Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = PLA biopolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3193 KB  
Article
Environmental Life Cycle Assessment of Poly(3-hydroxybutyrate) (PHB): A Comparative Study with Petrochemical and Bio-Based Polymers
by Magdalena Wojnarowska, Marcin Rychwalski and Tomasz Witko
Resources 2025, 14(10), 162; https://doi.org/10.3390/resources14100162 - 10 Oct 2025
Viewed by 163
Abstract
In the context of the urgent global transition toward sustainable materials, this study presents a comparative environmental life cycle assessment (LCA) of poly(3-hydroxybutyrate) (PHB), a biodegradable, bio-based polymer, against conventional petrochemical plastics (polystyrene—PS; polypropylene—PP) and another popular biopolymer, namely polylactic acid (PLA). The [...] Read more.
In the context of the urgent global transition toward sustainable materials, this study presents a comparative environmental life cycle assessment (LCA) of poly(3-hydroxybutyrate) (PHB), a biodegradable, bio-based polymer, against conventional petrochemical plastics (polystyrene—PS; polypropylene—PP) and another popular biopolymer, namely polylactic acid (PLA). The LCA was conducted using primary production data from a laboratory-scale PHB manufacturing process, integrating real-time energy consumption measurements across all production stages. Environmental indicators such as carbon footprint and energy demand were analyzed under cradle-to-gate and end-of-life scenarios. The results indicate that PHB, while offering biodegradability and renewable sourcing, currently exhibits a significantly higher carbon footprint than PP, PS, and PLA, primarily due to its energy-intensive downstream processing. However, the environmental impact of PHB can be markedly reduced—by over 67%—through partial integration of renewable energy. PLA demonstrated the lowest production-phase emissions, while PP showed the most favorable end-of-life outcomes under municipal waste management assumptions. The study highlights the critical influence of energy sourcing, production scale, and waste treatment infrastructure on the sustainability performance of biopolymers. These findings provide practical insights for industry and policymakers aiming to reduce the environmental burden of plastics and support a shift toward circular material systems. Full article
Show Figures

Figure 1

18 pages, 2806 KB  
Article
Polylactide (PLA) Composites Reinforced with Natural Fibrous Filler Recovered from the Biomass of Sorghum Leaves or Stems
by Ryszard Gąsiorowski, Danuta Matykiewicz and Dominika Janiszewska-Latterini
Materials 2025, 18(19), 4634; https://doi.org/10.3390/ma18194634 - 8 Oct 2025
Viewed by 298
Abstract
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim [...] Read more.
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim was to assess the effect of filler type and content (5, 10, and 15 wt.%) on the physicochemical properties of the composites. Sorghum was manually harvested in Greater Poland, separated, dried, milled, and fractionated to particles <0.25 mm. Composites were produced via extrusion and injection molding, followed by characterization using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile and impact testing, density measurements, optical microscopy, and scanning electron microscopy (SEM). Results showed that stem-based fillers provided a better balance between stiffness and ductility, along with improved dispersion and interfacial adhesion. In contrast, leaf-based fillers led to higher stiffness but greater brittleness and agglomeration. All composites exhibited decreased impact strength and thermal stability compared to neat PLA, with the extent of these decreases depending on the filler type and loading. The study highlights the potential of sorghum stems as a viable, renewable reinforcement in biopolymer composites, aligning with circular economy and bioeconomy strategies. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

15 pages, 2036 KB  
Article
Effect of Degradation During Multiple Primary Mechanical Recycling Processes on the Physical Properties and Biodegradation of Commercial PLA-Based Water Bottles
by Cristina Muñoz-Shugulí, Diana Morán, Eliezer Velásquez, José Manuel López-Vilariño and Carol López-de-Dicastillo
Polymers 2025, 17(18), 2542; https://doi.org/10.3390/polym17182542 - 20 Sep 2025
Viewed by 521
Abstract
For sustainable development aligned with circular economy principles, the recycling of biopolymers such as polylactic acid (PLA) is of growing interest. In this study, the effect of primary recycling through repeated mechanical reprocessing was investigated. PLA water bottle preforms were subjected to six [...] Read more.
For sustainable development aligned with circular economy principles, the recycling of biopolymers such as polylactic acid (PLA) is of growing interest. In this study, the effect of primary recycling through repeated mechanical reprocessing was investigated. PLA water bottle preforms were subjected to six consecutive extrusion cycles, and changes in its molecular structure and physical properties were evaluated. Structural analysis revealed a progressive degradation, evidenced by a great reduction in the molar mass and increase in the melt flow index, attributed both to the chain scission derived from the thermal degradation and shear stresses of the extrusion process, and hydrolysis at the ester linkage of the polymer. Recycled samples exhibited a darkening of the color and a continuous decrease in thermal stability. After six reprocessing cycles, PLA crystallinity increased from 6.9 to 39.5%, the cold crystallization process disappeared, and molecular weight reduced by up to 40%. Barrier properties were highly affected after reprocessing and by the increase in relative humidity. Biodegradation tests revealed that crystallinity affected considerably the biodegradation rate of PLA. Although the molecular weight was considerably reduced during reprocessing, the biodegradation was slowed down. These findings provide insights into the limitations and potential of mechanically recycled PLA for future material applications. Full article
Show Figures

Figure 1

19 pages, 2302 KB  
Review
The Cytotoxicity of Biodegradable Microplastics and Nanoplastics: Current Status and Research Prospects
by Konstantin Malafeev
Microplastics 2025, 4(3), 58; https://doi.org/10.3390/microplastics4030058 - 3 Sep 2025
Viewed by 1118
Abstract
The growth in the production and use of biodegradable plastics, positioned as an environmentally friendly alternative to traditional polymers, has led to an increase in their distribution in the environment. However, in conditions other than industrial composting facilities, biodegradable polymers can persist for [...] Read more.
The growth in the production and use of biodegradable plastics, positioned as an environmentally friendly alternative to traditional polymers, has led to an increase in their distribution in the environment. However, in conditions other than industrial composting facilities, biodegradable polymers can persist for a long time, fragment, and form biodegradable micro- and nanoplastics (BioMNP) with potential toxicity. Unlike traditional microplastics, the impact of BioMNP on human health has been poorly studied. This review summarises the available data on the cytotoxicity of BioMNP, including mechanisms of interaction with human cells, routes of entry into the body, induction of inflammation, oxidative stress, and cellular dysfunction. Particular attention is paid to the interaction of microplastics with cells of various body systems, including the digestive, respiratory, immune, and urogenital systems, as well as with the skin. The identified knowledge gaps highlight the need for further research to assess the risks associated with the impact of BioMNP on humans and to develop safer forms of biopolymers. Among biodegradable plastics, PLA-based particles tend to exhibit stronger cytotoxic effects. Nanoplastics generally induce more severe cellular responses than microplastics. Organs such as the liver and lungs appear particularly vulnerable. Full article
Show Figures

Figure 1

18 pages, 4073 KB  
Article
Development of Biopolymer Polylactic Acid–Cellulose Acetate–Silicon Dioxide Nanocomposite Membranes for Multifunctional Protective Textiles
by Irfan Farooq, Abdulhamid Al-Abduljabbar and Ibrahim A. Alnaser
Polymers 2025, 17(16), 2237; https://doi.org/10.3390/polym17162237 - 17 Aug 2025
Viewed by 1169
Abstract
In this study, multifunctional nanocomposite membranes were fabricated using biopolymeric polylactic acid (PLA) and cellulose acetate (CA) composites via electrospinning. The hydrophobic nanocomposite membranes were reinforced with varying concentrations of silicon dioxide (silica/SiO2) nanoparticles. The developed PLA–CA–SiO2 nanofibrous membranes are [...] Read more.
In this study, multifunctional nanocomposite membranes were fabricated using biopolymeric polylactic acid (PLA) and cellulose acetate (CA) composites via electrospinning. The hydrophobic nanocomposite membranes were reinforced with varying concentrations of silicon dioxide (silica/SiO2) nanoparticles. The developed PLA–CA–SiO2 nanofibrous membranes are characterized using field emission scanning electron microscopy (FE- energy-dispersive SEM), energy-dispersive X-ray (EDX), elemental mapping, X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT–IR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Various physical and mechanical properties of the bio-nanocomposite membrane, such as tensile testing, infrared thermal imaging, ultraviolet–visible spectroscopy (UV–Vis), water contact angle, hydrostatic pressure resistance, and breathability are also investigated. The analysis revealed that a small concentration of silica nanoparticles improves the morphological, mechanical, and thermal characteristics of nanocomposite membranes. The addition of silica nanoparticles improves the UV (A & B), visible and infrared blocking efficiency while also enhancing the waterproofness of protective textiles. The PLA–CA–SiO2 biopolymer nanocomposite membrane has a fibrous microstructure and demonstrated the tensile strength of 11.2 MPa, a Young’s modulus of 329 MPa, an elongation at break of 98.5%, a hydrostatic pressure resistance of 27 kPa, and a water contact angle of 143.7°. The developed electrospun composite membranes with improved properties provide strong potential to replace petroleum-based membranes with biopolymer-based alternatives, promising improved and wider usage for bio-related applications. Full article
(This article belongs to the Special Issue Silicon-Based Polymers: From Synthesis to Applications)
Show Figures

Figure 1

27 pages, 4903 KB  
Article
Biodegradation in Freshwater: Comparison Between Compostable Plastics and Their Biopolymer Matrices
by Valerio Bocci, Martina De Vivo, Sara Alfano, Simona Rossetti, Francesca Di Pippo, Loris Pietrelli and Andrea Martinelli
Polymers 2025, 17(16), 2236; https://doi.org/10.3390/polym17162236 - 17 Aug 2025
Cited by 1 | Viewed by 1050
Abstract
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem [...] Read more.
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem of two compostable items, Mater-Bi® shopping bag and disposable dish, with their respective pure polymer matrices, poly(butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA). Additionally, biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and oil-based polypropylene (PP) were also tested. Changes in morphology, chemical composition and thermal and mechanical properties, as well as microbial colonization, were analyzed over time. A validated cleaning protocol was employed to ensure accurate surface analysis. Results showed detectable but limited degradation of pure polymers and their matrices in commercial products after 120 days of immersion with variations observed among polymer materials. Compostable materials exhibited significant leaching of fillers (starch, inorganic particles), leading to morphological changes and fragmentation. PHBV showed the fastest degradation among tested polyesters. PP exhibited only minor surface changes. Microbial colonization varied with polymer structure and degradability, but long-term degradation was limited by polymer properties and the gradual development of the plastisphere. This study highlights that standard laboratory tests may overestimate the environmental degradability of BPs and emphasizes the importance of in situ assessments, careful cleaning procedures and property characterizations to accurately assess polymer degradation in freshwater systems. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

15 pages, 1615 KB  
Article
Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties
by Aleksandra Nešić, Rebeka Lorber, Silvester Bolka, Blaž Nardin and Branka Pilić
Polymers 2025, 17(16), 2164; https://doi.org/10.3390/polym17162164 - 8 Aug 2025
Viewed by 748
Abstract
Poly(lactide) (PLA) is the most versatile biopolymer with few possible end-of-life scenarios, like recycling, biodegradation/composting, and incineration. Biodegradation occurs under strictly defined conditions, and ultimately, PLA is landfilled, where it behaves like conventional plastics. To completely utilize the potential of PLA, it is [...] Read more.
Poly(lactide) (PLA) is the most versatile biopolymer with few possible end-of-life scenarios, like recycling, biodegradation/composting, and incineration. Biodegradation occurs under strictly defined conditions, and ultimately, PLA is landfilled, where it behaves like conventional plastics. To completely utilize the potential of PLA, it is necessary to increase the recycling and upcycling rates. In this work, the influence of 10 cycles of reprocessing PLA pre-consumer industrial waste on the material’s properties was examined. The mechanical milling of the material was followed by injection molding, and after each cycle, mechanical, thermal, chemical, and optical properties were studied. Between the cycles, no virgin PLA or any additives were added to enhance the properties. Results showed a slight decrease in molecular weight, while the thermal properties remained unchanged compared to the starting material. Full article
Show Figures

Figure 1

19 pages, 3321 KB  
Article
Assessing the Biodegradation Characteristics of Poly(Butylene Succinate) and Poly(Lactic Acid) Formulations Under Controlled Composting Conditions
by Pavlo Lyshtva, Viktoria Voronova, Argo Kuusik and Yaroslav Kobets
AppliedChem 2025, 5(3), 17; https://doi.org/10.3390/appliedchem5030017 - 4 Aug 2025
Cited by 1 | Viewed by 940
Abstract
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations [...] Read more.
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations in the forms of granules and films under controlled composting conditions at a laboratory scale. Biodegradation tests of bio-based materials were conducted under controlled aerobic conditions, following the standard EVS-EN ISO 14855-1:2012. Scanning electron microscopy (SEM) was performed using a high-resolution Zeiss Ultra 55 scanning electron microscope to analyze the samples. After the six-month laboratory-scale composting experiment, it was observed that the PLA-based materials degraded by 47.46–98.34%, while the PBS-based materials exhibited a final degradation degree of 34.15–80.36%. Additionally, the PLA-based compounds displayed a variable total organic carbon (TOC) content ranging from 38% to 56%. In contrast, the PBS-based compounds exhibited a more consistent TOC content, with a narrow range from 53% to 54%. These findings demonstrate that bioplastics can contribute to reducing plastic waste through controlled composting, but their degradation efficiency depends on the material composition and environmental conditions. Future efforts should optimize bioplastic formulations and composting systems while developing supportive policies for wider adoption. Full article
Show Figures

Figure 1

34 pages, 924 KB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 1712
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2393 KB  
Article
Determination of Time and Concentration Conditions Affecting Polylactic Acid (Pla) Production
by Jorge Braulio Amaya and Gabriela Vaca
Polymers 2025, 17(15), 2009; https://doi.org/10.3390/polym17152009 - 23 Jul 2025
Viewed by 687
Abstract
Polylactic acid (PLA) is a renewable biopolymer that has attracted considerable interest due to its ability to replace petroleum-based synthetic polymers, thereby offering a more sustainable alternative to global environmental concerns. This study focused on evaluating the effect of catalyst concentration and reaction [...] Read more.
Polylactic acid (PLA) is a renewable biopolymer that has attracted considerable interest due to its ability to replace petroleum-based synthetic polymers, thereby offering a more sustainable alternative to global environmental concerns. This study focused on evaluating the effect of catalyst concentration and reaction time on the efficiency of PLA synthesis via the Ring-Opening Polymerization (ROP) technique. The process involved a lactic acid esterification stage (using 88% lactic acid) to obtain lactide, employing 40% and 60% (v/v) sulfuric acid concentrations, followed by polymerization at various reaction times (10, 15, 20, and 30 min). Analysis of variance (ANOVA) results revealed that the 40% catalyst concentration had a statistically significant effect on polymer yield (p = 0.032), whereas reaction time showed no statistical significance (p = 0.196), although the highest yields were recorded at 10 and 15 min. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of the characteristic functional groups of PLA, and Differential Scanning Calorimetry (DSC) revealed a semi-crystalline structure with a high melting temperature, indicating good thermal stability. These results validate the viability of PLA as a functional and sustainable biopolymer. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

20 pages, 3201 KB  
Article
Effect of Screw Configuration on the Recyclability of Natural Fiber-Based Composites
by Vlasta Chyzna, Steven Rowe, James Finnerty, Trevor Howard, Christopher Doran, Shane Connolly, Noel Gately, Alexandre Portela, Alan Murphy, Declan M. Devine and Declan Mary Colbert
Fibers 2025, 13(7), 98; https://doi.org/10.3390/fib13070098 - 18 Jul 2025
Viewed by 832
Abstract
The burgeoning crisis of plastic waste accumulation necessitates innovative approaches towards sustainable packaging solutions. Polylactic acid (PLA), a leading biopolymer, emerges as a promising candidate in this realm, especially for environmentally friendly packaging. PLA is renowned for its compostable properties, offering a strategic [...] Read more.
The burgeoning crisis of plastic waste accumulation necessitates innovative approaches towards sustainable packaging solutions. Polylactic acid (PLA), a leading biopolymer, emerges as a promising candidate in this realm, especially for environmentally friendly packaging. PLA is renowned for its compostable properties, offering a strategic avenue to mitigate plastic waste. However, its dependency on specific industrial composting conditions, characterized by elevated temperatures, humidity, and thermophilic microbes, limits its utility for household composting. This study aims to bridge the research gap in PLA’s recyclability and explore its feasibility in mechanical recycling processes. The research focuses on assessing the mechanical characteristics of PLA and PLA-based composites post-recycling. Specifically, we examined the effects of two extrusion methods—conical and parallel—on PLA and its composites containing 20 wt.% basalt fibers (BF). The recycling process encompassed repeated cycles of hot melt extrusion (HME), followed by mechanical grinding to produce granules. These granules were then subjected to injection moulding (IM) after 1, 3 and 5 recycling cycles. The tensile properties of the resulting IM-produced bars provided insights into the material’s durability and stability. The findings reveal that both PLA and PLA/BF composites retain their mechanical integrity through up to 5 cycles of mechanical recycling. This resilience underscores PLA’s potential for integration into existing recycling streams, addressing the dual challenges of environmental sustainability and waste management. The study contributes to the broader understanding of PLA’s lifecycle and opens new possibilities for its application in eco-friendly packaging, beyond the limits of composting. The implications of these findings extend towards enhancing the circularity of biopolymers and reducing the environmental footprint of plastic packaging. Full article
Show Figures

Figure 1

17 pages, 900 KB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Cited by 1 | Viewed by 1305
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

23 pages, 5750 KB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 786
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

52 pages, 3535 KB  
Review
Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
by Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad and Wan Abd Al Qadr Imad Wan-Mohtar
Polymers 2025, 17(14), 1897; https://doi.org/10.3390/polym17141897 - 9 Jul 2025
Cited by 10 | Viewed by 4144
Abstract
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. [...] Read more.
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. Agricultural waste, often discarded in large quantities, offers a valuable resource for producing biodegradable polymers. This review discusses the environmental burden caused by traditional plastics and explores how agricultural residues such as rice husks, corn cobs, and fruit peels can be converted into eco-friendly packaging materials. Various types of biopolymers sourced from agricultural waste, including cellulose, starch, plant and animal-based proteins, polyhydroxyalkanoates (PHA), and polylactic acid (PLA), are examined for their properties, benefits, and limitations in food packaging applications. Each material presents unique characteristics in terms of biodegradability, mechanical strength, and barrier performance. While significant progress has been made, several challenges remain, including cost-effective production, material performance, and compliance with food safety regulations. Looking ahead, innovations in material processing, waste management integration, and biopolymer formulation could pave the way for widespread adoption. This review aims to provide a comprehensive overview of current developments and future directions in the use of agricultural waste for sustainable packaging solutions, comparing their biodegradability and performance to conventional plastics. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Figure 1

20 pages, 702 KB  
Systematic Review
The Effectiveness and Complication Rate of Resorbable Biopolymers in Oral Surgery: A Systematic Review
by Riccardo Fabozzi, Francesco Bianchetti, Domenico Baldi, Catherine Yumang Sanchez, Francesco Bagnasco and Nicola De Angelis
Dent. J. 2025, 13(6), 264; https://doi.org/10.3390/dj13060264 - 13 Jun 2025
Cited by 3 | Viewed by 1581
Abstract
Background: Resorbable biopolymers are increasingly explored for use in regenerative procedures within dental surgery. Their ability to degrade naturally, minimize surgical reinterventions, and potentially reduce immunogenicity makes them appealing in guided bone and tissue regeneration applications. However, despite these advantages, uncertainties persist [...] Read more.
Background: Resorbable biopolymers are increasingly explored for use in regenerative procedures within dental surgery. Their ability to degrade naturally, minimize surgical reinterventions, and potentially reduce immunogenicity makes them appealing in guided bone and tissue regeneration applications. However, despite these advantages, uncertainties persist regarding their comparative effectiveness and associated risks. For example, polyethylene glycol (PEG)-based membranes have shown comparable outcomes to porcine-derived collagen membranes in bone regeneration procedures, yet studies have reported a higher incidence of soft tissue healing complications associated with PEG-based materials. Similarly, while polycaprolactone (PCL) and dextrin-based hydrogels have demonstrated promising clinical handling and bone fill capabilities, their long-term performance and consistency across different anatomical sites remain under investigation. These findings highlight the need for further well-powered clinical trials to establish standardized guidelines for their safe and effective use. Methods: A systematic review protocol was registered with the PROSPERO database and developed in alignment with PRISMA guidelines. Database searches were conducted in PubMed, Medline, Scopus, and Cochrane from June to December 2024. Only randomized controlled trials (RCTs) focusing on synthetic resorbable biopolymers in bone augmentation procedures were considered. Bias was evaluated using the Cochrane Risk of Bias tool. Results: Eleven RCTs were included, totaling 188 patients. The findings suggest that materials such as polylactic acid (PLA), polycaprolactone (PCL), and polyethylene glycol (PEG) contributed effectively to new bone formation. PEG-based membranes were found to perform on par with or occasionally better than traditional collagen membranes derived from porcine sources. Additionally, the application of 3D-printable polymers demonstrated promise in site-specific healing. Conclusions: Resorbable biopolymers are effective and safe for GBR procedures, with clinical outcomes comparable to traditional materials. Advances in 3D-printing technology and bioactive coatings may further enhance their regenerative potential. However, the incidence of soft tissue healing complications suggests the need for further long-term studies to optimize material properties and clinical application. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

Back to TopTop