Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = OECTs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5307 KB  
Article
Simultaneous Multiparameter Detection with Organic Electrochemical Transistors-Based Biosensors
by Marjorie Montero-Jimenez, Jael R. Neyra Recky, Omar Azzaroni, Juliana Scotto and Waldemar A. Marmisollé
Chemosensors 2026, 14(1), 22; https://doi.org/10.3390/chemosensors14010022 - 9 Jan 2026
Viewed by 246
Abstract
We present a methodology that enhances the analytical performance of organic electrochemical transistors (OECTs) by continuously cycling the devices through gate potential sweeps during sensing experiments. This continuous cycling methodology (CCM) enables real-time acquisition of full transfer curves, allowing simultaneous monitoring of multiple [...] Read more.
We present a methodology that enhances the analytical performance of organic electrochemical transistors (OECTs) by continuously cycling the devices through gate potential sweeps during sensing experiments. This continuous cycling methodology (CCM) enables real-time acquisition of full transfer curves, allowing simultaneous monitoring of multiple characteristic parameters. We show that the simultaneous temporal evolution of several OECT response parameters (threshold voltage (VTH), maximum transconductance (gmax), and maximum transconductance potential (VG,gmax)) provides highly sensitive descriptors for detecting pH changes and macromolecule adsorption on OECTs based on polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) channels. Moreover, the method allows reconstruction of IDSt (drain–source current vs. time) profiles at any selected gate potential, enabling the identification of optimal gate voltage (VG) values for maximizing sensitivity. This represents a substantial improvement over traditional measurements at fixed VG, which may suffer from reduced sensitivity and parasitic reactions associated with gate polarization. Moreover, the expanded set of parameters obtained with the CCM provides deeper insight into the physicochemical processes occurring at both gate and channel electrodes. We demonstrate its applicability in monitoring polyelectrolyte and enzyme adsorption, and detecting urea and glucose through enzyme-mediated reactions. Owing to its versatility and the richness of the information it provides, the CCM constitutes a significant advance for the development and optimization of OECT-based sensing platforms. Full article
(This article belongs to the Special Issue Electrochemical Biosensors for Global Health Challenges)
Show Figures

Figure 1

10 pages, 1516 KB  
Article
Polymer Electrolyte-Gated Organic Electrochemical Transistors for Bioinspired Neuromorphic Computing
by Banghua Wu, Lin Gao, Yujie Peng, Changjian Liu, Canghao Xu, Haihong Guo, Yong Huang and Junsheng Yu
Chemosensors 2025, 13(12), 428; https://doi.org/10.3390/chemosensors13120428 - 9 Dec 2025
Viewed by 691
Abstract
Organic electrochemical transistors (OECTs) are compelling artificial synapses because mixed ionic–electronic coupling and transport enables low-voltage, analog weight updates that mirror biological plasticity. Here, we engineered solid-state, polymer electrolyte-gated vertical OECTs (vOECTs) and elucidate how electrolyte molecular weight influences synaptic dynamics. Using Pg2T-T [...] Read more.
Organic electrochemical transistors (OECTs) are compelling artificial synapses because mixed ionic–electronic coupling and transport enables low-voltage, analog weight updates that mirror biological plasticity. Here, we engineered solid-state, polymer electrolyte-gated vertical OECTs (vOECTs) and elucidate how electrolyte molecular weight influences synaptic dynamics. Using Pg2T-T as the redox-active channel and pDADMAC polymer electrolytes spanning low- (~100 k), medium- (~300 k), and high- (~500 k) molecular weights, cyclic voltammetry reveals reversible Pg2T-T redox, while peak separation and current density systematically track ion transport kinetics. Increasing electrolyte molecular weight enlarges the transfer curve hysteresis (memory window ΔV_mem from ~0.15 V to ~0.50 V) but suppresses on-current, consistent with slower, more confining ion motion and stabilized partially doped states. Devices exhibit rich short- and long-term plasticity: paired-pulse facilitation (A2/A1 ≈ 1.75 at Δt = 50 ms), frequency-dependent EPSCs (low-pass accumulation), cumulative potentiation, and reversible LTP/LTD. A device-aware CrossSim framework built from continuous write/erase cycles (probabilistic LUT) supports Fashion-MNIST inference with high accuracy and bounded update errors (mean −0.02; asymmetry 0.198), validating that measured nonidealities remain algorithm-compatible. These results provide a materials-level handle on polymer–ion coupling to deterministically tailor temporal learning in compact, robust neuromorphic hardware. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

50 pages, 4023 KB  
Review
Organic Bioelectronics: Diversity of Electronics Along with Biosciences
by Syed Abdul Moiz, Mohammed Saleh Alshaikh and Ahmed N. M. Alahmadi
Biosensors 2025, 15(9), 587; https://doi.org/10.3390/bios15090587 - 7 Sep 2025
Cited by 2 | Viewed by 3361
Abstract
This review article provides an introductory overview of organic bioelectronics, focusing on the creation of electrical devices that use specialized carbon-based semiconducting materials to interact successfully with biological processes. These organic materials demonstrate flexibility, biocompatibility, and the capacity to carry both electrical and [...] Read more.
This review article provides an introductory overview of organic bioelectronics, focusing on the creation of electrical devices that use specialized carbon-based semiconducting materials to interact successfully with biological processes. These organic materials demonstrate flexibility, biocompatibility, and the capacity to carry both electrical and ionic impulses, making them an ideal choice for connecting human tissue with electronic technology. The review study examines diverse materials, such as the conductive polymers Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and Polyaniline (PANI), along with critical devices like organic electrochemical transistors (OECTs), which are exceptionally efficient for sensitive biosensing applications. Significant applications include implanted neural interfaces for the brain and nerves, wearable health monitoring, tissue engineering scaffolds that facilitate tissue repair, and sophisticated drug delivery systems. The review acknowledges current challenges, including long-term stability and safety, while envisioning a future where these technologies revolutionize healthcare, human–machine interaction, and environmental monitoring via continuous multidisciplinary innovation. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

29 pages, 3796 KB  
Perspective
Integrated Perspective on Functional Organic Electrochemical Transistors and Biosensors in Implantable Drug Delivery Systems
by Xiao-Le Han, Tao Zhou, Jian-Ming Xu, Shu-Feng Zhang, Ye-Zhou Hu and Yi Liu
Chemosensors 2025, 13(6), 215; https://doi.org/10.3390/chemosensors13060215 - 11 Jun 2025
Cited by 1 | Viewed by 3908
Abstract
Although traditional drug delivery methods are widely used in clinical practice, their inherent limitations often compromise therapeutic efficacy. Therefore, the development of more precise and efficient drug delivery systems is essential to enhance treatment outcomes and reduce adverse effects. Implantable drug delivery systems [...] Read more.
Although traditional drug delivery methods are widely used in clinical practice, their inherent limitations often compromise therapeutic efficacy. Therefore, the development of more precise and efficient drug delivery systems is essential to enhance treatment outcomes and reduce adverse effects. Implantable drug delivery systems (IDDSs) represent intelligent platforms capable of autonomously regulating drug release in response to a patient’s physiological state. By enabling controlled release and personalized dosing, IDDSs have been widely applied in the management of chronic conditions such as diabetes and cancer. With ongoing technological advancements, modern IDDSs must meet increasing demands for both precision delivery and real-time physiological monitoring. In this context, organic electrochemical transistor (OECT)-based biosensors, known for their high sensitivity and excellent real-time signal processing capabilities, have demonstrated significant advantages in early diagnosis and continuous pathological monitoring. While both IDDS and OECT technologies have shown promising progress individually, challenges remain in achieving long-term stability, biocompatibility, scalable manufacturing, and system-level integration. This review systematically summarizes recent advances in IDDSs and functional OECT-based biosensors across various application domains. Furthermore, it explores potential future directions for their combined development, focusing on technological convergence, materials innovation, interdisciplinary collaboration, and the design of intelligent control systems. Looking ahead, the seamless integration of OECT-based biosensors with IDDSs holds the potential to create more precise and efficient closed-loop therapeutic platforms, accelerating progress in the fields of personalized and precision medicine. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

46 pages, 3258 KB  
Review
Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies
by Pauline Coquart, Andrea El Haddad, Dimitrios A. Koutsouras and Johanna Bolander
Biosensors 2025, 15(4), 253; https://doi.org/10.3390/bios15040253 - 16 Apr 2025
Cited by 1 | Viewed by 3337
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology [...] Read more.
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic–electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies. Full article
Show Figures

Figure 1

12 pages, 5422 KB  
Article
Revealing the Impact of Gel Electrolytes on the Performance of Organic Electrochemical Transistors
by Mancheng Li, Xiaoci Liang, Chuan Liu and Songjia Han
Gels 2025, 11(3), 202; https://doi.org/10.3390/gels11030202 - 14 Mar 2025
Cited by 3 | Viewed by 2758
Abstract
Gel electrolyte-gated organic electrochemical transistors (OECTs) are promising bioelectronic devices known for their high transconductance, low operating voltage, and integration with biological systems. Despite extensive research on the performance of OECTs, a precise model defining the dependence of OECT performance on gel electrolytes [...] Read more.
Gel electrolyte-gated organic electrochemical transistors (OECTs) are promising bioelectronic devices known for their high transconductance, low operating voltage, and integration with biological systems. Despite extensive research on the performance of OECTs, a precise model defining the dependence of OECT performance on gel electrolytes is still lacking. In this work, we refine the device model to comprehensively account for the electrical double layer (EDL)’s capacitance of the gel electrolyte. Both experimental data and theoretical calculations indicate that the maximum transconductance of the OECT is contingent upon ion concentration, drain voltage, and scan rate, highlighting a strong correlation between the transconductance and the hydrogel electrolyte. Overall, this model serves as a theoretical tool for improving the performance of OECTs, enabling the further development of bioelectronic devices. Full article
(This article belongs to the Special Issue Research on the Applications of Conductive Hydrogels)
Show Figures

Graphical abstract

13 pages, 1958 KB  
Article
A Flexible Multi-Ion Detection System Based on Organic Electrochemical Transistors for Physiological Monitoring
by Chenglin Li, Sixing Chen, Chuan Liu, Hui-Jiuan Chen and Songjia Han
Electronics 2025, 14(5), 1023; https://doi.org/10.3390/electronics14051023 - 4 Mar 2025
Cited by 2 | Viewed by 3339
Abstract
The continuous and real-time monitoring of physiological indicators is essential for early disease detection, prevention, and clinical diagnosis. In response to the growing demand for precise physiological parameter assessment, this study presents a flexible, organic electrochemical transistor (OECT)-based multi-ion sensing system designed to [...] Read more.
The continuous and real-time monitoring of physiological indicators is essential for early disease detection, prevention, and clinical diagnosis. In response to the growing demand for precise physiological parameter assessment, this study presents a flexible, organic electrochemical transistor (OECT)-based multi-ion sensing system designed to monitor key electrolyte concentrations—sodium (Na+), potassium (K+), and calcium (Ca2+)—in human biofluids. The system features a highly adaptable sensor array with a detection range tailored to physiological conditions, ensuring high selectivity and stability in complex biological environments. Our sensor demonstrated a sensitivity exceeding 1 mA/decade. To enhance measurement accuracy and mitigate cross-interference among ions, we integrate advanced machine learning algorithms, which optimize signal processing and significantly improve the system’s reliability. Additionally, we have developed a fully integrated hardware–software platform comprising customized signal acquisition circuitry and dedicated data analysis software, specifically tailored for OECT-based sensing applications. This comprehensive framework not only refines real-time ion detection but also paves the way for the broader clinical translation of OECT technology. The proposed system holds great promise for real-time physiological monitoring and point-of-care diagnostics, offering a potential paradigm shift in non-invasive, on-demand health assessment. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

20 pages, 2452 KB  
Review
Functional Organic Electrochemical Transistor-Based Biosensors for Biomedical Applications
by Zhiyao Wang, Minggao Liu, Yundi Zhao, Yating Chen, Beenish Noureen, Liping Du and Chunsheng Wu
Chemosensors 2024, 12(11), 236; https://doi.org/10.3390/chemosensors12110236 - 13 Nov 2024
Cited by 8 | Viewed by 6519
Abstract
Organic electrochemical transistors (OECTs), as an emerging device for the development of novel biosensors, have attracted more and more attention in recent years, demonstrating their promising prospects and commercial potential. Functional OECTs have been widely applied in the field of biosensors due to [...] Read more.
Organic electrochemical transistors (OECTs), as an emerging device for the development of novel biosensors, have attracted more and more attention in recent years, demonstrating their promising prospects and commercial potential. Functional OECTs have been widely applied in the field of biosensors due to their decisive advantages, such as high transconductance, easy functionalization, and high integration capability. Therefore, this review aims to provide a comprehensive summary of the most recent advances in the application of functional OECT-based biosensors in biomedicine, especially focusing on those biosensors for the detection of physiological and biochemical parameters that are critical for the health of human beings. First, the main components and basic working principles of OECTs will be briefly introduced. In the following, the strategies and key technologies for the preparation of functional OECT-based biosensors will be outlined and discussed with regard to the applications of the detection of various targets, including metabolites, ions, neurotransmitters, electrophysiological parameters, and immunological molecules. Finally, the current main issues and future development trends of functional OECT-based biosensors will be proposed and discussed. The breakthrough in functional OECT-based biosensors is believed to enable such devices to achieve higher performance, and thus, this technology could provide new insight into the future field of medical and life sciences. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—2nd Edition)
Show Figures

Figure 1

22 pages, 9075 KB  
Article
Textile Organic Electrochemical Transistor for Non-Invasive Glucose Sensing
by Rike Brendgen, Thomas Grethe and Anne Schwarz-Pfeiffer
Micro 2024, 4(4), 530-551; https://doi.org/10.3390/micro4040033 - 30 Sep 2024
Cited by 1 | Viewed by 5101
Abstract
The global rise in diabetes has highlighted the urgent need for continuous, non-invasive health monitoring solutions. Traditional glucose monitoring methods, which are invasive and often inconvenient, have created a demand for alternative technologies that can offer comfort, accuracy, and real-time data. In this [...] Read more.
The global rise in diabetes has highlighted the urgent need for continuous, non-invasive health monitoring solutions. Traditional glucose monitoring methods, which are invasive and often inconvenient, have created a demand for alternative technologies that can offer comfort, accuracy, and real-time data. In this study, the development of a textile-based organic electrochemical transistor (OECT) is presented, designed for non-invasive glucose sensing, aiming to integrate this technology seamlessly into everyday clothing. The document details the design, optimization, and testing of a one-component textile-based OECT, featuring a porous PEDOT:PSS structure and a glucose oxidase-modified electrolyte for effective glucose detection in sweat. The research demonstrates the feasibility of using this textile-based OECT for non-invasive glucose monitoring, with enhanced sensitivity and specificity achieved through the integration of glucose oxidase within the electrolyte and the innovative porous PEDOT:PSS design. These findings suggest a significant advancement in wearable health monitoring technologies, providing a promising pathway for the development of smart textiles capable of non-invasively tracking glucose levels. Future work should focus on refining this technology for clinical use, including individual calibration for accurate blood glucose correlation and its integration into commercially available smart textiles. Full article
Show Figures

Figure 1

23 pages, 4197 KB  
Review
The New Era of Organic Field-Effect Transistors: Hybrid OECTs, OLEFETs and OFEWs
by Iván Torres-Moya
Appl. Sci. 2024, 14(18), 8454; https://doi.org/10.3390/app14188454 - 19 Sep 2024
Cited by 6 | Viewed by 6257
Abstract
Advancements in electronic device technology have led to an exponential growth in demand for more efficient and versatile transistors. In this context, organic field-effect transistors (OFETs) have emerged as a promising alternative due to their unique properties and potential for flexible and low-cost [...] Read more.
Advancements in electronic device technology have led to an exponential growth in demand for more efficient and versatile transistors. In this context, organic field-effect transistors (OFETs) have emerged as a promising alternative due to their unique properties and potential for flexible and low-cost applications. However, to overcome some of the inherent limitations of OFETs, the integration of organic materials with other materials and technologies has been proposed, giving rise to a new generation of hybrid devices. In this article, we explore the development and advances of organic field-effect transistors and highlight the growing importance of hybrid devices in this area. In particular, we focus on three types of emerging hybrid devices: organic electrochemical transistors (OECTs), organic light-emitting field-effect transistors (OLEFETs) and organic field-effect waveguides (OFEWs). These devices combine the advantages of organic materials with the unique capabilities of other technologies, opening up new possibilities in fields such as flexible electronics, bioelectronics, or optoelectronics. This article provides an overview of recent advances in the development and applications of hybrid transistors, highlighting their crucial role in the next generation of electronic devices. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

14 pages, 3298 KB  
Article
Microscale Sensor Arrays for the Detection of Dopamine Using PEDOT:PSS Organic Electrochemical Transistors
by Chunling Li, Yingying He, Sven Ingebrandt and Xuan Thang Vu
Sensors 2024, 24(16), 5244; https://doi.org/10.3390/s24165244 - 14 Aug 2024
Cited by 4 | Viewed by 3296
Abstract
We present a sensor array of microscale organic electrochemical transistors (OECTs) using poly (3,4−ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as the channel material. The devices show high sensitivity and selectivity to detect dopamine (DA) with platinum (Pt) as a pseudo−reference gate electrode. First, we describe the [...] Read more.
We present a sensor array of microscale organic electrochemical transistors (OECTs) using poly (3,4−ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as the channel material. The devices show high sensitivity and selectivity to detect dopamine (DA) with platinum (Pt) as a pseudo−reference gate electrode. First, we describe the wafer−scale fabrication process for manufacturing the PEDOT:PSS OECTs, and then we introduce a dilution method to adjust the thickness of the PEDOT:PSS film. Next, we investigate the effect of the film thickness on the sensitivity of DA detection. Reducing the film thickness enhances the sensitivity of DA detection within the concentration range of 1 μM to 100 μM. The OECTs show impressive sensitivitywith a limit of detection (LoD) as low as 1 nM and a high selectivity against uric acid (UA) and ascorbic acid (AA). Finally, we modify the surface of the Pt gate electrode with chitosan to improve the selectivity of OECTs at high concentrations of up to 100 µM to expand the detection range. Full article
Show Figures

Figure 1

11 pages, 1731 KB  
Article
Highly Stable Flexible Organic Electrochemical Transistors with Natural Rubber Latex Additives
by Miguel Henrique Boratto, Carlos F. O. Graeff and Sanggil Han
Polymers 2024, 16(16), 2287; https://doi.org/10.3390/polym16162287 - 13 Aug 2024
Cited by 3 | Viewed by 2040
Abstract
Organic electrochemical transistors (OECTs) have attracted considerable interest in the context of wearable and implantable biosensors due to their remarkable signal amplification combined with seamless integration into biological systems. These properties underlie OECTs’ potential utility across a range of bioelectronic applications. One of [...] Read more.
Organic electrochemical transistors (OECTs) have attracted considerable interest in the context of wearable and implantable biosensors due to their remarkable signal amplification combined with seamless integration into biological systems. These properties underlie OECTs’ potential utility across a range of bioelectronic applications. One of the main challenges to their practical applications is the mechanical limitation of PEDOT:PSS, the most typical conductive polymer used as a channel layer, when the OECTs are applied to implantable and stretchable bioelectronics. In this work, we address this critical issue by employing natural rubber latex (NRL) as an additive in PEDOT:PSS to improve flexibility and stretchability of the OECT channels. Although the inclusion of NRL leads to a decrease in transconductance, mainly due to a reduced carrier mobility from 0.3 to 0.1 cm2/V·s, the OECTs maintain satisfactory transconductance, exceeding 5 mS. Furthermore, it is demonstrated that the OECTs exhibit excellent mechanical stability while maintaining their performance even after 100 repetitive bending cycles. This work, therefore, suggests that the NRL/PEDOT:PSS composite film can be deployed for wearable/implantable applications, where high mechanical stability is needed. This finding opens up new avenues for practical use of OECTs in more robust and versatile wearable and implantable biosensors. Full article
(This article belongs to the Special Issue Flexible Electronics Applications of Polymer Materials)
Show Figures

Figure 1

15 pages, 3546 KB  
Article
Urea Biosensing through Integration of Urease to the PEDOT-Polyamine Conducting Channels of Organic Electrochemical Transistors: pH-Change-Based Mechanism and Urine Sensing
by Jael R. Neyra Recky, Marjorie Montero-Jimenez, Juliana Scotto, Omar Azzaroni and Waldemar A. Marmisollé
Chemosensors 2024, 12(7), 124; https://doi.org/10.3390/chemosensors12070124 - 3 Jul 2024
Cited by 9 | Viewed by 3437
Abstract
We present the construction of an organic electrochemical transistor (OECT) based on poly(3,4-ethylendioxythiophene, PEDOT) and polyallylamine (PAH) and its evaluation as a bioelectronic platform for urease integration and urea sensing. The OECT channel was fabricated in a one-step procedure using chemical polymerization. Then, [...] Read more.
We present the construction of an organic electrochemical transistor (OECT) based on poly(3,4-ethylendioxythiophene, PEDOT) and polyallylamine (PAH) and its evaluation as a bioelectronic platform for urease integration and urea sensing. The OECT channel was fabricated in a one-step procedure using chemical polymerization. Then, urease was immobilized on the surface by electrostatic interaction of the negatively charged enzyme at neutral pH with the positively charged surface of PEDOH-PAH channels. The real-time monitoring of the urease adsorption process was achieved by registering the changes on the drain–source current of the OECT upon continuous scan of the gate potential during enzyme deposition with high sensitivity. On the other hand, integrating urease enabled urea sensing through the transistor response changes resulting from local pH variation as a consequence of enzymatic catalysis. The response of direct enzyme adsorption is compared with layer-by-layer integration using polyethylenimine. Integrating a polyelectrolyte over the adsorbed enzyme resulted in a more stable response, allowing for the sensing of urine even from diluted urine samples. These results demonstrate the potential of integrating enzymes into the active channels of OECTs for the development of biosensors based on local pH changes. Full article
(This article belongs to the Special Issue Electrochemical Biosensors: Advances and Prospects)
Show Figures

Graphical abstract

1 pages, 127 KB  
Abstract
Screen-Printed Organic Electrochemical Transistor: A Protein Immobilization Approach to Detect Aromatic Water Pollutants
by Lokesh Kumar, Subhankar Sahu, Sumita Das, Dipti Gupta and Ruchi Anand
Proceedings 2024, 104(1), 14; https://doi.org/10.3390/proceedings2024104014 - 28 May 2024
Viewed by 945
Abstract
In response to the environmental threat posed by xenobiotic aromatic pollutants in water, we have developed a compact device that integrates biosensor scaffolds with organic electronics. This innovative approach addresses the challenge of detecting these pollutants, which often lack easily detectable functional groups. [...] Read more.
In response to the environmental threat posed by xenobiotic aromatic pollutants in water, we have developed a compact device that integrates biosensor scaffolds with organic electronics. This innovative approach addresses the challenge of detecting these pollutants, which often lack easily detectable functional groups. Our sensor module is specifically designed for the rapid, economical, reliable, and ultra-sensitive detection of phenol, a common water pollutant. The key to our sensor’s functionality is the biosensing protein MopR, which we have coupled with an organic electrochemical transistor (OECT). To ensure the effective integration of the MopR sensing scaffold, we have optimized graphene oxide (GO) nanosheets to serve as a host immobilization matrix. This MopR-GO immobilized sensor module is then used as the gate electrode in the OECT, with PEDOT:PSS serving as the organic semiconductor material. The resulting OECT sensor offers a conducive microenvironment for protein activity, thereby maintaining high specificity in pollutant detection. It has demonstrated the ability to exclusively detect phenol with minimal sensitivity loss (less than 5% error), even in complex pollutant mixtures and real environmental samples. This fabrication strategy, which effectively combines biological biosensors with organic electronics, holds significant potential for the detection of a wide range of emerging pollutants. It represents a promising step towards more effective environmental monitoring and sustainability. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
14 pages, 3916 KB  
Article
Exploring Mixed Ionic–Electronic-Conducting PVA/PEDOT:PSS Hydrogels as Channel Materials for Organic Electrochemical Transistors
by Tatiana Gregorio, Dominique Mombrú, Mariano Romero, Ricardo Faccio and Álvaro W. Mombrú
Polymers 2024, 16(11), 1478; https://doi.org/10.3390/polym16111478 - 23 May 2024
Cited by 11 | Viewed by 4704
Abstract
Here, we report the preparation and evaluation of PVA/PEDOT:PSS-conducting hydrogels working as channel materials for OECT applications, focusing on the understanding of their charge transport and transfer properties. Our conducting hydrogels are based on crosslinked PVA with PEDOT:PSS interacting via hydrogen bonding and [...] Read more.
Here, we report the preparation and evaluation of PVA/PEDOT:PSS-conducting hydrogels working as channel materials for OECT applications, focusing on the understanding of their charge transport and transfer properties. Our conducting hydrogels are based on crosslinked PVA with PEDOT:PSS interacting via hydrogen bonding and exhibit an excellent swelling ratio of ~180–200% w/w. Our electrochemical impedance studies indicate that the charge transport and transfer processes at the channel material based on conducting hydrogels are not trivial compared to conducting polymeric films. The most relevant feature is that the ionic transport through the swollen hydrogel is clearly different from the transport through the solution, and the charge transfer and diffusion processes govern the low-frequency regime. In addition, we have performed in operando Raman spectroscopy analyses in the OECT devices supported by first-principle computational simulations corroborating the doping/de-doping processes under different applied gate voltages. The maximum transconductance (gm~1.05 μS) and maximum volumetric capacitance (C*~2.3 F.cm−3) values indicate that these conducting hydrogels can be promising candidates as channel materials for OECT devices. Full article
(This article belongs to the Special Issue Crystalline Polymer Materials for Soft Electronics)
Show Figures

Figure 1

Back to TopTop