Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,918)

Search Parameters:
Keywords = ORF1a

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6242 KiB  
Article
Characteristic Analysis of Ictalurus punctatus STING and Screening Validation of Interacting Proteins with Ictalurid herpesvirus 1
by Lihui Meng, Shuxin Li, Hongxun Chen, Sheng Yuan and Zhe Zhao
Microorganisms 2025, 13(8), 1780; https://doi.org/10.3390/microorganisms13081780 - 30 Jul 2025
Viewed by 110
Abstract
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function [...] Read more.
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function of STING and evade the host antiviral defenses. Understanding both the mechanism of action and the viruses targets of STING effector is important because of their importance to evade the host antiviral defenses. In this study, the STING (IpSTING) of Ictalurus punctatus was first identified and characterized. Subsequently, the yeast two-hybrid system (Y2HS) was used to screen for proteins from channel catfish virus (CCV, Ictalurid herpesvirus 1) that interact with IpSTING. The ORFs of the CCV were cloned into the pGBKT7 vector and expressed in the AH109 yeast strain. The bait protein expression was validated by autoactivation, and toxicity investigation compared with control (AH109 yeast strain transformed with empty pGBKT7 and pGADT7 vector). Two positive candidate proteins, ORF41 and ORF65, were identified through Y2HS screening as interacting with IpSTING. Their interactions were further validated using co-immunoprecipitation (Co-IP). This represented the first identification of interactions between IpSTING and the CCV proteins ORF41 and ORF65. The data advanced our understanding of the functions of ORF41 and ORF65 and suggested that they might contribute to the evasion of host antiviral defenses. However, the interaction mechanism between IpSTING, and CCV proteins ORF41 and ORF65 still needs to be further explored. Full article
Show Figures

Figure 1

13 pages, 2021 KiB  
Brief Report
Recombinants Are the Key Drivers of Recent PRRSV-2 Evolution
by Clarissa Pellegrini Ferreira, Lucina Galina-Pantoja, Mark Wagner and Declan C. Schroeder
Pathogens 2025, 14(8), 743; https://doi.org/10.3390/pathogens14080743 - 29 Jul 2025
Viewed by 189
Abstract
Porcine reproductive and respiratory syndrome virus remains one of the most economically significant pathogens in swine production, with PRRSV-2 being the dominant variant in the United States. While lineage classification has traditionally relied on ORF5 sequencing, recent studies suggest that this single-gene approach [...] Read more.
Porcine reproductive and respiratory syndrome virus remains one of the most economically significant pathogens in swine production, with PRRSV-2 being the dominant variant in the United States. While lineage classification has traditionally relied on ORF5 sequencing, recent studies suggest that this single-gene approach may overlook key evolutionary events such as recombination. In this study, we performed whole-genome sequencing and phylogenetic analysis of seven PRRSV-2 isolates collected in the U.S. between 2006 and 2024. Using reference-guided assembly, lineage assignment, and recombination detection with RDP5 and SIMplot, we identified discordant phylogenetic placements between ORF5 and whole genomes in four of the seven isolates. These discordances were explained by multiple recombination events affecting different genomic regions, particularly ORF2–ORF7. In contrast, three isolates showed phylogenetic concordance and no strong evidence of recombination. Our findings demonstrate that recombination plays a significant role in shaping PRRSV-2 evolution and highlight the limitations of ORF5-based lineage classification. Whole-genome surveillance is therefore essential to accurately track viral diversity, detect recombinant strains, and inform control strategies. This work underscores the need for a broader adoption of full-genome analysis in routine PRRSV surveillance and research. Full article
Show Figures

Figure 1

17 pages, 3682 KiB  
Article
Comparative Analysis of Testicular Transcriptional and Translational Landscapes in Yak and Cattle–Yak: Implications for Hybrid Male Sterility
by Mengli Cao, Shaoke Guo, Ziqiang Ding, Liyan Hu, Lin Xiong, Qianyun Ge, Jie Pei and Xian Guo
Biomolecules 2025, 15(8), 1080; https://doi.org/10.3390/biom15081080 - 25 Jul 2025
Viewed by 270
Abstract
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized [...] Read more.
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized the translational landscape of yak and cattle–yak based on Ribo-seq technology integrated with RNA-seq data. The results revealed that gene expression was not fully concordant between transcriptional and translational levels, whereas cattle–yak testes exhibited a stronger correlation across these two regulatory layers. Notably, genes that were differentially expressed at the translational level only (MEIOB, MEI1, and SMC1B) were mainly involved in meiosis. A total of 4,236 genes with different translation efficiencies (TEs) were identified, and the TEs of most of the genes gradually decreased as the mRNA expression level increased. Further research revealed that genes with higher TE had a shorter coding sequence (CDS) length, lower GC content, and higher normalized minimum free energy in the testes of yaks, but this characteristic was not found in cattle–yaks. We also identified upstream open reading frames (uORFs) in yak and cattle–yak testes, and the sequence characteristics of translated uORFs and untranslated uORFs were markedly different. In addition, we identified several short polypeptides that may play potential roles in spermatogenesis. In summary, our study uncovers distinct translational dysregulations in cattle–yak testes, particularly affecting meiosis, which provides novel insights into the mechanisms of spermatogenesis and male infertility in hybrids. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 659 KiB  
Article
Afrina barna-like Virus, a Novel Virus Associated with Afrina sporoboliae, the Drop Seed Gall-Forming Nematode
by Edison Reyes-Proaño, Anna M. Griffin, Aida Duarte, Hongyan Sheng, Brenda K. Schroeder, Timothy D. Murray and Alexander V. Karasev
Viruses 2025, 17(8), 1032; https://doi.org/10.3390/v17081032 - 23 Jul 2025
Viewed by 384
Abstract
A novel barna-like virus was found to be associated with field-collected Afrina sporoboliae plant-parasitic nematodes. The positive-sense, single-stranded RNA genome of this virus, named Afrina barna-like virus (AfBLV), comprises 4020 nucleotides encoding four open reading frames (ORFs). ORF 1 encodes a protein product [...] Read more.
A novel barna-like virus was found to be associated with field-collected Afrina sporoboliae plant-parasitic nematodes. The positive-sense, single-stranded RNA genome of this virus, named Afrina barna-like virus (AfBLV), comprises 4020 nucleotides encoding four open reading frames (ORFs). ORF 1 encodes a protein product spanning a transmembrane, a peptidase, and VPg domains, whereas an overlapping ORF 2 encodes an RNA-dependent RNA polymerase (RdRP). ORF2 may be expressed via a −1 translational frameshift. In phylogenetic reconstructions, the RdRP of AfBLV was placed inside a separate clade of barna and barna-like viruses related to but distinct from the genera in the Solemoviridae and Alvernaviridae families, within the overall lineage of Sobelivirales. ORF 3 of AfBLV encodes a protein product of 206 amino acids (aa) long with homology to a putative protein encoded by a similarly positioned gene of an uncharacterized virus sequence identified previously as Barnaviridae sp. ORF 4 encodes a 161 aa protein with no significant similarities to sequences in the GenBank databases. AfBLV is the first barnavirus found in a nematode. Sequence comparisons of the AfBLV genome and genomes of other barna-like viruses suggested that a recombination event was involved in the evolution of AfBLV. Analyses of the phylogeny of RdRPs and genome organizations of barna-like and solemo-like viruses support the re-classification of Barnavirus and Dinornavirus genera as members of the Solemoviridae family. Full article
(This article belongs to the Special Issue Diversity and Evolution of Viruses in Ecosystem 2025)
Show Figures

Figure 1

20 pages, 2436 KiB  
Review
An Update and Perspectives on Mitochondrial Membrane Protein-Associated Neurodegeneration and C19orf12 Research
by Barbara Gnutti, Arcangela Iuso, Chloé Angelini and Dario Finazzi
Brain Sci. 2025, 15(8), 777; https://doi.org/10.3390/brainsci15080777 - 22 Jul 2025
Viewed by 389
Abstract
Mitochondrial Membrane Protein-Associated Neurodegeneration is a rare monogenic form of neurodegeneration characterized by iron accumulation in the brain. It is due to variants in the orphan gene C19orf12. Since its definition in 2011, many scientific groups have investigated the clinical features and [...] Read more.
Mitochondrial Membrane Protein-Associated Neurodegeneration is a rare monogenic form of neurodegeneration characterized by iron accumulation in the brain. It is due to variants in the orphan gene C19orf12. Since its definition in 2011, many scientific groups have investigated the clinical features and molecular underpinnings of the disorder. In this review, we summarize the main points of progress in this field, trying to highlight the issues that need further attention and efforts to speed up the diagnostic path, improve the existing treatment options, and define targeted therapies. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

28 pages, 3737 KiB  
Article
Profiling Plant circRNAs Provides Insights into the Expression of Plant Genes Involved in Viral Infection
by Ghyda Murad Hashim, Travis Haight, Xinyang Chen, Athanasios Zovoilis and Srividhya Venkataraman
Life 2025, 15(7), 1143; https://doi.org/10.3390/life15071143 - 20 Jul 2025
Viewed by 338
Abstract
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to [...] Read more.
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to plant viral infections necessitate better discernment of the involvement of plant circRNAs during viral infection. However, few such studies have been conducted hitherto. Sobemoviruses cause great economic impacts on important crops such as rice, turnip, alfalfa, and wheat. Our current study investigates the dynamics of plant circRNA profiles in the host Arabidopsis thaliana (A. thaliana) during infections with the sobemoviruses Turnip rosette virus (TRoV) and Rice yellow mottle virus (RYMV), as well as the small circular satellite RNA of the Lucerne transient streak virus (scLTSV), focusing on circRNA dysregulation in the host plants and its potential implications in triggering plant cellular defense responses. Towards this, two rounds of deep sequencing were conducted on the RNA samples obtained from infected and uninfected plants followed by the analysis of circular RNA profiles using RNA-seq and extensive bioinformatic analyses. We identified 760 circRNAs, predominantly encoded in exonic regions and enriched in the chloroplast chromosome, suggesting them as key sites for circRNA generation during viral stress. Gene ontology (GO) analysis indicated that these circRNAs are mostly associated with plant development and protein binding, potentially influencing the expression of their host genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed photosynthesis as the most affected pathway. Interestingly, the non-coding exogenous scLTSV specifically induced several circRNAs, some of which contain open reading frames (ORFs) capable of encoding proteins. Our biochemical assays demonstrated that transgenic expression of scLTSV in A. thaliana enhanced resistance to TRoV, suggesting a novel strategy for improving plant viral resistance. Our results highlight the complexity of circRNA dynamics in plant–virus interactions and offer novel insights into potential circRNA-based strategies for enhancing plant disease resistance by modulating the differential expression of circRNAs. Full article
(This article belongs to the Special Issue Investigations of Circular RNAs in Plants)
Show Figures

Figure 1

21 pages, 4501 KiB  
Article
Functional Characterization of Dual-Initiation Codon-Derived V2 Proteins in Tomato Yellow Leaf Curl Virus
by Zhiyuan Wang, Pan Gong, Siwen Zhao, Fangfang Li and Xueping Zhou
Agronomy 2025, 15(7), 1726; https://doi.org/10.3390/agronomy15071726 - 17 Jul 2025
Viewed by 283
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 [...] Read more.
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 and V2-2 expression in infected Nicotiana benthamiana and tomato plants. Deletion mutants revealed their specialized roles: V2-1 was indispensable for viral replication and systemic spread—its loss severely reduced pathogenicity and genome accumulation. V2-2 acted as an auxiliary factor, and its deletion attenuated symptoms but kept the virus infection. Host-specific effects were observed—V2-1 deletion led to lower viral DNA/coat protein levels in N. benthamiana than in tomato, suggesting host-dependent regulation. Mutant viruses declined progressively in tomato, indicating host defense clearance. Heterologous co-expression of both isoforms via potato virus X induced systemic necrosis in N. benthamiana, demonstrating functional synergy between isoforms. Both initiation codons were essential for V2-mediated suppression of transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). This study uncovers the mechanistic divergence of V2 isoforms in TYLCV infection, highlighting their collaborative roles in virulence and host manipulation. The findings advance understanding of geminivirus coding complexity and offer potential targets for resistance strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 2957 KiB  
Article
Patchy Phylogenetic Distribution and Poor Translational Adaptation of a Nested ORF in the Mammalian Mitochondrial cytb Gene
by Sheng-Lin Shi, Dan-Tong Li and Yan-Qun Liu
Genes 2025, 16(7), 833; https://doi.org/10.3390/genes16070833 - 17 Jul 2025
Viewed by 246
Abstract
Background: The mammalian mitochondrial genome has long been considered to encode only 13 proteins. However, a recent study identified a nested alternative open reading frame (nAltORF) within the primate mitochondrial cytb gene, which we designate ncytb, that is reportedly translated in the [...] Read more.
Background: The mammalian mitochondrial genome has long been considered to encode only 13 proteins. However, a recent study identified a nested alternative open reading frame (nAltORF) within the primate mitochondrial cytb gene, which we designate ncytb, that is reportedly translated in the cytosol using the standard genetic code. This discovery challenges conventional understanding and raises questions about the prevalence, conservation, and translational adaptation of such ORFs. Methods: This study conducted a comprehensive bioinformatic analysis of nested ncytb genes in 289 primate and 380 rodent mitochondrial cytb sequences. Results: Nested ncytb genes meeting the criteria (>150 codons, standard genetic code) were identified in only 10.73% of primate and 20.53% of rodent species, suggesting a patchy phylogenetic distribution. While their encoded proteins showed homology to the previously reported protein encoded by the Homo sapiens nested ncytb gene, overall amino acid conservation was low, and characteristic protein domains or signal peptides were generally not predicted. Crucially, the Kozak consensus sequences surrounding the putative start codons of these ncytb genes were exclusively “weak” or “adequate”, with none classified as “strong” or “optimal”. Codon Adaptation Index (CAI) and Relative Codon Deoptimization Index (RCDI) analyses of the nested ncytb genes revealed neither significant adaptation nor deoptimization to the codon usage of nuclear and mitochondrial genes. Furthermore, cosine similarity analysis indicated that ncytb genes exhibit significantly lower codon usage similarity to both nuclear and mitochondrial gene sets compared to their host cytb genes. Conclusions: These findings collectively suggest that while ncytb genes exist in some mammals, their inconsistent presence, weak translational initiation signals, and lack of adaptation to cytosolic codon usage characterize them as dispensable genetic elements rather than core functional genes. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2270 KiB  
Article
Progress in Our Understanding of the Cross-Protection Mechanism of CTV-VT No-SY Isolates Against Homologous SY Isolates
by Grazia Licciardello, Giuseppe Scuderi, Marcella Russo, Marina Bazzano, Giuseppe Paradiso, Moshe Bar-Joseph and Antonino F. Catara
Pathogens 2025, 14(7), 701; https://doi.org/10.3390/pathogens14070701 - 16 Jul 2025
Viewed by 314
Abstract
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both [...] Read more.
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both mild and severe isolates, some of them associated with seedling yellows (SY) syndrome. Mild CTV-VT isolates that do not induce SY symptoms (no-SY) show minor variations in their Orf1a, p23, and p33 genes, with a single nucleotide polymorphism at position 161 of the p23 gene. These isolates can repress superinfection with homologous severe isolates. The aim of this study was to investigate the mechanism of cross-protection by means of biological indexing, real-time RT-PCR high-resolution melting (HRM), and p23 gene amplicon sequencing. Four no-SY CTV-VT isolates were inoculated onto SO seedlings and Hamlin sweet orange trees grafted on SO. These plants were later challenged with two homologous CTV-VT SY isolates and remained asymptomatic. The biological evaluation of the infection process in superinfected plants was investigated via inoculation of the bark on SO seedlings that were also asymptomatic. A parallel HRM analysis of midvein RNA extracts revealed that the melting temperature (Tm) of the no-SY isolates was statistically lower than that of the SY isolates. The Tm values of RNAs extracts from superinfected plants were not statistically different from those of the no-SY isolates. This suggests that the SY isolates failed to establish infection or replicate in plants pre-inoculated with no-SY isolates. This blockage of replication resembles superinfection exclusion, with attractive perspectives to prevent SY damage in field applications. Full article
Show Figures

Figure 1

24 pages, 2320 KiB  
Article
Glucoselipid Biosurfactant Biosynthesis Operon of Rouxiella badensis DSM 100043T: Screening, Identification, and Heterologous Expression in Escherichia coli
by Andre Fahriz Perdana Harahap, Chantal Treinen, Leonardo Joaquim Van Zyl, Wesley Trevor Williams, Jürgen Conrad, Jens Pfannstiel, Iris Klaiber, Jakob Grether, Eric Hiller, Maliheh Vahidinasab, Elvio Henrique Benatto Perino, Lars Lilge, Anita Burger, Marla Trindade and Rudolf Hausmann
Microorganisms 2025, 13(7), 1664; https://doi.org/10.3390/microorganisms13071664 - 15 Jul 2025
Viewed by 390
Abstract
Rouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we [...] Read more.
Rouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we performed a function-based library screening from a R. badensis DSM 100043T genome library to identify responsible genes for biosynthesis of this glucoselipid. The identified open reading frames (ORFs) were cloned into several constructs in Escherichia coli for gene permutation analysis and the individual products were analyzed using high-performance thin-layer chromatography (HPTLC). Products of interest from positive expression strains were purified and analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) for further structure elucidation. Function-based screening of 5400 clones led to the identification of an operon containing three ORFs encoding acetyltransferase GlcA (ORF1), acyltransferase GlcB (ORF2), and phosphatase/HAD GlcC (ORF3). E. coli pCAT2, with all three ORFs, resulted in the production of identical R. badensis DSM 100043T glucosedilipid with Glu-C10:0-C12:1 as the main congener. ORF2-deletion strain E. coli pAFP1 primarily produced glucosemonolipids, with Glu-C10:0,3OH and Glu-C12:0 as the major congeners, predominantly esterified at the C-2 position of the glucose moiety. Furthermore, fed-batch bioreactor cultivation of E. coli pCAT2 using glucose as the carbon source yielded a maximum glucosedilipid titer of 2.34 g/L after 25 h of fermentation, which is 55-fold higher than that produced by batch cultivation of R. badensis DSM 100043T in the previous study. Full article
Show Figures

Figure 1

17 pages, 12102 KiB  
Article
Multiomics Integration of Parkinson’s Disease Datasets Reveals Unexpected Roles of IRE1 in Its Pathology
by Bianka Alexandra Pasat, Matthieu Moncan, Eleftherios Pilalis, Afshin Samali, Aristotelis Chatziioannou and Adrienne M. Gorman
Int. J. Mol. Sci. 2025, 26(14), 6711; https://doi.org/10.3390/ijms26146711 - 12 Jul 2025
Viewed by 307
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It primarily affects the motor system but is also associated with a range of cognitive impairments that can manifest early in disease progression, indicating its multifaceted nature. In this paper, we performed a [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It primarily affects the motor system but is also associated with a range of cognitive impairments that can manifest early in disease progression, indicating its multifaceted nature. In this paper, we performed a meta-analysis of transcriptomics and proteomics data using MultiOmicsIntegrator to gain insights into the post-transcriptional modifications and deregulated pathways associated with this disease. Our results reveal differential isoform usage between control and PD patient brain samples that result in enriched alternative splicing events, including an extended UTR length, domain loss, and the upregulation of non-coding isoforms. We found that Inositol-Requiring Enzyme 1 (IRE1) is active in PD samples and examined the role of its downstream signaling through X-box binding mRNA 1 (XBP1) and regulated IRE1-dependent decay (RIDD). We identified several RIDD candidates and showed that the enriched alternative splicing events observed are associated with RIDD. Moreover, in vitro mRNA cleavage assays demonstrated that OSBPL3, C16orf74, and SLC6A1 mRNAs are targets of IRE1 RNAse activity. Finally, a pathway enrichment analysis of both XBP1s and RIDD targets in the PD samples uncovered associations with processes such as immune response, oxidative stress, signal transduction, and cell–cell communication that have previously been linked to PD. These findings highlight a potential regulatory role of IRE in PD. Full article
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Recovering Immunogenic Orthohantavirus puumalaense N Protein from Pellets of Recombinant Escherichia coli
by Natalya Andreeva, Ekaterina Martynova, Polina Elboeva, Milana Mansurova, Ilnur Salafutdinov, Aleksandr Aimaletdinov, Rafil Khairullin, Diksha Sharma, Manoj Baranwal, Sara Chandy, Dilbar Dalimova, Alisher Abdullaev, Mirakbar Yakubov, Albert Rizvanov, Svetlana Khaiboullina, Yuriy Davidyuk and Emmanuel Kabwe
Vaccines 2025, 13(7), 744; https://doi.org/10.3390/vaccines13070744 - 10 Jul 2025
Viewed by 484
Abstract
(1) Background: Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in Eurasia. Orthohantavirus puumalaense (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in this region. Despite ongoing efforts to develop effective drugs and [...] Read more.
(1) Background: Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in Eurasia. Orthohantavirus puumalaense (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in this region. Despite ongoing efforts to develop effective drugs and vaccines against PUUV, this challenge remains. (2) Aim: In this study, we aimed to express a large quantity of the PUUV recombinant N (rN) protein using E. coli. We also sought to develop a protocol for extracting the rN protein from pellets, solubilizing, and refolding it to restore its native form. This protocol is crucial for producing a large quantity of rN protein to develop vaccines and diagnostic tools for HFRS. (3) Methods; PUUV S segment open reading frame (ORF) coding for N protein was synthesized and cloned into the plasmid vector pET-28 (A+). The ORF was transformed, expressed and induced in BL21(DE3) pLysS E. coli strain. Subsequently, rN protein was purified using immobilized metal affinity and ion chromatography. Immune reactivity of rN protein was tested by employing in house and commercial VektoHanta-IgG kit ELISA methods (both in vitro and in vivo). (4) Results: The best conditions for scaling up the expression of the PUUV rN protein were an incubation temperature of 20 °C during a 20 h incubation period, followed by induction with 0.5 mM IPTG. The most significant protein yield was achieved when the pellets were incubated in denaturing buffer with 8M urea. The highest yield of refolded proteins was attained using non-denaturing buffer (50 mM Tris-HCl) supplemented with arginine. A final 50 μL of PUUV rN protein solution with a concentration of 7 mg/mL was recovered from 1 L of culture. The rN protein elicited an antibody response in vivo and reacted with serum taken from patients with HFRS by ELISA in vitro. (5) Conclusion: Therefore, the orthohantavirus N protein’s ability to elicit immune response in vivo suggests that it can be used to develop vaccines against PUUV after conducting in vitro and in vivo studies to ascertain neutralising antibodies. Full article
(This article belongs to the Special Issue Protein- and Subunit-Based Vaccines)
Show Figures

Figure 1

19 pages, 1713 KiB  
Article
Potential for Duplexed, In-Tandem gRNA-Mediated Suppression of Two Essential Genes of Tomato Leaf Curl New Delhi Virus in Crop Plants
by Saher Naveed, Judith K. Brown, Muhammad Mubin, Nazir Javed and Muhammad Shah Nawaz-ul-Rehman
Pathogens 2025, 14(7), 679; https://doi.org/10.3390/pathogens14070679 - 10 Jul 2025
Viewed by 723
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and cleave two essential coding regions in the begomovirus genome. The gRNAs were designed to target conserved regions of the ToLCNDV replication-associated protein (rep) gene or ORF AC1, and/or the coat protein (cp) gene or AV1 ORF, respectively. Based on an alignment of 346 representative ToLCNDV genome sequences, all predicted single nucleotide polymorphisms off-target sites were identified and eliminated as potential gRNA targets. Based on the remaining genome regions, four candidate gRNAs were designed and used to build gRNA-Cas9 duplexed constructs, e.g., containing two gRNAs cloned in tandem, in different combinations (1–4). Two contained two gRNAs that targeted the coat protein gene (cp; AV1 ORF), while the other two constructs targeted both the cp and replication-associated protein gene (rep; AC1 ORF). These constructs were evaluated for the potential to suppress ToLCNDV infection in Nicotiana benthamiana plants in a transient expression-transfection assay. Among the plants inoculated with the duplexed gRNA construct designed to cleave ToLCNDV-AV1 or AC1-specific nucleotides, the construct designed to target both the cp (293–993 nt) and rep (1561–2324) showed the greatest reduction in virus accumulation, based on real-time quantitative PCR amplification, and attenuated disease symptoms, compared to plants inoculated with the DNA-A component alone or mock-inoculated, e.g., with buffer. The results demonstrate the potential for gRNA-mediated suppression of ToLCNDV infection in plants by targeting at least two viral coding regions, underscoring the great potential of CRISPR-Cas-mediated abatement of begomovirus infection in numerous crop species. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 2146 KiB  
Article
Development of an Effective Single-Dose PCV2/CSFV Bivalent Subunit Vaccine Against Classical Swine Fever Virus and Porcine Circovirus Type 2
by Yu-Chieh Chen, Wen-Bin Chung, Hso-Chi Chaung, Yen-Li Huang, Chi-Chih Chen and Guan-Ming Ke
Vaccines 2025, 13(7), 736; https://doi.org/10.3390/vaccines13070736 - 8 Jul 2025
Viewed by 501
Abstract
Background/Objectives: Porcine Circovirus Type 2 (PCV2) impairs pigs’ immune systems and increases susceptibility to co-infections, including Classical Swine Fever (CSF), a highly contagious disease listed by the World Organisation for Animal Health (WOAH) as notifiable. Therefore, swine operations in CSF-endemic regions are [...] Read more.
Background/Objectives: Porcine Circovirus Type 2 (PCV2) impairs pigs’ immune systems and increases susceptibility to co-infections, including Classical Swine Fever (CSF), a highly contagious disease listed by the World Organisation for Animal Health (WOAH) as notifiable. Therefore, swine operations in CSF-endemic regions are encouraged to immunize piglets with both PCV2 and CSFV vaccinations. Currently, there is no commercially available bivalent vaccine for PCV2/CSFV. Methods: In this study, a total of twenty 4-week-old SPF pigs were administered our formulated PCV2/CSFV bivalent subunit vaccine, containing soluble CSFV-E2 (50 µg) and PCV2-ORF2 (100 µg) antigens with a porcine-specific CpG adjuvant. After 4 weeks of vaccination, all pigs were evaluated for efficacy against PCV2 and CSFV. Results: Pigs were only immunized once and showed significantly increased neutralizing or ELISA antibody titers against both viruses four weeks post-vaccination. After viral challenges, vaccinated pigs displayed no clinical signs or lesions and had markedly reduced CSFV and PCV2 viral loads in the serum and tissues compared to controls. Conclusions: These results demonstrate that a single dose of the PCV2/CSFV bivalent subunit vaccine is safe and effective in young pigs, induces strong antibody responses, and suppresses viral replication, making it a promising tool for swine disease control and cost-effective vaccination strategies. Full article
(This article belongs to the Special Issue Vaccination Against Major Respiratory Pathogens in Livestock Farming)
Show Figures

Figure 1

15 pages, 3736 KiB  
Article
Molecular Characterization of a Restriction Endonuclease PsaI from Pseudomonas anguilliseptica KM9 and Sequence Analysis of the PsaI R-M System
by Beata Furmanek-Blaszk, Iwona Mruk and Marian Sektas
Int. J. Mol. Sci. 2025, 26(14), 6548; https://doi.org/10.3390/ijms26146548 - 8 Jul 2025
Viewed by 193
Abstract
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence [...] Read more.
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence of Co2+, Mg2+, and Zn2+ and reached a maximal level of activity between 2.5 and 10 mM while its activity was significantly decreased in the presence of Ca2+, Fe2+, Mn2+, and Ni2+. Moreover, we found that the purified R.PsaI did not require NaCl for enzyme activity. Restriction cleavage analysis followed by sequencing confirmed 5′-AAGCTT-3′ as the recognition site. The genes for restriction–modification system PsaI were identified and characterized. Downstream of the psaIM gene, we noticed an ORF that shares extensive similarity with recombinase family protein specifically involved in genome rearrangements. Sequence analysis revealed that the PsaI R-M gene complex showed striking nucleotide sequence similarity (>98%) with the genes of the PanI R-M system from a P. anguilliseptica MatS1 strain identified in a soil sample from Sri Lanka. Full article
(This article belongs to the Special Issue Genetic Engineering in Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop