage (C-V) characteristics preliminarily exhibit the basic electrical properties of a diode after doping with P-type and N-type carriers. Subsequently, optimized vertical stacking combined with parallel electrode configurations for the BP diode devices demonstrates that vertical series stacking gradually enhances the thermoelectric voltage, while horizontal parallel connections approximately scale up the thermoelectric and photovoltaic voltages proportionally. The findings underscore the critical role of creating heterogeneously doped CNT-paper PN junction electric fields in improving the performance of carbon-based semiconductor devices. Furthermore, we demonstrate that these directionally oriented energy devices, when stacked, can form modular systems with enhanced efficiency. This work highlights the potential of flexible carbon material-based devices for advanced thermoelectric and photovoltaic applications. Full article
Show Figures

Figure 1

Back to TopTop