Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = Opuntia ficus indica (L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2408 KiB  
Article
Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits
by Berenice Karina Flores-Hernández, Ma. de Lourdes Arévalo-Galarza, Manuel Livera-Muñoz, Cecilia Peña-Valdivia, Aída Martínez-Hernández, Guillermo Calderón-Zavala and Guadalupe Valdovinos-Ponce
Foods 2025, 14(14), 2546; https://doi.org/10.3390/foods14142546 - 21 Jul 2025
Viewed by 330
Abstract
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in [...] Read more.
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in the pericarpel. Recently, by inducing parthenocarpy, seedless fruits of cactus pear have been obtained. They have attractive colors, soft and small seminal residues, with a similar flavor to their original seeded counterparts. Nevertheless, their postharvest physiological behavior has not yet been documented. The aim of this study was to compare the biochemical, anatomical, and physiological characteristics of pollinated fruits, CP30 red and CP40 yellow varieties, with their parthenocarpic counterparts (CP30-P and CP40-P), obtained by the application of growth regulators in preanthesis. Fruits of each type were harvested at horticultural maturity, and analyses were carried out on both pulp and pericarpel (peel), using a completely randomized design. Results showed that red fruits CP30 and CP30-P showed higher concentrations of betacyanins in pulp (13.4 and 18.4 mg 100 g−1 FW) and in pericarpel (25.9 and 24.1 mg 100 g−1 FW), respectively; flavonoid content was significantly higher in partenocarpic fruits compared with the pollinated ones. Parthenocarpy mainly affected the shelf life, in pollinated fruits, CP30 was 14 days but 32 days in CP30-P; for CP40, it was 16 days, and 30 days in CP40-P. Also, the partenocarpic fruits were smaller but with a thicker pericarpel, and lower stomatal frequency. Overall, parthenocarpic fruits represent a viable alternative for commercial production due to their extended shelf life, lower weight loss, and soft but edible pericarpel. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 5557 KiB  
Article
Rheological and Physical Properties of Mucilage Hydrogels from Cladodes of Opuntia ficus-indica: Comparative Study with Pectin
by Federica Torregrossa, Matteo Pollon, Giorgia Liguori, Francesco Gargano, Donatella Albanese, Francesca Malvano and Luciano Cinquanta
Gels 2025, 11(7), 556; https://doi.org/10.3390/gels11070556 - 19 Jul 2025
Viewed by 280
Abstract
The physical and rheological properties of mucilage hydrogels derived from the cladodes of Opuntia ficus-indica (L. Mill) were compared with those of commercial pectin for potential applications in the food industry. All hydrogels—formulated by incorporating sucrose and either calcium chloride or calcium carbonate [...] Read more.
The physical and rheological properties of mucilage hydrogels derived from the cladodes of Opuntia ficus-indica (L. Mill) were compared with those of commercial pectin for potential applications in the food industry. All hydrogels—formulated by incorporating sucrose and either calcium chloride or calcium carbonate to promote favorable gel network formation—exhibited pseudoplastic (shear-thinning) behavior. The flow characteristics of the hydrogels prepared with mucilage or pectin conformed to the Casson fluid model. Moreover, all samples consistently displayed loss modulus (G″) values exceeding their corresponding storage modulus (G′) values, indicating a dominant viscous behavior over elastic properties. The ζ-potential of all samples was negative across the pH range studied. Mucilage-based samples exhibited lower ionizability per unit mass and reduced phase stability compared to those containing pectin. Principal component analysis (PCA) revealed that mucilage hydrogels exhibited multivariate profiles similar to pectin hydrogels containing calcium carbonate, though the latter demonstrated greater polydispersity than standard pectic gels. Infrared spectroscopy further highlighted distinct spectral differences between pectins and mucilages, offering valuable insights into their respective functional characteristics. Collectively, these findings underscore the potential of Opuntia ficus-indica mucilages as viable additives in food formulations. Full article
Show Figures

Figure 1

23 pages, 13783 KiB  
Article
Synthesis and Characterization of a Nanocomposite Based on Opuntia ficus indica for Efficient Removal of Methylene Blue Dye: Adsorption Kinetics and Optimization by Response Surface Methodology
by Yasser Boumezough, Gianluca Viscusi, Sihem Arris, Giuliana Gorrasi and Sónia A. C. Carabineiro
Int. J. Mol. Sci. 2025, 26(14), 6717; https://doi.org/10.3390/ijms26146717 - 13 Jul 2025
Viewed by 368
Abstract
In this study, an efficient and cost-effective nanocomposite material based on Opuntia ficus indica (cactus) powder modified with iron oxide nanoparticles was developed as an adsorbent for the removal of methylene blue (MB), a common water pollutant. The nanocomposite was synthesized through the [...] Read more.
In this study, an efficient and cost-effective nanocomposite material based on Opuntia ficus indica (cactus) powder modified with iron oxide nanoparticles was developed as an adsorbent for the removal of methylene blue (MB), a common water pollutant. The nanocomposite was synthesized through the co-precipitation method of Fe2+ and Fe3+ ions and characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). Batch adsorption experiments were conducted over 24 h, varying different operational conditions, such as pH, temperature and initial pollutant concentration. Furthermore, a Box–Behnken design was employed to develop an empirical model for predicting removal efficiency and optimizing the adsorption conditions. The effects of adsorption variables including contact time (1–60 min), initial MB concentration (20–100 mg/L), pH (2–12), adsorbent dosage (2–6 g/L) and temperature (25–55 °C) on the removal capacity were examined. Under optimal conditions, the maximum removal efficiency of MB reached approximately 96%, with a maximum adsorption capacity of 174 mg/g, as predicted by the Langmuir model. The synthesized cactus/iron oxide nanocomposite demonstrated significant potential as an adsorbent for treating MB-contaminated water. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

14 pages, 3390 KiB  
Article
The Potential of Aloe vera and Opuntia ficus-indica Extracts as Biobased Agents for the Conservation of Cultural Heritage Metals
by Çağdaş Özdemir, Lucia Emanuele, Marta Kotlar, Marina Brailo Šćepanović, Laura Scrano and Sabino Aurelio Bufo
Metabolites 2025, 15(6), 386; https://doi.org/10.3390/metabo15060386 - 10 Jun 2025
Viewed by 565
Abstract
Background/Objectives: Biocorrosion, driven by microbial colonization and biofilm formation, poses a significant threat to the integrity of metal artifacts, particularly those composed of copper and its alloys. Pseudomonas aeruginosa, a bacterial species that reduces nitrates, plays a key role in this process. [...] Read more.
Background/Objectives: Biocorrosion, driven by microbial colonization and biofilm formation, poses a significant threat to the integrity of metal artifacts, particularly those composed of copper and its alloys. Pseudomonas aeruginosa, a bacterial species that reduces nitrates, plays a key role in this process. This study explores the potential of two metabolite-rich plant extracts, Aloe vera and Opuntia ficus-indica, as sustainable biobased inhibitors of microbial-induced corrosion (MICOR). Methods: The antibacterial and antibiofilm activities of the extracts were evaluated using minimal inhibitory concentration (MIC) assays, time-kill kinetics, and biofilm prevention and removal tests on copper, bronze, and brass samples. Spectrophotometric and microbiological methods were used to quantify bacterial growth and biofilm density. Results: Both extracts exhibited significant antibacterial activity, with MIC values of 8.3% (v/v). A. vera demonstrated superior bactericidal effects, achieving reductions of ≥3 log10 in bacterial counts at lower concentrations. In antibiofilm assays, both extracts effectively prevented biofilm formation and reduced established biofilms, with A. vera exhibiting greater efficacy against them. The active metabolites—anthraquinones, phenolics, flavonoids, and tannins—likely contribute to these effects. Conclusions: These findings highlight the dual role of A. vera and O. ficus-indica extracts as both corrosion and biocorrosion inhibitors. The secondary metabolite profiles of these plants support their application as eco-friendly alternatives in the conservation of metal cultural heritage objects. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Plants)
Show Figures

Figure 1

17 pages, 5980 KiB  
Article
Phytochemical Characterization and Antifungal Potential of Opuntia ficus-indica Cladode Extracts Against Tomato Pathogens
by Slimane Mokrani, Nasir A. Ibrahim, Boumediene Benaricha, Karim Houali, Cristina Cruz, Karima Boungab, Fatma Bousedra, Zakia Bensekrane, Mohammed Saad Aleissa, Nosiba S. Basher, Assia Derguini and El-hafid Nabti
Processes 2025, 13(5), 1412; https://doi.org/10.3390/pr13051412 - 6 May 2025
Cited by 2 | Viewed by 747
Abstract
In the realm of sustainable and eco-friendly agriculture, current scientific research emphasizes the development of plant-based bioproducts to mitigate the agricultural footprint resulting from excessive fertilizer and pesticide use. This study investigates the cladodes of Opuntia ficus-indica to screen for bioactive compounds and [...] Read more.
In the realm of sustainable and eco-friendly agriculture, current scientific research emphasizes the development of plant-based bioproducts to mitigate the agricultural footprint resulting from excessive fertilizer and pesticide use. This study investigates the cladodes of Opuntia ficus-indica to screen for bioactive compounds and assess their efficacy against fungal pathogens isolated from infected tomato fruits. Quantitative analysis of the methanolic extract revealed substantial concentrations of bioactive compounds: total polyphenols (86.6 mg GAEs/100 g FW), flavonoids (13.4 mg QEs/100 g FW), condensed tannins (8.9 mg TAEs/100 g FW), and carotenoids (0.9 mg β-CEs/100 g FW). Notably, the DPPH assay indicated that the cladode extract exhibited significant antioxidant potential at a concentration of 0.6 mg/mL. Seven fungal pathogens were isolated from infected tomato fruits and identified as belonging to the following genera: Rhizoctonia (EC2), Fusarium (EC1 and EC3), Alternaria (EC4), Mucor (EC5), Aspergillus (EC6), and Penicillium (EC7). At a concentration of 0.02% of the cladode hydroethanolic extract, the antifungal activity results demonstrated mycelial growth inhibition for Alternaria sp. (70.91%), Rhizoctonia solani EC2 (58.49%), Fusarium oxysporum EC3 (57.63%), and Fusarium solani EC1 (53.13%). Conversely, lower inhibitory activities were observed for Mucor sp. EC5 (31.08%), Aspergillus sp. EC6 (35.14%), and Penicillium sp. EC7 (28.38%). At a concentration of 0.04%, all cladode hydroethanolic extracts inhibited mycelial growth by more than 50%. Furthermore, the highest spore inhibition was attained with the 0.04% cladode hydroethanolic extract (exceeding 50%). Inhibition percentages of 83.02%, 85.96%, 87.76%, and 90.20% were recorded for Fusarium oxysporum EC3, Fusarium solani EC1, Rhizoctonia solani EC2, and Alternaria sp. EC4, respectively. Collectively, these findings suggest that Opuntia ficus-indica extract holds significant promise for application as a biopesticide against fungal pathogens affecting tomato fruits. Full article
Show Figures

Figure 1

18 pages, 2198 KiB  
Article
Exploring Opuntia ficus-indica as a Strategy to Mitigate High Temperatures Effects in Vineyards: Insights into Physiological and Proteomic Responses
by Lénia Rodrigues, Inês Santana, Renato Coelho, Gabriela Murta, Hélia Cardoso, Catarina Campos, João Mota Barroso and Ana Elisa Rato
Agronomy 2025, 15(4), 869; https://doi.org/10.3390/agronomy15040869 - 30 Mar 2025
Cited by 1 | Viewed by 687
Abstract
High temperatures significantly impact grapevine growth and development and lead to severe losses in grape quality and production. To minimize the impact of those environmental constraints, the application of biostimulants (BSts) has emerged as one of the most interesting strategies. BSts application derived [...] Read more.
High temperatures significantly impact grapevine growth and development and lead to severe losses in grape quality and production. To minimize the impact of those environmental constraints, the application of biostimulants (BSts) has emerged as one of the most interesting strategies. BSts application derived from cactus species has been described as a successful approach to enhance tolerance to biotic and abiotic stresses. In this study, an aqueous extract prepared from the cladodes of Opuntia ficus-indica was applied through foliar spraying to grapevine plants (Vitis vinifera L.) ’Aragonez’ already under heat stress. The effect of the extract application on protecting grapevine plants against heat stress was assessed in an experiment running during 15 days after extract application by determining several physiological parameters and detecting the changes in the whole proteome profile by comparing non-treated and extract-treated samples. Results show that physiological parameters directly related to photosynthesis showed a positive effect of the extract in mitigating heat stress in grapevines. Proteomic analysis indicated that the extract significantly upregulated proteins associated with photosynthesis and stress responses. This study provides new insights about the effect of O. ficus-indica extract in grapevines, offering a valuable strategy for future applications under field conditions. Full article
Show Figures

Figure 1

11 pages, 545 KiB  
Article
Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice
by Carlos Alberto Márquez-Montes, José Alberto Gallegos-Infante, Guillermo Rodrigo Petzold-Maldonado, Patricio Antonio Orellana-Palma, Rubén Francisco González-Laredo, Nuria Elizabeth Rocha-Guzmán and Martha Rocío Moreno-Jiménez
AppliedChem 2025, 5(1), 4; https://doi.org/10.3390/appliedchem5010004 - 19 Feb 2025
Viewed by 1042
Abstract
The presence of bioactives in prickly pear has been documented, including flavonoids and betalains, which are compounds highly unstable to thermal processing. An alternative to the thermal processing of foods is the use of cryoconcentration. The objective of this work was to use [...] Read more.
The presence of bioactives in prickly pear has been documented, including flavonoids and betalains, which are compounds highly unstable to thermal processing. An alternative to the thermal processing of foods is the use of cryoconcentration. The objective of this work was to use cryoconcentration assisted by centrifugation to obtain prickly pear (Opuntia ficus-indica L. Mill) concentrate from two ecotypes (green and red) and evaluate their impact on the polyphenol profile and betalains. Prickly pear juice was obtained and cryoconcentrated. The process parameters of cryoconcentration were obtained. The highest solute yield (Y) was observed for red prickly pear juice (0.42 ± 0.03 kg solute × kg initial solute−1), but the efficiency (η) did not show differences between ecotypes (green 51.0 ± 7.0 vs. red 55.0 ± 7.0%), physicochemical parameters (pH, titratable acididty, °Bx), reducing sugars, or color. The highest total phenolic content (TPC) (1843 ± 153), total flavonoid content (TFC) (759 ± 17), betanin (801.6 ± 19), and indicaxanthin (453.7 ± 19) were observed in cryoconcentrated red prickly pear juice, while the antioxidant activity (ABTS, FRAP, and ORAC) was higher in cryoconcentrated green prickly pear juice (except ABTS). Betalains showed a high correlation with the ABTS antioxidant results, and the TPC showed a high correlation with the ORAC results. Cryoconcentration technology has a high potential to process prickly pear juice, preserving its bioactives. Full article
Show Figures

Figure 1

28 pages, 2820 KiB  
Article
Quality Preservation and Shelf-Life Extension of Prickly Pear (Opuntia ficus-indica L. Mill) Using Edible Coatings
by Carolina Rodrigues, Cariny Polesca, Isabela Bicalho, Victor Gomes Lauriano Souza, Isabel Coelhoso and Ana Luísa Fernando
Foods 2025, 14(2), 161; https://doi.org/10.3390/foods14020161 - 8 Jan 2025
Cited by 4 | Viewed by 2685
Abstract
Prickly pear consumption is increasing across the world due to its rich variety of nutrients and bioactive compounds. Yet, it is a seasonal and highly perishable fruit, and the application of edible coatings emerges as an alternative to extend its shelf life. In [...] Read more.
Prickly pear consumption is increasing across the world due to its rich variety of nutrients and bioactive compounds. Yet, it is a seasonal and highly perishable fruit, and the application of edible coatings emerges as an alternative to extend its shelf life. In this work, the effects of alginate, starch, chitosan, and pectin as coatings on the physicochemical, bioactive, microbiological, and textural properties of two prickly pear varieties (orange and red), kept under refrigeration (5 ± 2 °C) were evaluated for 6 weeks. Coatings proved to be helpful in the maintenance of the fruits’ color and textural properties, especially when pectin was applied. Overall, starch and chitosan can be considered the most effective coatings in preserving the quality of prickly pears among the options studied. A lower weight loss (8–10%) in fruits was achieved when starch and chitosan were applied, while in control fruits (without coating), the loss was 18–23%. Starch and chitosan also contributed to preserving the bioactivity of red fruits and showed good results in the preservation of total phenolic content in the orange fruits. In addition, starch and chitosan coatings also presented the best performance for the reduction of microbial contamination (both yeasts and molds and total mesophilic aerobic microorganisms). These findings highlight the role of edible coatings in preserving prickly pears, for a longer period, meeting consumers’ demand for fresh fruit. Full article
(This article belongs to the Special Issue Active Packaging in Food Storage: From Development to Utilization)
Show Figures

Figure 1

22 pages, 3173 KiB  
Article
The Nitrogen Preference of Cactus Pear (Opuntia ficus-indica): A Sand Culture Snapshot
by Nicholas A. Niechayev, Paula N. Pereira and John C. Cushman
Plants 2024, 13(24), 3489; https://doi.org/10.3390/plants13243489 - 13 Dec 2024
Viewed by 1205
Abstract
Cactus pear (Opuntia-ficus indica (L.) Mill.) is an important agricultural crassulacean acid metabolism (CAM) species used as a source of food, forage, fodder, and secondary products and as a biofuel feedstock. However, the preferred source of nitrogen for this species, whether it [...] Read more.
Cactus pear (Opuntia-ficus indica (L.) Mill.) is an important agricultural crassulacean acid metabolism (CAM) species used as a source of food, forage, fodder, and secondary products and as a biofuel feedstock. However, the preferred source of nitrogen for this species, whether it be nitrate (NO3), ammonium (NH4+), or a combination of both, is not well understood. To investigate the nitrate and ammonium preference of cactus pear, we grew cladodes in sand culture with deionized water as a control or with a cross-factorial set of nutrient solutions of 0.0, 2.5, 5.0, and 10.0 mmol of nitrate and/or ammonium for one month. We then assessed a set of physiological parameters including cladode growth, relative water content, chlorophyll, tissue acidity, soluble sugars, starch, nitrate, ammonium, glyoxylic acid, nitrate reductase activity, and nitrogen and carbon content. We found significant differences in all measured parameters except for cladode length, relative water content, and carbon content. Cladodes provided with only deionized water produced no new cladodes and showed decreased soluble sugar content, increased starch content, and increased tissue acidity. We also determined the relative steady-state transcript abundance of genes that encode enzymes involved in N metabolism and CAM. Compared with control cladodes, nutrient-supplied cladodes generally showed increased or variable steady-state mRNA expression of selected CAM-related genes and nitrogen-metabolism-related genes. Our results suggest that O. ficus-indica prefers fertilizers containing either equal concentrations nitrate and ammonium or more nitrate than ammonium. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

20 pages, 2837 KiB  
Article
In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury
by Federica Lina Salamone, Maria Sofia Molonia, Claudia Muscarà, Antonella Saija, Francesco Cimino and Antonio Speciale
Antioxidants 2024, 13(12), 1507; https://doi.org/10.3390/antiox13121507 - 10 Dec 2024
Cited by 1 | Viewed by 1352
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research [...] Read more.
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways. Full article
Show Figures

Figure 1

14 pages, 9769 KiB  
Article
The Correlation Between the Chemical Composition and the Microstructure of the Polysaccharides of Two Varieties of Mexican Red Prickly Pear Fruits
by Yvonne Roman Maldonado, Socorro Josefina Villanueva-Rodríguez, Hilda María Hernández-Hernández, Eduardo Terrés and Jesus Cervantes Martinez
Foods 2024, 13(23), 3914; https://doi.org/10.3390/foods13233914 - 4 Dec 2024
Cited by 2 | Viewed by 1130
Abstract
The red prickly pear fruit (Opuntia ficus-indica L. Mill), endemic from Mexico’s semi-desert regions and present in North Africa and Southern Europe, particularly Italy and Spain, is a valuable source of nutrients, bioactive compounds, and polysaccharides. This study used non-destructive techniques like [...] Read more.
The red prickly pear fruit (Opuntia ficus-indica L. Mill), endemic from Mexico’s semi-desert regions and present in North Africa and Southern Europe, particularly Italy and Spain, is a valuable source of nutrients, bioactive compounds, and polysaccharides. This study used non-destructive techniques like microscopy and Raman and infrared (IR) spectroscopy to characterize polysaccharides extracted from two red prickly pear varieties. The polysaccharides constitute approximately 80% of the peel and 39–18% of the pulp; microscopy provided insights into its microstructural details, while Raman and IR spectroscopy enabled the identification of its specific functional groups. The results revealed distinct microstructural attributes: mucilage displays a microstructure influenced by the ratio of acidic to neutral sugar monomers; pectin exhibits a low degree of methoxylation alongside a characteristic egg-box structure facilitated by calcium ions; hemicellulose presents a delicate, porous layer; and cellulose reveals a layered microstructure supported by thin or robust fibers and calcium crystals. The functional groups identified via Raman and IR spectroscopy provided specific information that could be used to infer chemical interactions influenced by functional groups like hydroxyl, carboxyl, and methyl, suggesting potential binding, stabilization, and water retention properties that enhance their utility as functional ingredients in food products. These findings, obtained using non-destructive methods, enhance the understanding of the compositional and microstructural characteristics of polysaccharides in the red prickly pear, which, in turn, can be used to predict their promising technological applications as functional ingredients. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 2450 KiB  
Article
Antioxidant and Anti-Inflammatory Effects of Opuntia Extracts on a Model of Diet-Induced Steatosis
by Irene Besné-Eseverri, María Ángeles Martín, Gloria Lobo, M. Pilar Cano, María P. Portillo and Jenifer Trepiana
Antioxidants 2024, 13(11), 1416; https://doi.org/10.3390/antiox13111416 - 19 Nov 2024
Cited by 2 | Viewed by 1585
Abstract
Oxidative stress and inflammation are widely recognised as factors that can initiate and facilitate the development of MAFLD. The aim of this study is to analyse the effect of low and high doses of Opuntia stricta var. dillenii peel extract (L-OD and H-OD, [...] Read more.
Oxidative stress and inflammation are widely recognised as factors that can initiate and facilitate the development of MAFLD. The aim of this study is to analyse the effect of low and high doses of Opuntia stricta var. dillenii peel extract (L-OD and H-OD, respectively) and Opuntia ficus-indica var. colorada pulp extract (L-OFI and H-OFI, respectively), which are rich in betalains and phenolic compounds, on oxidative stress, inflammation, DNA damage and apoptosis in rat livers with diet-induced steatosis. Steatotic diet led to increased final body and liver weight, serum transaminases, hepatic TG content, oxidative status and cell death. H-OFI treatment decreased serum AST levels, while L-OFI reduced hepatic TG accumulation. Oxidative stress was partially prevented with H-OD and H-OFI supplementation, and pro-inflammatory cytokines levels were especially improved with H-OFI treatment. Moreover, H-OFI appears to prevent DNA damage markers. Finally, H-OD and L-OFI supplementation down-regulated the apoptotic pathway. In conclusion, both H-OD and H-OFI supplementation were effective in regulating the progression to metabolic steatohepatitis, triggering different mechanisms of action. Full article
Show Figures

Graphical abstract

16 pages, 1906 KiB  
Article
Ensiling as a Conservation Technique for Opuntia ficus indica (L.) By-Products: Peel and Pastazzo
by Riccardo Gannuscio, Cinzia Cardamone, Alessandro Vastolo, Caterina Lucia, Angela D’Amico, Giuseppe Maniaci and Massimo Todaro
Animals 2024, 14(22), 3196; https://doi.org/10.3390/ani14223196 - 7 Nov 2024
Cited by 2 | Viewed by 1386
Abstract
Italy is the third largest producer of Opuntia fruits in the world after Mexico and the United States, and 97.72% of these fruits produced by Italy are grown in Sicily. The use of prickly pear fruits or juice leads to a high production [...] Read more.
Italy is the third largest producer of Opuntia fruits in the world after Mexico and the United States, and 97.72% of these fruits produced by Italy are grown in Sicily. The use of prickly pear fruits or juice leads to a high production of by-products. In this study, ensiling was chosen to preserve prickly pear peels (PPPs) and “pastazzo” (PPS) mixed with 12% wheat bran. PPP silage presented a lower DM than PPS silage (20.03 vs. 41.37%; p < 0.01), as well as aNDFom (25.31 vs. 66.66% DM; p < 0.01), but had the best protein content (12.02 vs. 9.55% DM; p < 0.01). For both by-products, fermentation proceeded rapidly with increasing temperature, with the temperature for PPS (38 °C) being higher than that for the PPP (30 °C). Mesophilic LAB (lactic acid bacteria) were detected at higher levels than thermophilic LAB, and rod counts were higher than cocci counts. The detected organic acids and silage pH indicate an optimal fermentation process for these by-products. PPP silage had a higher polyphenol content than PPS silage (30.24 vs. 24.22 mg GAE/g DM; p < 0.01) and, consequently, also higher antioxidant activity. The results of this study on the mineral composition and macro- and micro-nutrients in silage highlight that these by-products are sources of minerals, with high levels of potassium, calcium, and magnesium. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

9 pages, 3257 KiB  
Communication
Mechanochemical Preparation of New Biocomposites Starting from Polymers and Plant-Derived Fibres
by Lorenzo Gallina, Salah Chaji, Stefano Mantegna, Maela Manzoli and Giancarlo Cravotto
J. Compos. Sci. 2024, 8(11), 452; https://doi.org/10.3390/jcs8110452 - 1 Nov 2024
Cited by 1 | Viewed by 1450
Abstract
This work presents the extrusion-based preparation of new biocomposites from two plant fibres (namely Cannabis sativa L. and Opuntia ficus-indica Mill.) that are added to two different polymers (an ethylene–octene elastomer and polylactic acid), which act as matrices. Structural and morphological characterization (using [...] Read more.
This work presents the extrusion-based preparation of new biocomposites from two plant fibres (namely Cannabis sativa L. and Opuntia ficus-indica Mill.) that are added to two different polymers (an ethylene–octene elastomer and polylactic acid), which act as matrices. Structural and morphological characterization (using X-ray diffraction and field emission scanning electron microscopy) have been used to correlate the interactions between the biomass and the polymers employed with the efficiency of the proposed approach. It was found that Opuntia-based composites can be easily formed in a range of biomass/polymer ratios. However, the interaction between hemp and the matrix means that only specific ratios can form tightly bound composites. The present communication thus paves the way for more complex and comprehensive studies on the formulation of biocomposites containing these matrices. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

16 pages, 1519 KiB  
Article
New Nanovesicles from Prickly Pear Fruit Juice: A Resource with Antioxidant, Anti-Inflammatory, and Nutrigenomic Properties
by Flores Naselli, Sara Volpes, Paola Sofia Cardinale, Fabio Salvatore Palumbo, Francesco Cancilla, Francesco Lopresti, Valeria Villanova, Antonella Girgenti, Domenico Nuzzo, Fabio Caradonna and Pasquale Picone
Cells 2024, 13(21), 1756; https://doi.org/10.3390/cells13211756 - 23 Oct 2024
Cited by 2 | Viewed by 1564
Abstract
Plant-derived nanovesicles represent a novel approach in the field of plant-derived biomaterials, offering a sustainable and biocompatible option for various biomedical applications. The unique properties of these vesicles, such as their ability to encapsulate bioactive compounds, make them suitable for therapeutic, cosmetic, and [...] Read more.
Plant-derived nanovesicles represent a novel approach in the field of plant-derived biomaterials, offering a sustainable and biocompatible option for various biomedical applications. The unique properties of these vesicles, such as their ability to encapsulate bioactive compounds, make them suitable for therapeutic, cosmetic, and nutraceutical purposes. In this study, we have, for the first time, successfully bio-fabricated vesicles derived from Opuntia ficus-indica (FicoVes) using an efficient and cost-effective method. Characterized by a size of approximately of 114 nm and a negative zeta potential of −20.9 mV, FicoVes exhibited excellent biocompatibility and hemocompatibility, showing no reduction in the viability of human and animal cells. Our results showed that FicoVes possess significant antioxidant properties as they reduced ROS generation in TBH-stimulated cells. FicoVes displayed anti-inflammatory properties by reducing the expression of pro-inflammatory cytokines (Il 1β, TNF α) and enhancing the expression of anti-inflammatory cytokines (IL4, IL10) following an inflammatory stimulus. Furthermore, FicoVes accelerated epithelial wound closure in L929 fibroblast monolayers in a dose-dependent manner, highlighting their potential role in tissue repair. This study establishes FicoVes as a promising candidate for nutrigenomic applications, particularly in the context of inflammation-related disorders and wound healing. Further research, including in vivo studies, is essential to validate these findings and fully explore their therapeutic potential. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

Back to TopTop