Organic Bioelectronics: Diversity of Electronics Along with Biosciences
Abstract
1. Introduction
2. Diversity of Organic Electronics
2.1. Diversity of Materials
2.2. Diversity of Functionalities
2.3. Diversity of Fabrication Techniques
2.4. Diversity of Form Factors
2.5. Diversity of Applications, Specifically in Bioelectronics
3. Key Aspects of Organic Bioelectronics
- (1)
- (2)
- Ionic Conductivity: The ability of organic semiconductors to transport both ionic and electronic currents make them highly suitable for bioelectric applications. Changes in ion flow brought on by biological activity may have a direct impact on the electrical characteristics of organic bioelectronic devices when they encounter cells or tissue [41,42].
- (3)
- (4)
- Soft Interface: The human body and electronic devices are connected by means of flexible and adaptive interfaces made possible by organic electronics. This reduces the chance of pain or incapacity and improves fitness [45].
- (5)
- (6)
- (7)
- (8)
- (9)
- Bioelectronic System Applications: It necessitates a thorough assessment of the mechanical characteristics, including Young’s modules, and suitability for living things. Many conducting polymers and natural polymers—organic materials—have excellent biocompatibility, reducing the likelihood of adverse responses or tissue injury, as shown in Figure 2.
4. Applications for Organic Bioelectronics
- (1)
- (2)
- The flexibility and adaptability of organic bioelectronic devices facilitate the development of soft neural interfaces that could be implanted into the brain and nervous system to improve integration [60].
- (3)
- Organic bioelectronic retina implantation provides sophisticated, compact, non-intrusive devices by using the tunable electrical and optical properties of organic semiconductors. For patients with retinal degenerative illnesses, these devices may interact with the delicate retinal tissue and partially restore vision [61].
- (4)
- Small semiconducting materials are now being investigated by researchers for usage in organic bioelectronic devices for a range of cardiac applications. These include tissue engineering scaffolds that can efficiently monitor and regulate cardiac activity via connections to the heart, pacemakers, and cardiac defibrillators. Furthermore, these devices may be very beneficial for tissue regeneration and repair [62].
- (5)
- Bone tissue engineering would make use of organic bioelectronic materials. These elements have shown potential in increasing bone cell development, activating bone cells, and permitting targeted medication release. This might be useful for the regeneration and repair of damaged or diseased bone structures [63].
- (6)
- Biosensors that are very sensitive and selective may be designed using organic electrical components. Numerous metabolites, physiological signals, and biomarkers may be detected using these biosensors [49].
- (7)
- Continuous, real-time monitoring of health indicators is possible with integrated biosensing devices, which may help with early illness detection and personalized treatment [64].
- (8)
- Organic bioelectronic materials may be active ingredients, substrates, or frameworks in tissue engineering that aid in the growth, differentiation, or regeneration of sick or damaged tissues [65].
- (9)
- It may be possible to create organic bioelectronic devices that would allow the localized release of therapeutic chemicals in response to external triggers or biological signals, allowing for precise and targeted drug delivery [66].
- (10)
- Organic bioelectronic materials may perform a variety of functions, including drug release, actuation, and sensing, all within a single system. This enables the development of tailored and adaptable therapeutic approaches [67].
- (11)
- Adding electrical signaling and stimulation to these organ-based systems may promote tissue growth and repair [68].
- (12)
- Prosthetic limbs, exoskeletons, and various other assistive technologies are examples of organic bioelectrical devices that may improve movement, sensory feedback, and the connection between people and electronics [69].
- (13)
5. Organic Semiconducting Materials for Bioelectronics
5.1. Conjugate Polymer
Property | Polypyrrole (PPy) | Polyaniline (PANi) | Polythiophene (PT) | PEDOT | PPV |
---|---|---|---|---|---|
Electrical Conductivity (mS·cm−1) | 103–5 × 104 | 102–108 | 10−1–10−4 | 3 × 105–5 × 105 | 1–1 × 105 |
Key Benefits | High conductivity and stability | High stability and conductivity | Good optical properties | High stability and conductivity | Precursor is water-processable |
Biocompatible | Water-soluble | Biocompatible | Water-soluble (doped with PSS) | Strong optical properties | |
Strong mechanical properties | Versatile functionality | Biocompatible | High stability | ||
Major Limitations | Fragile, prone to oxidation | Poor plasticity and cell adhesion | Low conductivity and stability | Low mechanical strength | Insoluble in water |
Insoluble in water | Low solubility | Poor solubility | Requires doping for better conductivity | ||
Common Applications | Biosensors | Biosensors | Biosensors | Antioxidants | Biosensors |
Drug delivery | Antioxidants | Food industry | Drug delivery | Light-emitting diodes (LEDs) | |
Neural prosthetics | Bioactuators | Tissue engineering | Neural prosthetics | Photovoltaic devices | |
Tissue engineering | Food industry | Electrodes | |||
Tissue engineering | |||||
References | [123,124,125,126] | [121,127,128] | [129,130,131] | [131,132,133] | [134,135,136] |
5.2. Natural Polymer
5.2.1. Chitosan
5.2.2. Collagen
5.3. Silk
5.4. Graphene
5.5. Carbon Nanotube (CNT)
6. Organic Bioelectronic Devices
6.1. Core Device Architectures
6.1.1. Organic Electrochemical Transistors (OECTs)
6.1.2. Organic Electrochemical Sensors
- (1)
- (2)
- Immunosensors, biosensors that identify and measure certain biomarkers or antigens using antibodies or antibody fragments [252].
- (3)
- DNA/Geno sensors, also known as biosensors, use nucleic acid probes, such as DNA or RNA, to monitor genetic sequences or mutations [253].
- (4)
- Entire-cell biosensors use entire living cells, such as bacteria, algae, or mammalian cells, as the biological component to detect a variety of analytes or environmental changes [254].
- (5)
- Tissue-based biosensors detect and measure toxins, medications, or other compounds using slices or cultures of biological cells, such as muscle or liver [255].
- (6)
- Aptamer-based biosensors employ single-stranded DNA or RNA aptamers as the identification component to accurately and highly specifically detect various target substances [256].
- (7)
- Microbial biosensors use microorganisms, such as bacteria or yeast, to detect and respond to certain environmental conditions or the existence of target substances [257].
- (8)
- Photonic biosensors: These biosensors use optical methods, such as surface plasmon resonance or fluorescence, to identify and measure biomolecular interactions [258].
- (9)
- (10)
- Using the piezoelectric characteristics of materials like polymer films or quartz crystals, piezoelectric biosensors detect and quantify mass changes brought on by biomolecular interactions [261].
6.1.3. Organic Light-Emitting Diodes (OLEDs) for Optogenetics
6.1.4. Stimulus and Organic Bioelectronic Actuators and Generators
6.2. Functional Materia Plateform
6.2.1. Organic Hydrogels
- (1)
- Minimally Invasive Administration: The liquid formulation of hydrogel can be injected directly into the irregular defect location via a tiny incision, eliminating the need for open surgery and enhancing patient recovery.
- (2)
- The hydrogel serves as a transient. Upon solidification (in situ gelation), it wraps the stem cells, furnishing them with a conducive environment for attachment, proliferation, and differentiation into the targeted cell type (e.g., cartilage or bone cells).
- (3)
- Patient-Specific Therapy: This approach often employs the patient’s own stem cells (autologous cells) through hydrogel, therefore minimizing the danger of immunological rejection and facilitating spontaneous recovery.
6.2.2. Organic Nanowires
- (1)
- Organic nanowires’ unique characteristics, such as their large surface area and electrically tunable characteristics, make them ideal for creating sensitive and selective biosensors. With the use of these biosensors, physiological indices and biomolecular interactions may be continuously monitored in real time [294].
- (2)
- Drug Delivery: Nanowires may be modified to improve the effectiveness and reduce the adverse effects of pharmacological therapies by using medicinal chemicals and nanocarriers for precise and regulated drug delivery [295].
- (3)
- Tissue Engineering: By integrating into scaffolds, organic semiconductor nanowires stimulate tissue regeneration by supplying electrical stimuli and assisting cells in developing and specializing [296].
- (4)
- Bioelectronic Implants: Devices based on organic nanowires may be created to be implanted with the least amount of intrusion. Through tight, stable, and long-lasting interactions with biological systems, these devices enable a variety of diagnostic and therapeutic applications.
6.2.3. Organic Nanotube
6.3. System Integration and Interfaces
7. Electrode-Tissue and Electrode-Cell Interactions
7.1. Methods to Improve Coupling and Signal Transduction
7.1.1. Biomimetic Construction
7.1.2. Enzymatic and Electrochemical Coupling
7.1.3. Neuromodulation Techniques
7.1.4. Dynamic and Adaptive Interfaces
7.2. Surface Modifications and Functionalization for Improved Biocompatibility
8. Achievements of Organic Bioelectronics
8.1. Neural Interfaces and Brain–Computer Interactions
8.2. Wearable and Implantable Biomedical Devices
8.3. Environmental Monitoring and Remediation
8.4. Tissue Engineering and Regenerative Medicine
8.5. Drug Delivery
8.6. Biodegradable Organic Bioelectronics
- (1)
- Biocompatibility and Safe Integration: Most natural polymers (e.g., polylactic acid, chitosan, gelatin) and biodegradable synthetic polymers (BSPs) have favorable tolerance within biological systems [93,148]. Their progressive degradation by the body modulates the immune response, resulting in less inflammation and enhanced tissue integration compared to conventional non-biodegradable implants, which commonly activate a foreign body reaction [380,381,382].
- (2)
- Transitory Functionality and the Removal of Surgical Extraction: A major advantage is the ability to fabricate transitory devices that execute a necessary function for a designated duration before safely dissolving. This obviates the need for a further surgical intervention to extract the implant, therefore reducing long-term problems and patient burden [383]. This is especially relevant for applications such short-term brain interfaces, biodegradable physiological sensors, and programmable drug delivery systems [75].
- (3)
- Inherent Sustainability: The biodegradable characteristics of these materials guarantee their decomposition and integration post-use, according to overarching objectives of environmental sustainability and eco-friendly medical technology [124].
9. Challenges
- (1)
- The seamless interaction with biological systems and scalable production are the limitations of seldom utilized organic bioelectronic devices from lab to clinic [385].
- (2)
- Another restriction is the therapeutic use of organic bioelectronic devices brought on by moral and legal issues. Clinical application may be slowed down by intricate regulatory processes, approvals, data protection, informed consent, and accessibility concerns [386].
- (3)
- The vocabulary, methods, and objectives of biology, medicine, and organic electronics may be outside the scope of effective communication. Collaboration is essential for information exchange and research goal alignment [387].
- (4)
- High-performing organic bioelectronic devices may have issues with stability, inability to match silicon-based electronics’ capabilities, and reduced mobility of charge carriers in organic electronics [388].
10. Future Perspective
11. Interdisciplinary Collaborations
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, M.J.; Kim, K.N.; Kim, C.; Lee, H.H.; Lee, S.W.; Kim, S.; Lee, T.W. Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics. Chem. Rev. 2025, 125, 2625–2664. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Chen, H. Solid-state organic electrochemical transistors (OECTs) based on gel electrolytes for biosensors and bioelectronics. J. Mater. Chem. A 2025, 13, 136–157. [Google Scholar] [CrossRef]
- Forrest, S.R.; Thompson, M.E. Introduction: Organic electronics and optoelectronics. Chem. Rev. 2007, 107, 923–925. [Google Scholar] [CrossRef]
- Kelley, T.W.; Baude, P.F.; Gerlach, C.; Ender, D.E.; Muyres, D.; Haase, M.A.; Theiss, S.D. Recent progress in organic electronics: Materials, devices, and processes. Chem. Mater. 2004, 16, 4413–4422. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mat. 2024, 9, 46–62. [Google Scholar] [CrossRef]
- Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 2013, 85, 1245–1293. [Google Scholar] [CrossRef]
- Long, Y.; Meng, H. Key Components for Active-Matrix OLED Displays: Fundamentals and Market Status. J. Lumin. 2025, 280, 121099. [Google Scholar] [CrossRef]
- Loo, Y.L.; McCulloch, I. Progress and challenges in commercialization of organic electronics. MRS Bull. 2008, 33, 653–662. [Google Scholar] [CrossRef]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A brief history of OLEDs—Emitter development and industry milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef]
- Geffroy, B.; Le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 2006, 55, 572–582. [Google Scholar] [CrossRef]
- Krebs, F.C.; Espinosa, N.; Hösel, M.; Søndergaard, R.R.; Jørgensen, M. 25th anniversary article: Rise to power–OPV-based solar parks. Adv. Mater. 2014, 26, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res. 2004, 19, 1924–1945. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of a novel lead-free perovskite solar cell for 17.83% efficiency. IEEE Access 2021, 9, 54254–54263. [Google Scholar] [CrossRef]
- Karimov, K.S.; Ahmed, M.M.; Moiz, S.A.; Fedorov, M.I. Temperature-dependent properties of organic-on-inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric cell. Sol. Energy Mater. Sol. Cells 2005, 87, 61–75. [Google Scholar] [CrossRef]
- Berggren, M.; Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 2007, 19, 3201–3213. [Google Scholar] [CrossRef]
- Ohayon, D.; Inal, S. Organic bioelectronics: From functional materials to next-generation devices and power sources. Adv. Mater. 2020, 32, 2001439. [Google Scholar] [CrossRef]
- Jin, F.; Li, T.; Wei, Z.; Qian, L.; Javanmardi, N.; Wang, T.; Wang, S.; Feng, Z.Q. A bright future for self-sustainable bioelectronics. Nat. Rev. Electr. Eng. 2025, 2, 338–349. [Google Scholar] [CrossRef]
- Bettucci, O.; Matrone, G.M.; Santoro, F. Conductive polymer-based bioelectronic platforms toward sustainable and biointegrated devices: A journey from skin to brain across human body interfaces. Adv. Mater. Technol. 2022, 7, 2100293. [Google Scholar] [CrossRef]
- Rivnay, J.; Raman, R.; Robinson, J.T.; Schreib, C.; Cohen-Karni, T.; Galloway, K.E.; Veiseh, O. Integrating bioelectronics with cell-based synthetic biology. Nat. Rev. Bioeng. 2025, 2025, e85221. [Google Scholar] [CrossRef]
- Park, S.; Kang, Y.J.; Majd, S. A review of patterned organic bioelectronic materials and their biomedical applications. Adv. Mater. 2015, 27, 7583–7619. [Google Scholar] [CrossRef]
- Patel, T.; Huang, J.; Krukiewicz, K. Multifunctional organic monolayer-based coatings for implantable biosensors and bioelectronic devices: Review and perspectives. Biosens. Bioelectron. X 2023, 14, 100349. [Google Scholar] [CrossRef]
- Carrara, S.; Iniewski, K. Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Rivnay, J.; Owens, R.M.; Malliaras, G.G. The rise of organic bioelectronics. Chem. Mater. 2014, 26, 679–685. [Google Scholar] [CrossRef]
- Liao, C.; Xiong, Y.; Fu, Y.; Chen, X.; Occhipinti, L.G. Organic semiconductors based wearable bioelectronics. Wearable Electron. 2025, 2, 23–39. [Google Scholar] [CrossRef]
- Malliaras, G.; McCulloch, I. Introduction: Organic bioelectronics. Chem. Rev. 2022, 122, 4323–4324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Guo, Y. Stretchable organic transistors for bioinspired electronics: Materials, devices and applications. FlexMat 2025, 1, 1–29. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Lee, H.; Li, W. Neural interfaces: Bridging the brain to the world beyond healthcare. Exploration 2024, 4, 20230146. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Implantable devices: Issues and challenges. Electronics 2012, 2, 1–34. [Google Scholar] [CrossRef]
- Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000, 287, 1964–1969. [Google Scholar] [CrossRef]
- Root, S.E.; Savagatrup, S.; Printz, A.D.; Rodriquez, D.; Lipomi, D.J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467–6499. [Google Scholar] [CrossRef]
- Anthony, J.E. The larger acenes: Versatile organic semiconductors. Angew. Chem. Int. Ed. 2008, 47, 452–483. [Google Scholar] [CrossRef]
- Ahmad, S. Organic semiconductors for device applications: Current trends and future prospects. J. Polym. Eng. 2014, 34, 279–338. [Google Scholar] [CrossRef]
- Sheats, J.R. Manufacturing and commercialization issues in organic electronics. J. Mater. Res. 2004, 19, 1974–1989. [Google Scholar] [CrossRef]
- Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S.C. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014, 7, 2145–2159. [Google Scholar] [CrossRef]
- Moiz, S.A.; Imran, S.M.; Nahhas, A.M.; Karimov, K.S.; Kim, H.T. Effect of solvent on Meyer-Neldel rule for conducting polyaniline thin film. J. Optoelectron. Adv. Mater. 2014, 16, 1405–1410. [Google Scholar]
- Wen, Y.; Liu, Y.; Guo, Y.; Yu, G.; Hu, W. Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem. Rev. 2011, 111, 3358–3406. [Google Scholar] [CrossRef]
- Rivnay, J.; Mannsfeld, S.C.; Miller, C.E.; Salleo, A.; Toney, M.F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 2012, 112, 5488–5519. [Google Scholar] [CrossRef]
- Borges-González, J.; Kousseff, C.J.; Nielsen, C.B. Organic semiconductors for biological sensing. J. Mater. Chem. C 2019, 7, 1111–1130. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Kim, T.Y.; Hwang, S.; Seo, J. Functional bioelectronic materials for long-term biocompatibility and functionality. ACS Appl. Electron. Mater. 2022, 4, 1449–1468. [Google Scholar] [CrossRef]
- Feron, K.; Lim, R.; Sherwood, C.; Keynes, A.; Brichta, A.; Dastoor, P.C. Organic bioelectronics: Materials and biocompatibility. Int. J. Mol. Sci. 2018, 19, 2382. [Google Scholar] [CrossRef]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef]
- Song, J.; Li, L.; Wong, W.Y.; Yan, F. Organic Mixed Conductors in Electrochemical Transistors for Bioelectronic Applications. Acc. Mater. Res. 2024, 5, 1036–1047. [Google Scholar] [CrossRef]
- Liao, C.; Zhang, M.; Yao, M.Y.; Hua, T.; Li, L.; Yan, F. Flexible organic electronics in biology: Materials and devices. Adv. Mater. 2015, 27, 7493–7527. [Google Scholar] [CrossRef]
- Marquez, A.V.; McEvoy, N.; Pakdel, A. Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics. Molecules 2020, 25, 5288. [Google Scholar] [CrossRef]
- Owens, R.M.; Malliaras, G.G. Organic electronics at the interface with biology. MRS Bull. 2010, 35, 449–456. [Google Scholar] [CrossRef]
- Larsson, K.C.; Kjäll, P.; Richter-Dahlfors, A. Organic bioelectronics for electronic-to-chemical translation in modulation of neuronal signaling and machine-to-brain interfacing. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 4334–4344. [Google Scholar] [CrossRef]
- Koklu, A.; Ohayon, D.; Wustoni, S.; Druet, V.; Saleh, A.; Inal, S. Organic bioelectronic devices for metabolite sensing. Chem. Rev. 2021, 122, 4581–4635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shi, C.; Wang, Z.; Huang, L.; Chi, L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. Adv. Mater. 2024, 36, 2308952. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, L.; Jiang, Y. Chemical Strategies of Tailoring PEDOT:PSS for Bioelectronic Applications: Synthesis, Processing and Device Fabrication. CCS Chem. 2024, 6, 1844–1868. [Google Scholar] [CrossRef]
- ElMahmoudy, M.; Inal, S.; Charrier, A.; Uguz, I.; Malliaras, G.G.; Sanaur, S. Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics. Macromol. Mater. Eng. 2017, 302, 1600497. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, L.; Zhang, F.; Di, C.A.; Zhu, D. Ion-Gating Engineering of Organic Semiconductors toward Multifunctional Devices. Adv. Funct. Mater. 2021, 31, 2102149. [Google Scholar] [CrossRef]
- Bettinger, C.J. Recent advances in materials and flexible electronics for peripheral nerve interfaces. Bioelectron. Med. 2018, 4, 6. [Google Scholar] [CrossRef]
- Levin, M. Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell 2014, 25, 3835–3850. [Google Scholar] [CrossRef] [PubMed]
- Borrachero-Conejo, A.I.; Saracino, E.; Natali, M.; Prescimone, F.; Karges, S.; Bonetti, S.; Nicchia, G.P.; Formaggio, F.; Caprini, M.; Zamboni, R.; et al. Electrical stimulation by an organic transistor architecture induces calcium signaling in nonexcitable brain cells. Adv. Healthc. Mater. 2019, 8, 1801139. [Google Scholar] [CrossRef]
- Plumbly, W.; Brandon, N.; Deeb, T.Z.; Hall, J.; Harwood, A.J. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci. Rep. 2019, 9, 13810. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.G.; Lo Fiego, A.; Patrick, I.; Creamer, A.; Stevens, M.M. Organic bioelectronics: Using highly conjugated polymers to interface with biomolecules, cells, and tissues in the human body. Adv. Mater. Technol. 2020, 5, 2000384. [Google Scholar] [CrossRef]
- Kaushal, J.B.; Raut, P.; Kumar, S. Organic electronics in biosensing: A promising frontier for medical and environmental applications. Biosensors 2023, 13, 976. [Google Scholar] [CrossRef]
- Sahasrabudhe, A.; Cea, C.; Anikeeva, P. Multifunctional bioelectronics for brain–body circuits. Nat. Rev. Bioeng. 2025, 3, 465–484. [Google Scholar] [CrossRef]
- Manero, A.; Rivera, V.; Fu, Q.; Schwartzman, J.D.; Prock-Gibbs, H.; Shah, N.; Gandhi, D.; White, E.; Crawford, K.E.; Coathup, M.J. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering 2024, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Li, J.; Won, S.M.; Bai, W.; Rogers, J.A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603. [Google Scholar] [CrossRef]
- Benfenati, F.; Lanzani, G. New technologies for developing second generation retinal prostheses. Lab Anim. 2018, 47, 71–75. [Google Scholar] [CrossRef]
- Sunwoo, S.H.; Han, S.I.; Park, C.S.; Kim, J.H.; Georgiou, J.S.; Lee, S.P.; Hyeon, T. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2024, 2, 8–24. [Google Scholar] [CrossRef]
- Iandolo, D.; Ravichandran, A.; Liu, X.; Wen, F.; Chan, J.K.; Berggren, M.; Simon, D.T. Development and characterization of organic electronic scaffolds for bone tissue engineering. Adv. Healthc. Mater. 2016, 5, 1505–1512. [Google Scholar] [CrossRef]
- Wang, Y.; Haick, H.; Guo, S.; Wang, C.; Lee, S.; Yokota, T.; Someya, T. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 2022, 51, 3759–3793. [Google Scholar] [CrossRef]
- Fang, Y.; Meng, L.; Prominski, A.; Schaumann, E.N.; Seebald, M.; Tian, B. Recent advances in bioelectronics chemistry. Chem. Soc. Rev. 2020, 49, 7978–8035. [Google Scholar] [CrossRef] [PubMed]
- Löffler, S.; Melican, K.; Nilsson, K.P.R.; Richter-Dahlfors, A. Organic bioelectronics in medicine. J. Intern. Med. 2017, 282, 24–36. [Google Scholar] [CrossRef] [PubMed]
- ávan Doremaele, E.R.; de Burgt, Y. Towards organic neuromorphic devices for adaptive sensing and novel computing paradigms in bioelectronics. J. Mater. Chem. C 2019, 7, 12754–12760. [Google Scholar] [CrossRef]
- Li, Z.; Lu, J.; Ji, T.; Xue, Y.; Zhao, L.; Zhao, K.; Jia, B.; Wang, B.; Wang, J.; Zhang, S.; et al. Self-Healing Hydrogel Bioelectronics. Adv. Mater. 2024, 36, 2306350. [Google Scholar] [CrossRef]
- Go, G.T.; Lee, Y.; Seo, D.G.; Lee, T.W. Organic neuroelectronics: From neural interfaces to neuroprosthetics. Adv. Mater. 2022, 34, 2201864. [Google Scholar] [CrossRef]
- Fallegger, F.; Schiavone, G.; Lacour, S.P. Conformable hybrid systems for implantable bioelectronic interfaces. Adv. Mater. 2020, 32, 1903904. [Google Scholar] [CrossRef]
- Inal, S.; Rivnay, J.; Suiu, A.O.; Malliaras, G.G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Li, L.; Jiang, S.; Chen, X.; Chang, Q.; Shi, Y.; Li, Y. Advanced Bioinspired Organic Sensors for Future-Oriented Intelligent Applications. Adv. Sens. Res. 2023, 2, 2200066. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, Z.; Liu, X.; Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 2020, 3, 191–200. [Google Scholar] [CrossRef]
- Kotov, N.A.; Winter, J.O.; Clements, I.P.; Jan, E.; Timko, B.P.; Campidelli, S.; Ballerini, L. Nanomaterials for neural interfaces. Adv. Mater. 2009, 21, 3970–4004. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Hernandez, A.L.; Unluturk, B.D.; Quintero, S.A.; de Barros, N.R.; Hoque Apu, E.; Holgado, M. Biodegradable implantable sensors: Materials design, fabrication, and applications. Adv. Funct. Mater. 2021, 31, 2104149. [Google Scholar] [CrossRef]
- Koruprolu, A.; Hack, T.; Ghadami, O.; Jain, A.; Hall, D.A. From Wearables to Implantables: Harnessing sensor technologies for continuous health monitoring. IEEE Trans. Biomed. Circuits Syst. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Koushik, T.M.; Miller, C.M.; Antunes, E. Bone tissue engineering scaffolds: Function of multi-material hierarchically structured scaffolds. Adv. Healthc. Mater. 2023, 12, 2202766. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab A Chip 2018, 18, 217–248. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Li, L.; Yan, T.; Ye, H. Optogenetics in medicine: Innovations and therapeutic applications. Curr. Opin. Biotechnol. 2025, 92, 103262. [Google Scholar] [CrossRef]
- Guo, C.; Lin, L.; Wang, Y.; Jing, J.; Gong, Q.; Luo, K. Nano drug delivery systems for advanced immune checkpoint blockade therapy. Theranostics 2025, 15, 5440. [Google Scholar] [CrossRef]
- Dong, C.; Malliaras, G.G. Recent Advances in Stimuli-Responsive Materials and Soft Robotic Actuators for Bioelectronic Medicine. Adv. Mater. 2025, 37, 2417325. [Google Scholar] [CrossRef] [PubMed]
- Yan, B. Actuators for implantable devices: A broad view. Micromachines 2022, 13, 1756. [Google Scholar] [CrossRef]
- Karimov, K.S.; Ahmed, M.M.; Moiz, S.A.; Babadzhanov, P.; Marupov, R.; Turaeva, M.A. Electrical properties of organic semiconductor orange nitrogen dye thin films deposited from solution at high gravity. Eurasian Chem.-Technol. J. 2003, 5, 109–113. [Google Scholar] [CrossRef]
- Moiz, S.A.; Ahmed, M.M.; Karimov, K.H.S.; Mehmood, M. Temperature-dependent current–voltage characteristics of poly-N-epoxypropylcarbazole complex. Thin Solid Film. 2007, 516, 72–77. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Karimov, K.S.; Moiz, S.A. Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor. Thin Solid Film. 2008, 516, 7822–7827. [Google Scholar] [CrossRef]
- Moiz, S.A.; Ahmed, M.M.; Karimov, K.S.; Rehman, F.; Lee, J.H. Space charge limited current–voltage characteristics of organic semiconductor diode fabricated at various gravity conditions. Synth. Met. 2009, 159, 1336–1339. [Google Scholar] [CrossRef]
- Salleo, A. Charge transport in polymeric transistors. Mater. Today 2007, 10, 38–45. [Google Scholar] [CrossRef]
- Moiz, S.A.; Khan, I.A.; Younis, W.A.; Masud, M.I.; Ismail, Y.; Khawaja, Y.M. Solvent induced charge transport mechanism for conducting polymer at higher temperature. Mater. Res. Express 2020, 7, 095304. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Karimov, K.S.; Moiz, S.A. Temperature-dependent IV characteristics of organic-inorganic heterojunction diodes. IEEE Trans. Electron Devices 2004, 51, 121–126. [Google Scholar] [CrossRef]
- Moiz, S.A.; Imran, S.M.; Nahhas, A.M.; Rehman, F.; Ahmed, M.M.; Kim, H.T.; Lee, J.H. Polaron hopping mechanism of conducting polymer. In Proceedings of the 2012 International Conference on Emerging Technologies, Islamabad, Pakistan, 8–9 October 2012; pp. 1–6. [Google Scholar]
- Turner, A.P. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef]
- Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287. [Google Scholar] [CrossRef]
- Tropp, J.; Rivnay, J. Design of biodegradable and biocompatible conjugated polymers for bioelectronics. J. Mater. Chem. C 2021, 9, 13543–13556. [Google Scholar] [CrossRef]
- Moiz, S.A.; Karimov, K.S.; Ahmed, M.M. Electrical Characterization of Novel Organic Semiconductor: Materials and Devices for Sensor Technology; VDM Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Moiz, S.A.; Khan, I.A.; Younis, W.A.; Karimov, K.S. Space charge–limited current model for polymers. Conduct. Polym. 2016, 5, 91. [Google Scholar]
- Du, J.; Catania, C.; Bazan, G.C. Modification of abiotic–biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem. Mater. 2014, 26, 686–697. [Google Scholar] [CrossRef]
- Moiz, S.A.; Ahmed, M.M.; Karimov, K.S. Estimation of Electrical Parameters of OD Organic Semiconductor Diode from Measured I-V Characteristics. ETRI J. 2005, 27, 319–325. [Google Scholar] [CrossRef]
- Macedo, L.J.; Iost, R.M.; Hassan, A.; Balasubramanian, K.; Crespilho, F.N. Bioelectronics and interfaces using monolayer graphene. ChemElectroChem 2019, 6, 31–59. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I. Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics. ChemPhysChem 2004, 5, 1084–1104. [Google Scholar] [CrossRef]
- Karimov, K.H.; Ahmed, M.M.; Karieva, Z.M.; Saleem, M.; Mateen, A.; Moiz, S.A. Humidity sensing properties of carbon nano-tube thin films. Sens. Lett. 2011, 9, 1649–1653. [Google Scholar] [CrossRef]
- Lu, J.; Feng, W.; Mei, G.; Sun, J.; Yan, C.; Zhang, D.; Lin, K.; Wu, D.; Wang, K.; Wei, Z. Ultrathin PEDOT: PSS enables colorful and efficient perovskite light-emitting diodes. Adv. Sci. 2020, 7, 2000689. [Google Scholar] [CrossRef]
- Van Dijken, A.; Perro, A.; Meulenkamp, E.A.; Brunner, K. The influence of a PEDOT:PSS layer on the efficiency of a polymer light-emitting diode. Org. Electron. 2003, 4, 131–141. [Google Scholar] [CrossRef]
- Yang, M.; Yu, C. Microfabricated Conductive PEDOT: PSS Hydrogels for Soft Electronics. Korean J. Chem. Eng. 2025, 42, 935–952. [Google Scholar] [CrossRef]
- Fenoy, G.E.; Azzaroni, O.; Knoll, W.; Marmisollé, W.A. Functionalization strategies of PEDOT and PEDOT:PSS films for organic bioelectronics applications. Chemosensors 2021, 9, 212. [Google Scholar] [CrossRef]
- Moiz, S.A.; Nahhas, A.M.; Um, H.D.; Jee, S.W.; Cho, H.K.; Kim, S.W.; Lee, J.H. A stamped PEDOT:PSS–silicon nanowire hybrid solar cell. Nanotechnology 2012, 23, 145401. [Google Scholar] [CrossRef] [PubMed]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of silicon nanowire array for PEDOT:PSS-silicon nanowire-based hybrid solar cell. Energies 2020, 13, 3797. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Zhang, H.; Xie, M.; Duan, X. PEDOT:PSS: From conductive polymers to sensors. Nanotechnol. Precis. Eng. (NPE) 2021, 4, 045004. [Google Scholar] [CrossRef]
- Khalaf, A.M.; Issa, H.H.; Ramirez, J.L.; Mohamed, S.A. All inkjet-printed temperature sensors based on PEDOT:PSS. IEEE Access 2022, 10, 61094–61100. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, C.H.; Kim, Y.; Kim, N.; Lee, W.J.; Lee, E.H.; Kim, D.; Park, S.; Lee, K.; Rivnay, J.; et al. Influence of PEDOT: PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 2018, 9, 3858. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, J.; Mao, S.; Guo, W.; Cheng, S.; Wang, Y. Preparation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDT/PSS) composite and its applications in anti-static coating. Polym. Adv. Technol. 2010, 21, 651–655. [Google Scholar] [CrossRef]
- Jia, Y.; Shen, L.; Liu, J.; Zhou, W.; Du, Y.; Xu, J.; Liu, C.; Zhang, G.; Zhang, Z.; Jiang, F. An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors. J. Mater. Chem. C 2019, 7, 3496–3502. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4, 3130–3152. [Google Scholar] [CrossRef]
- Xu, Z.; Song, J.; Liu, B.; Lv, S.; Gao, F.; Luo, X.; Wang, P. A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B: Chem. 2021, 348, 130674. [Google Scholar] [CrossRef]
- Liu, Y.; Weng, B.; Razal, J.M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G.G.; Chen, J. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. Sci. Rep. 2015, 5, 17045. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Liu, J.; Li, L.; Zhang, X.; Luo, R.; Ye, Y.; Chen, R. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl. Mater. Interfaces 2016, 8, 23095–23104. [Google Scholar] [CrossRef]
- Levasseur, D.; Mjejri, I.; Rolland, T.; Rougier, A. Color tuning by oxide addition in PEDOT:PSS-based electrochromic devices. Polymers 2019, 11, 179. [Google Scholar] [CrossRef]
- Bora, P.J.; Anil, A.G.; Vinoy, K.J.; Ramamurthy, P.C. Outstanding absolute electromagnetic interference shielding effectiveness of cross-linked PEDOT: PSS film. Adv. Mater. Interfaces 2019, 6, 1901353. [Google Scholar] [CrossRef]
- Wu, J.; Xie, H.; Fang, C.; Ji, C.; Zhang, G.; Lin, Y.; Pei, Y.; Zhan, X.; Ma, L. MWCNT-promoted PEDOT: PSS in polyurethane films: Enhancing conductivity and EMI shielding. Surf. Interfaces 2025, 62, 106265. [Google Scholar] [CrossRef]
- Sudhagar, P.; Nagarajan, S.; Lee, Y.G.; Song, D.; Son, T.; Cho, W.; Heo, M.; Lee, K.; Won, J.; Kang, Y.S. Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 1838–1843. [Google Scholar] [CrossRef]
- Ludwig, K.A.; Uram, J.D.; Yang, J.; Martin, D.C.; Kipke, D.R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene)(PEDOT) film. J. Neural Eng. 2006, 3, 59. [Google Scholar] [CrossRef]
- Cucchi, I.; Boschi, A.; Arosio, C.; Bertini, F.; Freddi, G.; Catellani, M. Bio-based conductive composites: Preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synth. Met. 2009, 159, 246–253. [Google Scholar] [CrossRef]
- Kazemi, F.; Naghib, S.M.; Zare, Y.; Rhee, K.Y. Biosensing applications of polyaniline (PANI)-based nanocomposites: A review. Polym. Rev. 2021, 61, 553–597. [Google Scholar] [CrossRef]
- Seiti, M.; Giuri, A.; Corcione, C.E.; Ferraris, E. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review. Biomater. Adv. 2023, 154, 213655. [Google Scholar] [CrossRef] [PubMed]
- Irimia-Vladu, M. “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 2014, 43, 588–610. [Google Scholar] [CrossRef]
- Heck, J.; Goding, J.; Lara, R.P.; Green, R. The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomater. 2022, 139, 259–279. [Google Scholar] [CrossRef]
- Donahue, M.J.; Sanchez-Sanchez, A.; Inal, S.; Qu, J.; Owens, R.M.; Mecerreyes, D.; Malliaras, G.G.; Martin, D.C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R: Rep. 2020, 140, 100546. [Google Scholar] [CrossRef]
- Dhand, C.; Das, M.; Datta, M.; Malhotra, B.D. Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821. [Google Scholar] [CrossRef]
- Lai, J.; Yi, Y.; Zhu, P.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem. 2016, 782, 138–153. [Google Scholar] [CrossRef]
- Plante, M.P.; Bérubé, E.; Bissonnette, L.; Bergeron, M.G.; Leclerc, M. Polythiophene biosensor for rapid detection of microbial particles in water. ACS Appl. Mater. Interfaces 2013, 5, 4544–4548. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Pires, N.M.M. Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C70 organic photodetectors. Biosens. Bioelectron. 2017, 94, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Song, Z.; Wu, Y.; Guo, B.; Fan, X.; Luo, X. A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosens. Bioelectron. 2016, 79, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Umar, M.; Saifi, A.; Kumar, S.; Augustine, S.; Srivastava, S.; Malhotra, B.D. Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Anal. Chim. Acta 2019, 1056, 135–145. [Google Scholar] [CrossRef]
- Ling, W.; Shang, X.; Liu, J.; Tang, T. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring. Biosens. Bioelectron. 2025, 267, 116852. [Google Scholar] [CrossRef]
- Maqsood, H.; Nadeem, H.; Siddique, M.H.; Rasul, F.; Nasir, S.; Rasul, I. Biosensors for plant pathogen detection. In Applications of Biosensors in Healthcare; Academic Press: Cambridge, MA, USA, 2025; pp. 689–710. [Google Scholar]
- Dwight, S.J.; Gaylord, B.S.; Hong, J.W.; Bazan, G.C. Perturbation of fluorescence by nonspecific interactions between anionic poly (phenylenevinylene) s and proteins: Implications for biosensors. J. Am. Chem. Soc. 2004, 126, 16850–16859. [Google Scholar] [CrossRef]
- Cernini, R.; Li, X.C.; Spencer, G.W.C.; Holmes, A.B.; Moratti, S.C.; Friend, R.H. Electrochemical and optical studies of PPV derivatives and poly(aromatic oxadiazoles). Synth. Met. 1997, 84, 359–360. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Yuan, C.; Chen, S.; Zhang, P.; Zhang, T.; Yao, J.; Chen, F.; Chen, G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. Part A: Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2004, 68, 411–422. [Google Scholar] [CrossRef]
- Xu, H.; Holzwarth, J.M.; Yan, Y.; Xu, P.; Zheng, H.; Yin, Y.; Li, S.; Ma, P.X. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 2014, 35, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Milani, G.M.; Coutinho, I.T.; Ambrosio, F.N.; Monteiro do Nascimento, M.H.; Lombello, C.B.; Venancio, E.C.; Champeau, M. Poly(acrylic acid)/polypyrrole interpenetrated network as electro-responsive hydrogel for biomedical applications. J. Appl. Polym. Sci. 2022, 139, 52091. [Google Scholar] [CrossRef]
- Song, X.; Mei, J.; Ye, G.; Wang, L.; Ananth, A.; Yu, L.; Qiu, X. In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Appl. Mater. Today 2019, 15, 87–99. [Google Scholar] [CrossRef]
- Pernaut, J.M.; Reynolds, J.R. Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B 2000, 104, 4080–4090. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review. J. Med. Chem. 2019, 63, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ma, M.; Zhang, N.; Langer, R.; Anderson, D.G. Instrumented brain organoids for brain-machine interface. Adv. Mater. 2021, 33, 2002273. [Google Scholar]
- Mousavi, S.M.; Hashemi, S.A.; Bahrani, S.; Yousefi, K.; Behbudi, G.; Babapoor, A.; Omidifar, N.; Lai, C.W.; Gholami, A.; Chiang, W.H. Recent advancements in polythiophene-based materials and their biomedical, geno sensor and DNA detection. Int. J. Mol. Sci. 2021, 22, 6850. [Google Scholar] [CrossRef] [PubMed]
- Widge, A.S.; Jeffries-El, M.; Cui, X.; Lagenaur, C.F.; Matsuoka, Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens. Bioelectron. 2007, 22, 1723–1732. [Google Scholar] [CrossRef]
- Runfang, Hao; et al. P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G. J. Biotechnol. 2022, 359, 75–81. [CrossRef]
- Gao, D.; Lv, J.; Lee, P.S. Natural polymer in soft electronics: Opportunities, challenges, and future prospects. Adv. Mater. 2022, 34, 2105020. [Google Scholar] [CrossRef]
- Saleh, A.K.; El-Sayed, M.H.; El-Sakhawy, M.A.; Alshareef, S.A.; Omer, N.; Abdelaziz, M.A.; Jame, R.; Zheng, H.; Gao, M.; Du, H. Cellulose-based Conductive Materials for Bioelectronics. ChemSusChem 2025, 18, e202401762. [Google Scholar] [CrossRef]
- Wang, C.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146. [Google Scholar] [CrossRef]
- Qiu, J.; Lu, Y.; Qian, X.; Yao, J.; Han, C.; Wu, Z.; Ye, H.; Shan, G.; Zheng, Q.; Xu, K.; et al. Highly conductive polymer with vertical phase separation for enhanced bioelectronic interfaces. npj Flex. Electron. 2025, 9, 69. [Google Scholar] [CrossRef]
- Sun, B.; Wan Muhamad Hatta, S.F.; Soin, N.; Kadir, M.F.Z.B.A.; Md Rezali, F.A.; Aidit, S.N.; Ma, Q. Development of Screen-Printed Biodegradable Flexible Organic Electrochemical Transistors Enabled by Poly(3,4-ethylenedioxythiophene)Polystyrene Sulfonate and a Solid-State Chitosan Polymer Electrolyte. ACS Appl. Electron. Mater. 2024, 6, 2336–2348. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Shigemasa, Y.; Minami, S. Applications of chitin and chitosan for biomaterials. Biotechnol. Genet. Eng. Rev. 1996, 13, 383–420. [Google Scholar] [CrossRef]
- Li, S.K.; Chou, J.C.; Sun, T.P.; Hsiung, S.K.; Shieh, H.L. Study on potentiometric glucose biosensor based on separative extended gate field effect transistor. Sens. Lett. 2011, 9, 143–146. [Google Scholar] [CrossRef]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-based biomaterials for tissue engineering applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef]
- Pham, T.T.A.; Kim, H.; Lee, Y.; Kang, H.W.; Park, S. Deep learning for analysis of collagen fiber organization in scar tissue. IEEE Access 2021, 9, 101755–101764. [Google Scholar] [CrossRef]
- Patil, A.C.; Xiong, Z.; Thakor, N.V. Toward nontransient silk bioelectronics: Engineering silk fibroin for bionic links. Small Methods 2020, 4, 2000274. [Google Scholar] [CrossRef]
- Jo, Y.J.; Kwon, K.Y.; Khan, Z.U.; Crispin, X.; Kim, T.I. Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl. Mater. Interfaces 2018, 10, 39083–39090. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, T.; Han, L.; Zhu, M.; Cheng, Z.; Li, D.; Ren, F.; Wang, K.; Lu, X. Conductive cellulose bio-nanosheets assembled biostable hydrogel for reliable bioelectronics. Adv. Funct. Mater. 2021, 31, 2010465. [Google Scholar] [CrossRef]
- Kim, S.; Choi, H.; Son, D.; Shin, M. Conductive and adhesive granular alginate hydrogels for on-tissue writable bioelectronics. Gels 2023, 9, 167. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, Q.; Yi, J.; Xu, Y.; Fan, C.; Lin, C.; Wu, J.; Lin, Y. Using wool keratin as a structural biomaterial and natural mediator to fabricate biocompatible and robust bioelectronic platforms. Adv. Sci. 2023, 10, 2207400. [Google Scholar] [CrossRef]
- Korri-Youssoufi, H.; Garnier, F.; Srivastava, P.; Godillot, P.; Yassar, A. Toward bioelectronics: Specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chem. Soc. 1997, 119, 7388–7389. [Google Scholar] [CrossRef]
- Kostarelos, K.; Vincent, M.; Hebert, C.; Garrido, J.A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 2017, 29, 1700909. [Google Scholar] [CrossRef]
- Ryu, S.; Kim, B.S. Culture of neural cells and stem cells on graphene. Tissue Eng. Regen. Med. 2013, 10, 39–46. [Google Scholar] [CrossRef]
- Alwarappan, S.; Liu, C.; Kumar, A.; Li, C.Z. Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J. Phys. Chem. C 2010, 114, 12920–12924. [Google Scholar] [CrossRef]
- Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 2010, 55, 8606–8614. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Sensi, M.; Migatti, G.; Beni, V.; D’Alvise, T.M.; Weil, T.; Berto, M.; Greco, P.; Imbriano, C.; Biscarini, F.; Bortolotti, C.A. Monitoring DNA hybridization with organic electrochemical transistors functionalized with polydopamine. Macromol. Mater. Eng. 2022, 307, 2100880. [Google Scholar] [CrossRef]
- Li, Y.; Mao, Y.; Xiao, C.; Xu, X.; Li, X. Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 2020, 10, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chani, M.T.S.; Karimov, K.S.; Khalid, F.A.; Moiz, S.A. Polyaniline based impedance humidity sensors. Solid State Sci. 2013, 18, 78–82. [Google Scholar] [CrossRef]
- Mariani, F.; Gualandi, I.; Tessarolo, M.; Fraboni, B.; Scavetta, E. PEDOT: Dye-based, flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Appl. Mater. Interfaces 2018, 10, 22474–22484. [Google Scholar] [CrossRef] [PubMed]
- Possanzini, L.; Decataldo, F.; Mariani, F.; Gualandi, I.; Tessarolo, M.; Scavetta, E.; Fraboni, B. Textile sensors platform for the selective and simultaneous detection of chloride ion and pH in sweat. Sci. Rep. 2020, 10, 17180. [Google Scholar] [CrossRef] [PubMed]
- Montero-Jimenez, M.; Recky, J.R.N.; von Bilderling, C.; Scotto, J.; Azzaroni, O.; Marmisollé, W.A. PEDOT: Tosylate-polyamine-based enzymatic organic electrochemical transistors for high-performance glucose biosensing in human urine samples. J. Electroanal. Chem. 2025, 978, 118867. [Google Scholar] [CrossRef]
- Pecqueur, S.; Guérin, D.; Vuillaume, D.; Alibart, F. Cation discrimination in organic electrochemical transistors by dual frequency sensing. Org. Electron. 2018, 57, 232–238. [Google Scholar] [CrossRef]
- Demuru, S.; Kunnel, B.P.; Briand, D. Real-time multi-ion detection in the sweat concentration range enabled by flexible, printed, and microfluidics-integrated organic transistor arrays. Adv. Mater. Technol. 2020, 5, 2000328. [Google Scholar] [CrossRef]
- Keene, S.T.; van der Pol, T.P.; Zakhidov, D.; Weijtens, C.H.; Janssen, R.A.; Salleo, A.; van de Burgt, Y. Enhancement-mode PEDOT: PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 2020, 32, 2000270. [Google Scholar] [CrossRef]
- Bukhari, S.A.B.; Aziz, A.; Nasir, H.; Ullah, S.; Akhtar, T.; Iram, S.; Sitara, E.; Mushtaq, S.; Moiz, S.A. Manganese tetraphenylporphyrin and carbon nanocoil interface-based electrochemical sensing of tyrosine. RSC Adv. 2024, 14, 24105–24114. [Google Scholar] [CrossRef]
- Piro, B.; Mattana, G.; Zrig, S.; Anquetin, G.; Battaglini, N.; Capitao, D.; Maurin, A.; Reisberg, S. Fabrication and use of organic electrochemical transistors for sensing of metabolites in aqueous media. Appl. Sci. 2018, 8, 928. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, N.; Yang, A.; Xu, Z.; Zhang, W.; Liu, H.; Law, H.K.-w.; Yan, F. Ultrasensitive detection of ribonucleic acid biomarkers using portable sensing platforms based on organic electrochemical transistors. Anal. Chem. 2021, 93, 14359–14364. [Google Scholar] [CrossRef]
- Mello, H.J.N.P.D.; Faleiros, M.C.; Mulato, M. Electrochemically activated polyaniline based ambipolar organic electrochemical transistor. Electrochem. Sci. Adv. 2022, 2, e2100176. [Google Scholar] [CrossRef]
- Qing, X.; Xiao, Q.; Wang, D.; Yang, G.; Chen, B.; Zhang, C.; Li, M.; Liu, D.; Lei, W. MXene-enabled organic synaptic fiber for ultralow-power and biochemical-mediated neuromorphic transistor. Biosens. Bioelectron. 2025, 281, 117443. [Google Scholar] [CrossRef]
- Zaryanov, N.V.; Nikitina, V.N.; Karpova, E.V.; Karyakina, E.E.; Karyakin, A.A. Nonenzymatic sensor for lactate detection in human sweat. Anal. Chem. 2017, 89, 11198–11202. [Google Scholar] [CrossRef]
- Kailasa, S.; Reddy, R.K.K.; Reddy, M.S.B.; Rani, B.G.; Maseed, H.; Sathyavathi, R.; Rao, K.V. High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J. Mater. Sci.: Mater. Electron. 2020, 31, 2926. [Google Scholar] [CrossRef]
- Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B. Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Sci. Rep. 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, eaar2904. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Chen, J.H.; Jing, M.J.; Hu, J.; Xu, Q.; Wang, C.S.; Zhou, H.; Lin, P.; Chen, G.; Zhao, W.W. Functional metal–organic frameworks for maximizing transconductance of organic photoelectrochemical transistor at zero gate bias and biological interfacing application. Adv. Funct. Mater. 2023, 33, 2300580. [Google Scholar] [CrossRef]
- Qi, K.; He, J.; Wang, H.; Zhou, Y.; You, X.; Nan, N.; Shao, W.; Wang, L.; Ding, B.; Cui, S. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42951–42960. [Google Scholar] [CrossRef]
- Han, L.; Xu, J.; Wang, S.; Yuan, N.; Ding, J. Multiresponsive actuators based on modified electrospun films. RSC Adv. 2018, 8, 10302–10309. [Google Scholar] [CrossRef]
- Weng, B.; Morrin, A.; Shepherd, R.; Crowley, K.; Killard, A.J.; Innis, P.C.; Wallace, G.G. Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. J. Mater. Chem. B 2014, 2, 793–799. [Google Scholar] [CrossRef]
- D’Amico, L.G.; Zhang, C.; Decataldo, F.; Vurro, V.; Tessarolo, M.; Gualandi, I.; Mariani, F.; Scavetta, E.; Cramer, T.; Fraboni, B. Fully Passive Electrochemical Oxygen Sensor Enabled With Organic Electrochemical Transistor. Adv. Mater. Technol. 2025, 10, 2401875. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef]
- Park, I.S.; Park, D.H.; Kim, J.M. Development of Polydiacetylene-Polydimethylsiloxane Based Chloroform Sensor. Polym. -KOREA 2016, 40, 769–773. [Google Scholar] [CrossRef]
- Agar, M.; Laabei, M.; Leese, H.S.; Estrela, P. Aptamer-molecularly imprinted polymer sensors for the detection of bacteria in water. Biosens. Bioelectron. 2025, 272, 117136. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. CNT and graphene-based transistor biosensors for cancer detection: A review. Biomolecules 2023, 13, 1024. [Google Scholar] [CrossRef]
- Mehrehjedy, A.; Eaton, J.; Tang, K.; Upreti, S.; Sanders, A.; LaRoux, V.; Gu, X.; He, X.; Guo, S. Selective and Sensitive OECT Sensors with Doped MIP-Modified GCE/MWCNT Gate Electrodes for Real-Time Detection of Serotonin. ACS Omega 2025, 10, 4154–4162. [Google Scholar] [CrossRef]
- Ji, J.; Xiao, J.; Zhang, F.; Wang, Z.; Zhou, T.; Niu, X.; Zhang, W.; Sang, S.; Chai, X.; Yan, S. A wearable enzyme sensor enabled by the floating-gate OECT with poly (benzimidazobenzophenanthroline) as the catalytic layer. J. Nanobiotechnol. 2025, 23, 120. [Google Scholar] [CrossRef]
- Zhu, Z.T.; Mason, J.T.; Dieckmann, R.; Malliaras, G.G. Humidity sensors based on pentacene thin-film transistors. Appl. Phys. Lett. 2002, 81, 4643. [Google Scholar] [CrossRef]
- Ji, T.; Rai, P.; Jung, S.; Varadan, V.K. In vitro evaluation of flexible pH and potassium ion-sensitive organic field effect transistor sensors. Appl. Phys. Lett. 2008, 92, 233304. [Google Scholar] [CrossRef]
- Scarpa, G.; Idzko, A.L.; Yadav, A.; Thalhammer, S. Organic ISFET based on poly(3-hexylthiophene). Sensors 2010, 10, 2262–2273. [Google Scholar] [CrossRef]
- Maddalena, F.; Kuiper, M.J.; Poolman, B.; Brouwer, F.; Hummelen, J.C.; de Leeuw, D.M.; Boer, B.D.; Blom, P.W. Organic field-effect transistor-based biosensors functionalized with protein receptors. J. Appl. Phys. 2010, 108, 124501. [Google Scholar] [CrossRef]
- Karimov, K.; Ahmed, M.M.; Noshin, F.; Saleem, M.; Mahroof-Tahir, M.; Moiz, S.A.; Akhmedov, K.M.; Zahid, M.; Abbas, S.Z.; Rashid, A. Nickel phthalocyanine based organic photo transistor: Effect of semiconductor film thickness. Eur. Phys. J. Appl. Phys. 2015, 72, 20202. [Google Scholar] [CrossRef]
- Karimov, K.S.; Sayyad, M.H.; Ali, M.; Khan, M.N.; Moiz, S.A.; Khan, K.B.; Farah, H.; Karieva, Z.M. Electrochemical properties of Zn/orange dye aqueous solution/carbon cell. J. Power Sources 2006, 155, 475–477. [Google Scholar] [CrossRef]
- Sayyad, M.H.; Karimov, K.S.; Ellahi, A.; Moiz, S.A.; Karieva, Z.M.; Turaeva, M.A.; Zakaullah, K. The photo-electrical behavior of n-Si and p-Si/orange dye/conductive glass cells. Eurasian Chem. -Technol. J. 2005, 7, 133–137. [Google Scholar] [CrossRef]
- Moiz, S.A.; Karimov, K.S.; Gohar, N.D. Orange dye thin film resistive hygrometers. Eurasian Chem. -Technol. J. 2004, 6, 179–183. [Google Scholar] [CrossRef]
- Spijkman, M.J.; Brondijk, J.J.; Geuns, T.C.; Smits, E.C.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarin, F.; Blom, P.W.M.; de Leeuw, D.M. Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Adv. Funct. Mater. 2010, 20, 898–905. [Google Scholar] [CrossRef]
- Roberts, M.E.; Mannsfeld, S.C.; Queraltó, N.; Reese, C.; Locklin, J.; Knoll, W.; Bao, Z. Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. USA 2008, 105, 12134–12139. [Google Scholar] [CrossRef]
- Roberts, M.E.; Mannsfeld, S.C.; Tang, M.L.; Bao, Z. Influence of molecular structure and film properties on the water-stability and sensor characteristics of organic transistors. Chem. Mater. 2008, 20, 7332–7338. [Google Scholar] [CrossRef]
- Someya, T.; Dodabalapur, A.; Gelperin, A.; Katz, H.E.; Bao, Z. Integration and response of organic electronics with aqueous microfluidics. Langmuir 2002, 18, 5299–5302. [Google Scholar] [CrossRef]
- Torsi, L.; Dodabalapur, A. Organic thin-film transistors as plastic analytical sensors. Anal. Chem. 2005, 77, 380–387. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Xie, G.; Tai, H.; Sun, P.; Zhang, B. Copper phthalocyanine thin film transistors for hydrogen sulfide detection. Sens. Actuators B: Chem. 2013, 176, 1191–1196. [Google Scholar] [CrossRef]
- Rastogi, S.K.; Kalmykov, A.; Johnson, N.; Cohen-Karni, T. Bioelectronics with nanocarbons. J. Mater. Chem. B 2018, 6, 7159–7178. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.; Nam, S.; Kim, D.H.; Cha, G.D. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering. Acc. Chem. Res. 2024, 57, 1633–1647. [Google Scholar] [CrossRef]
- Li, J.; Che, Z.; Wan, X.; Manshaii, F.; Xu, J.; Chen, J. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials 2023, 304, 122421. [Google Scholar] [CrossRef]
- Lee, S.H.; Jin, H.J.; Song, H.S.; Hong, S.; Park, T.H. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J. Biotechnol. 2012, 157, 467–472. [Google Scholar] [CrossRef]
- Mariello, M.; von Allmen, M.; Wu, K.; Van Gompel, M.; Lacour, S.P.; Leterrier, Y. Hermetic, Hybrid Multilayer, Sub-5µm-Thick Encapsulations Prepared with Vapor-Phase Infiltration of Metal Oxides in Conformal Polymers for Flexible Bioelectronics. Adv. Funct. Mater. 2024, 34, 2403973. [Google Scholar] [CrossRef]
- White, H.S.; Kittlesen, G.P.; Wrighton, M.S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377. [Google Scholar] [CrossRef]
- Fan, J.; Rezaie, S.S.; Facchini-Rakovich, M.; Gudi, D.; Montemagno, C.; Gupta, M. Tuning PEDOT:PSS conductivity to obtain complementary organic electrochemical transistor. Org. Electron. 2019, 66, 148–155. [Google Scholar] [CrossRef]
- Gualandi, I.; Tonelli, D.; Mariani, F.; Scavetta, E.; Marzocchi, M.; Fraboni, B. Selective detection of dopamine with an all PEDOT: PSS organic electrochemical transistor. Sci. Rep. 2016, 6, 35419. [Google Scholar] [CrossRef]
- Lin, P.; Yan, F.; Chan, H.L. Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2010, 2, 1637–1641. [Google Scholar] [CrossRef]
- Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 2005, 17, 2411–2425. [Google Scholar] [CrossRef]
- Friedlein, J.T.; McLeod, R.R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414. [Google Scholar] [CrossRef]
- Marks, A.; Griggs, S.; Gasparini, N.; Moser, M. Organic electrochemical transistors: An emerging technology for biosensing. Adv. Mater. Interfaces 2022, 9, 2102039. [Google Scholar] [CrossRef]
- Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras, D.A.; Khodagholy, D.; Ramuz, M.; Strakosas, X.; Owens, R.M.; et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 2015, 1, e1400251. [Google Scholar] [CrossRef]
- Ghittorelli, M.; Lingstedt, L.; Romele, P.; Crăciun, N.I.; Kovács-Vajna, Z.M.; Blom, P.W.; Torricelli, F. High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat. Commun. 2018, 9, 1441. [Google Scholar] [CrossRef]
- Xie, K.; Wang, N.; Lin, X.; Wang, Z.; Zhao, X.; Fang, P.; Yue, H.; Kim, J.; Luo, J.; Cui, S.; et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. Elife 2020, 9, e50345. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Turner, C.; Case, L.; Mehrehjedy, A.; He, X.; Miao, W.; Guo, S. Organic electrochemical transistor with molecularly imprinted polymer-modified gate for the real-time selective detection of dopamine. ACS Appl. Polym. Mater. 2022, 4, 2337–2345. [Google Scholar] [CrossRef]
- Pappa, A.M.; Ohayon, D.; Giovannitti, A.; Maria, I.P.; Savva, A.; Uguz, I.; Rivnay, J.; McCulloch, I.; Owens, R.M.; Inal, S. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 2018, 4, eaat0911. [Google Scholar] [CrossRef]
- Yang, A.; Li, Y.; Yang, C.; Fu, Y.; Wang, N.; Li, L.; Yan, F. Fabric Organic Electrochemical Transistors for Biosensors. Adv. Mater. 2018, 30, 1800051. [Google Scholar] [CrossRef]
- Scheiblin, G.; Aliane, A.; Coppard, R.; Owens, R.M.; Mailley, P.; Malliaras, G.G. Fully printed metabolite sensor using organic electrochemical transistor. In Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII; SPIE: Bellingham, WA, USA, 2015; Volume 9568, pp. 79–84. [Google Scholar]
- Keene, S.T.; Gatecliff, L.W.; Bidinger, S.L.; Moser, M.; McCulloch, I.; Malliaras, G.G. Stable operating windows for polythiophene organic electrochemical transistors. MRS Commun. 2024, 14, 158–166. [Google Scholar] [CrossRef]
- Ding, B.; Le, V.; Yu, H.; Wu, G.; Marsh, A.V.; Gutiérrez-Fernández, E.; Ramos, N.; Rimmele, M.; Martín, J.; Nelson, J.; et al. Development of Synthetically Accessible Glycolated Polythiophenes for High-Performance Organic Electrochemical Transistors. Adv. Electron. Mater. 2024, 10, 2300580. [Google Scholar] [CrossRef]
- Jia, H.; Huang, Z.; Li, P.; Zhang, S.; Wang, Y.; Wang, J.Y.; Gu, X.; Lei, T. Engineering donor–acceptor conjugated polymers for high-performance and fast-response organic electrochemical transistors. J. Mater. Chem. C 2021, 9, 4927–4934. [Google Scholar] [CrossRef]
- Wu, H.Y.; Yang, C.Y.; Li, Q.; Kolhe, N.B.; Strakosas, X.; Stoeckel, M.A.; Wu, Z.; Jin, W.; Savvakis, M.; Kroon, R.; et al. Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers. Adv. Mater. 2022, 34, 2106235. [Google Scholar] [CrossRef]
- Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L.H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R.M.; et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133. [Google Scholar] [CrossRef] [PubMed]
- Rivnay, J.; Leleux, P.; Sessolo, M.; Khodagholy, D.; Hervé, T.; Fiocchi, M.; Malliaras, G.G. Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 2013, 25, 7010–7014. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, D.; Savva, A.; Du, W.; Paulsen, B.D.; Uguz, I.; Ashraf, R.S.; Rivnay, J.; McCulloch, I.; Inal, S. Influence of side chains on the n-type organic electrochemical transistor performance. ACS Appl. Mater. Interfaces 2021, 13, 4253–4266. [Google Scholar] [CrossRef]
- Inal, S.; Rivnay, J.; Hofmann, A.I.; Uguz, I.; Mumtaz, M.; Katsigiannopoulos, D.; Brochon, C.; Cloutet, E.; Hadziioannou, G.; Malliaras, G.G. Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 147–151. [Google Scholar] [CrossRef]
- Moser, M.; Savva, A.; Thorley, K.; Paulsen, B.D.; Hidalgo, T.C.; Ohayon, D.; Chen, H.; Giovannitti, A.; Marks, A.; Gasparini, N.; et al. Polaron delocalization in donor–acceptor polymers and its impact on organic electrochemical transistor performance. Angew. Chem. Int. Ed. 2021, 60, 7777–7785. [Google Scholar] [CrossRef] [PubMed]
- Surgailis, J.; Savva, A.; Druet, V.; Paulsen, B.D.; Wu, R.; Hamidi-Sakr, A.; Ohayon, D.; Nikiforidis, G.; Chen, X.; McCulloch, I.; et al. Mixed conduction in an n-type organic semiconductor in the absence of hydrophilic side-chains. Adv. Funct. Mater. 2021, 31, 2010165. [Google Scholar] [CrossRef]
- Samuel, J.J.; Garudapalli, A.; Mohapatra, A.A.; Gangadharappa, C.; Patil, S.; Aetukuri, N.P.B. Single-component CMOS-like logic using diketopyrrolopyrrole-based ambipolar organic electrochemical transistors. Adv. Funct. Mater. 2021, 31, 2102903. [Google Scholar] [CrossRef]
- Maria, I.P.; Paulsen, B.D.; Savva, A.; Ohayon, D.; Wu, R.; Hallani, R.; Basu, A.; Du, W.; Anthopoulos, T.D.; Inal, S.; et al. The effect of alkyl spacers on the mixed ionic-electronic conduction properties of n-type polymers. Adv. Funct. Mater. 2021, 31, 2008718. [Google Scholar] [CrossRef]
- Sun, H.; Vagin, M.; Wang, S.; Crispin, X.; Forchheimer, R.; Berggren, M.; Fabiano, S. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 2018, 30, 1704916. [Google Scholar] [CrossRef]
- Tu, D.; Fabiano, S. Mixed ion-electron transport in organic electrochemical transistors. Appl. Phys. Lett. 2020, 117, 080501. [Google Scholar] [CrossRef]
- Giovannitti, A.; Maria, I.P.; Hanifi, D.; Donahue, M.J.; Bryant, D.; Barth, K.J.; Makdah, B.E.; Savva, A.; Moia, D.; Zetek, M.; et al. The role of the side chain on the performance of n-type conjugated polymers in aqueous electrolytes. Chem. Mater. 2018, 30, 2945–2953. [Google Scholar] [CrossRef]
- Alexander, G.; Nielsen, C.B.; Sbircea, D.-T.; Inal, S.; Donahue, M.; Niazi, M.R.; Hanifi, D.A.; Amassian, A.; Malliaras, G.G.; Rivnay, J.; et al. N-type organic electrochemical transistors with stability in water. Nat. Commun. 2016, 7, 13066. [Google Scholar]
- Paterson, A.F.; Savva, A.; Wustoni, S.; Tsetseris, L.; Paulsen, B.D.; Faber, H.; Emwas, A.H.; Chen, X.; Nikiforidis, G.; Hidalgo, T.C.; et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 2020, 11, 3004. [Google Scholar] [CrossRef]
- Paterson, A.F.; Faber, H.; Savva, A.; Nikiforidis, G.; Gedda, M.; Hidalgo, T.C.; Inal, S. On the role of contact resistance and electrode modification in organic electrochemical transistors. Adv. Mater. 2019, 31, 1902291. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Feng, G.; Song, Y.; Cheng, S.; Lei, S.; Hu, W. Single molecule level and label-free determination of multibiomarkers with an organic field-effect transistor platform in early cancer diagnosis. Anal. Chem. 2022, 94, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Kawan, M.; Hidalgo, T.C.; Du, W.; Pappa, A.M.; Owens, R.M. Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Mater. Horiz. 2020, 7, 2348. [Google Scholar] [CrossRef]
- Pu, Z.; Tu, J.; Han, R.; Zhang, X.; Wu, J.; Fang, C.; Wu, H.; Zhang, X.; Yu, H.; Li, D. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab A Chip 2018, 18, 3570–3577. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Srivastava, S.; Narayanan, T.N.; Mahlotra, B.D.; Vajtai, R.; Ajayan, P.M.; Srivastava, A. Functionalized multilayered graphene platform for urea sensor. ACS Nano 2012, 6, 168–175. [Google Scholar] [CrossRef]
- Seshadri, P.; Manoli, K.; Schneiderhan-Marra, N.; Anthes, U.; Wierzchowiec, P.; Bonrad, K.; Franco, C.D.; Torsi, L. Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosens. Bioelectron. 2018, 104, 113–119. [Google Scholar] [CrossRef]
- Tao, W.; Lin, P.; Hu, J.; Ke, S.; Song, J.; Zeng, X. A sensitive DNA sensor based on an organic electrochemical transistor using a peptide nucleic acid-modified nanoporous gold gate electrode. RSC Adv. 2017, 7, 52118–52124. [Google Scholar] [CrossRef]
- McCuskey, S.R.; Chatsirisupachai, J.; Zeglio, E.; Parlak, O.; Panoy, P.; Herland, A.; Bazan, G.C.; Nguyen, T.Q. Current progress of interfacing organic semiconducting materials with bacteria. Chem. Rev. 2021, 122, 4791–4825. [Google Scholar] [CrossRef]
- Li, Y.C.E.; Lee, I.C. The current trends of biosensors in tissue engineering. Biosensors 2020, 10, 88. [Google Scholar] [CrossRef]
- Saraf, N.; Woods, E.R.; Peppler, M.; Seal, S. Highly selective aptamer based organic electrochemical biosensor with pico-level detection. Biosens. Bioelectron. 2018, 117, 40–46. [Google Scholar] [CrossRef]
- Kannan, P.; Jogdeo, P.; Mohidin, A.F.; Yung, P.Y.; Santoro, C.; Seviour, T.; Hinks, J.; Lauro, F.M.; Marsili, E. A novel microbial-Bioelectrochemical sensor for the detection of n-cyclohexyl-2-pyrrolidone in wastewater. Electrochim. Acta 2019, 317, 604–611. [Google Scholar] [CrossRef]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, H.R.; Park, C.H.; Han, S.G.; Oh, J.H. Organic transistor-based chemical sensors for wearable bioelectronics. Acc. Chem. Res. 2018, 51, 2829–2838. [Google Scholar] [CrossRef]
- Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef]
- Veronica, A.; Hsing, I.M. An insight into tunable innate piezoelectricity of silk for green bioelectronics. ChemPhysChem 2021, 22, 2266–2280. [Google Scholar]
- Kozai, T.D.; Vazquez, A.L. Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New challenges and opportunities. J. Mater. Chem. B 2015, 3, 4965–4978. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Yokota, T.; Suzuki, T.; Lee, S.; Woo, T.; Yukita, W.; Koizumi, M.; Tachibana, Y.; Yawo, H.; Onodera, H.; et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 2020, 117, 21138–21146. [Google Scholar] [CrossRef] [PubMed]
- Murawski, C.; Gather, M.C. Emerging biomedical applications of organic light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2100269. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Jun, Y.S.; Park, Y.G.; Jang, J.; Park, J.U. Recent advances in electronic devices for monitoring and modulation of brain. Nano Res. 2021, 14, 3070–3095. [Google Scholar] [CrossRef]
- Steude, A.; Jahnel, M.; Thomschke, M.; Schober, M.; Gather, M.C. Controlling the behavior of single live cells with high density arrays of microscopic OLEDs. Adv. Mater. 2015, 27, 7657–7661. [Google Scholar] [CrossRef]
- Smith 2015, J.T.; O’Brien, B.; Lee, Y.K.; Bawolek, E.J.; Christen, J.B. Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity. J. Disp. Technol. 2014, 10, 514–520. [Google Scholar] [CrossRef]
- Castagna, R.; Kolarski, D.; Durand-de Cuttoli, R.; Maleeva, G. Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology. J. Mol. Neurosci. 2022, 72, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Güller, U.; Önalan, Ş.; Arabacı, M.; Karataş, B.; Yaşar, M.; Küfrevioğlu, Ö.İ. Effects of different LED light spectra on rainbow trout (Oncorhynchus mykiss): In vivo evaluation of the antioxidant status. Fish Physiol. Biochem. 2020, 46, 2169–2180. [Google Scholar] [CrossRef]
- Mo, S.; Kim, E.Y.; Ahn, J.C. Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength. Curr. Opt. Photonics 2022, 6, 227–235. [Google Scholar]
- Lee, Y.; Chung, J.W.; Lee, G.H.; Kang, H.; Kim, J.Y.; Bae, C.; Yoo, H.; Jeong, S.; Cho, H.; Kang, S.G.; et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 2021, 7, eabg9180. [Google Scholar] [CrossRef]
- Karatum, O.; Gwak, M.J.; Hyun, J.; Onal, A.; Koirala, G.R.; Kim, T.I.; Nizamoglu, S. Optical neuromodulation at all scales: From nanomaterials to wireless optoelectronics and integrated systems. Chem. Soc. Rev. 2023, 52, 3326–3352. [Google Scholar] [CrossRef]
- Wang, F.; Jin, Z.; Zheng, S.; Li, H.; Cho, S.; Kim, H.J.; Kim, S.J.; Choi, E.; Park, J.O.; Park, S. High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens. Actuators B: Chem. 2017, 250, 402–411. [Google Scholar] [CrossRef]
- Irnich, W. Electronic security systems and active implantable medical devices. Pacing Clin. Electrophysiol. 2002, 25, 1235–1258. [Google Scholar] [CrossRef]
- Dang, B.V.; Hassanzadeh-Barforoushi, A.; Syed, M.S.; Yang, D.; Kim, S.J.; Taylor, R.A.; Liu, G.J.; Liu, G.; Barber, T. Microfluidic actuation via 3D-printed molds toward multiplex biosensing of cell apoptosis. ACS Sens. 2019, 4, 2181–2189. [Google Scholar] [CrossRef]
- Chen, D.; Pei, Q. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239–11268. [Google Scholar] [CrossRef]
- Stoyanov, H.; Kollosche, M.; Risse, S.; Waché, R.; Kofod, G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 2013, 25, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y.; et al. Neuromorphic Sensorimotor Loop Embodied by Monolithically Integrated, Low-Voltage, Soft e-Skin. Science 2023, 380, 735–742. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Chen, S.; Lei, T.; Kim, Y.; Niu, S.; Wang, H.; Wang, X.; Foudeh, A.M.; Tok, J.B.-H.; et al. Soft and Elastic Hydrogel-Based Microelectronics for Localized Low-Voltage Neuromodulation. Nat. Biomed. Eng. 2019, 3, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Shalla, A.H.; Bhat, M.A.; Yaseen, Z. Hydrogels for removal of recalcitrant organic dyes: A conceptual overview. J. Environ. Chem. Eng. 2018, 6, 5938–5949. [Google Scholar] [CrossRef]
- Corkhill, P.H.; Hamilton, C.J.; Tighe, B.J. Synthetic hydrogels VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 1989, 10, 3–10. [Google Scholar] [CrossRef]
- Jung, I.Y.; Kim, J.S.; Choi, B.R.; Lee, K.; Lee, H. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthc. Mater. 2017, 6, 1601475. [Google Scholar] [CrossRef]
- Yang, C.; Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125–142. [Google Scholar] [CrossRef]
- Syková, E.; Jendelová, P.; Urdzíková, L.; Lesný, P.; Hejčl, A. Bone marrow stem cells and polymer hydrogels—Two strategies for spinal cord injury repair. Cell. Mol. Neurobiol. 2006, 26, 1111–1127. [Google Scholar] [CrossRef] [PubMed]
- Overstreet, D.J.; Dutta, D.; Stabenfeldt, S.E.; Vernon, B.L. Injectable hydrogels. J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 881–903. [Google Scholar] [CrossRef]
- Sivashanmugam, A.; Kumar, R.A.; Priya, M.V.; Nair, S.V.; Jayakumar, R. An overview of injectable polymeric hydrogels for tissue engineering. Eur. Polym. J. 2015, 72, 543–565. [Google Scholar] [CrossRef]
- Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017, 5, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Gupta, K. A review: Tailor-made hydrogel structures (classifications and synthesis parameters). Polym. -Plast. Technol. Eng. 2016, 55, 54–70. [Google Scholar] [CrossRef]
- Moiz, S.A.; Jee, S.W.; Um, H.D.; Lee, J.H. Electrical characterization of metal–silicon microwire interface using conductive atomic force microscope. Jpn. J. Appl. Phys. 2010, 49, 045003. [Google Scholar] [CrossRef]
- Jee, S.W.; Kim, J.; Jung, J.Y.; Um, H.D.; Moiz, S.A.; Yoo, B.; Cho, H.K.; Park, Y.C.; Lee, J.H. Ni-catalyzed growth of silicon wire arrays for a Schottky diode. Appl. Phys. Lett. 2010, 97, 042103. [Google Scholar] [CrossRef]
- Um, H.D.; Jung, J.Y.; Seo, H.S.; Park, K.T.; Jee, S.W.; Moiz, S.A.; Lee, J.H. Silicon nanowire array solar cell prepared by metal-induced electroless etching with a novel processing technology. Jpn. J. Appl. Phys. 2010, 49, 04DN02. [Google Scholar] [CrossRef]
- Shi, J.; Sun, C.; Liang, E.; Tian, B. Semiconductor nanowire-based cellular and subcellular interfaces. Adv. Funct. Mater. 2022, 32, 2107997. [Google Scholar] [CrossRef]
- Min, S.Y.; Kim, T.S.; Lee, Y.; Cho, H.; Xu, W.; Lee, T.W. Organic nanowire fabrication and device applications. Small 2015, 11, 45–62. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kweon, O.Y.; Kim, H.; Yoo, J.H.; Han, S.G.; Oh, J.H. Recent advances in organic sensors for health self-monitoring systems. J. Mater. Chem. C 2018, 6, 8569–8612. [Google Scholar] [CrossRef]
- Uppalapati, D.; Boyd, B.J.; Garg, S.; Travas-Sejdic, J.; Svirskis, D. Conducting polymers with defined micro-or nanostructures for drug delivery. Biomaterials 2016, 111, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Henson, A.; Popat, K.C. Biodegradable poly(ε-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 2009, 30, 780–788. [Google Scholar] [CrossRef]
- Saji, V.S. Supramolecular organic nanotubes for drug delivery. Mater. Today Adv. 2022, 14, 100239. [Google Scholar] [CrossRef]
- Manoli, K.; Magliulo, M.; Mulla, M.Y.; Singh, M.; Sabbatini, L.; Palazzo, G.; Torsi, L. Printable bioelectronics to investigate functional biological interfaces. Angew. Chem. Int. Ed. 2015, 54, 12562–12576. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Karimov, K.S. Improved anode material for orange-dye as organic semiconductor. Optoelectron. Adv. Mater. Commun 2020, 14, 61–65. [Google Scholar]
- Han, M.; Srivastava, S.B.; Yildiz, E.; Melikov, R.; Surme, S.; Dogru-Yuksel, I.B.; Kavakli, I.H.; Sahin, A.; Nizamoglu, S. Organic photovoltaic pseudocapacitors for neurostimulation. ACS Appl. Mater. Interfaces 2020, 12, 42997–43008. [Google Scholar] [CrossRef]
- Karimov, K.S.; Saeed, M.T.; Khalid, F.A.; Moiz, S.A. Effect of displacement on resistance and capacitance of polyaniline film. Chin. Phys. B 2011, 20, 040601. [Google Scholar] [CrossRef]
- Aregueta-Robles, U.A.; Woolley, A.J.; Poole-Warren, L.A.; Lovell, N.H.; Green, R.A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 2014, 7, 15. [Google Scholar] [CrossRef]
- Jones, E.M.; Cochrane, C.A.; Percival, S.L. The effect of pH on the extracellular matrix and biofilms. Adv. Wound Care 2015, 4, 431–439. [Google Scholar] [CrossRef]
- Malferrari, M.; Becconi, M.; Rapino, S. Electrochemical monitoring of reactive oxygen/nitrogen species and redox balance in living cells. Anal. Bioanal. Chem. 2019, 411, 4365–4374. [Google Scholar] [CrossRef]
- Vasconcelos, D.M.; Santos, S.G.; Lamghari, M.; Barbosa, M.A. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016, 84, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.Y.; Clark, G.M.; Cowan, R.S.C. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Biomaterials 2004, 25, 3813–3828. [Google Scholar] [CrossRef]
- Peppas, N.A.; Buri, P.A. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release 1985, 2, 257–275. [Google Scholar] [CrossRef]
- Dave, B.C.; Dunn, B.; Valentine, J.S.; Zink, J.I. Sol-gel encapsulation methods for biosensors. Anal. Chem. 1994, 66, 1120A–1127A. [Google Scholar] [CrossRef]
- Nguyen, T.; Asefifeyzabadi, N.; Li, H.; Luo, L.; Rolandi, M. The importance of electrode material in bioelectronic electrophoretic ion pumps. Adv. Mater. Technol. 2023, 8, 2201996. [Google Scholar] [CrossRef]
- Chen, A.; Chen, D.; Lv, K.; Li, G.; Pan, J.; Ma, D.; Tang, J.; Zhang, H. Zwitterionic polymer/polydopamine coating of electrode arrays reduces fibrosis and residual hearing loss after cochlear implantation. Adv. Healthc. Mater. 2023, 12, 2200807. [Google Scholar] [CrossRef]
- Lu, Z.; Pavia, A.; Savva, A.; Kergoat, L.; Owens, R.M. Organic microelectrode arrays for bioelectronic applications. Mater. Sci. Eng. R Rep. 2023, 153, 100726. [Google Scholar] [CrossRef]
- Löffler, S.; Libberton, B.; Richter-Dahlfors, A. Organic bioelectronics in infection. J. Mater. Chem. B 2015, 3, 4979–4992. [Google Scholar] [CrossRef] [PubMed]
- Goding, J.A.; Gilmour, A.D.; Aregueta-Robles, U.A.; Hasan, E.A.; Green, R.A. Living Bioelectronics: Strategies for Developing an Effective Long-Term Implant with Functional Neural Connections. Adv. Funct. Mater. 2018, 28, 1702969. [Google Scholar] [CrossRef]
- Cuttaz, E.A.; Bailey, Z.K.; Chapman, C.A.; Goding, J.A.; Green, R.A. Polymer Bioelectronics: A Solution for Both Stimulating and Recording Electrodes. Adv. Healthc. Mater. 2024, 13, 2304447. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, Y.; Liu, Y.; Ji, K.; Li, K.; Wang, J.; Gu, Z. Biomimetic design strategies for biomedical applications. Matter 2024, 7, 826–854. [Google Scholar] [CrossRef]
- Birmingham, K.; Gradinaru, V.; Anikeeva, P.; Grill, W.M.; Pikov, V.; McLaughlin, B.; Pasricha, P.; Weber, D.; Ludwig, K.; Famm, K. Bioelectronic medicines: A research roadmap. Nat. Rev. Drug Discov. 2014, 13, 399–400. [Google Scholar] [CrossRef]
- Zhang, L.; Kumar, K.S.; He, H.; Cai, C.J.; He, X.; Gao, H.; Yue, S.; Li, C.; Seet, R.C.S.; Ren, H.; et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683. [Google Scholar] [CrossRef]
- Simon, D.T.; Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Organic bioelectronics: Bridging the signaling gap between biology and technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Z.; Li, P.; Tian, B. Materials and device strategies to enhance spatiotemporal resolution in bioelectronics. Nat. Rev. Mater. 2025, 10, 425–448. [Google Scholar] [CrossRef]
- Gkoupidenis, P.; Zhang, Y.; Kleemann, H.; Ling, H.; Santoro, F.; Fabiano, S.; Salleo, A.; van de Burgt, Y. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 2024, 9, 134–149. [Google Scholar] [CrossRef]
- Yin, J.; Wang, S.; Xiao, X.; Manshaii, F.; Scott, K.; Chen, J. Leveraging biomimetic materials for bioelectronics. Matter 2025, 8, 101961. [Google Scholar] [CrossRef]
- Fidanovski, K.; Mawad, D. Conjugated polymers in bioelectronics: Addressing the interface challenge. Adv. Healthc. Mater. 2019, 8, 1900053. [Google Scholar] [CrossRef] [PubMed]
- Krauhausen, I.; Coen, C.T.; Spolaor, S.; Gkoupidenis, P.; van de Burgt, Y. Brain-Inspired Organic Electronics: Merging Neuromorphic Computing and Bioelectronics Using Conductive Polymers. Adv. Funct. Mater. 2024, 34, 2307729. [Google Scholar] [CrossRef]
- Chen, D.; Wang, G.; Li, J. Interfacial bioelectrochemistry: Fabrication, properties and applications of functional nanostructured biointerfaces. J. Phys. Chem. C 2007, 111, 2351–2367. [Google Scholar] [CrossRef]
- Svennersten, K.; Larsson, K.C.; Berggren, M.; Richter-Dahlfors, A. Organic bioelectronics in nanomedicine. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2011, 1810, 276–285. [Google Scholar] [CrossRef]
- del Valle, M. Electronic tongues employing electrochemical sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef]
- Steiner, D.; Meyer, A.; Immohr, L.I.; Pein-Hackelbusch, M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024, 16, 658. [Google Scholar] [CrossRef]
- Miocinovic, S.; Somayajula, S.; Chitnis, S.; Vitek, J.L. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013, 70, 163–171. [Google Scholar] [CrossRef]
- Rivnay, J.; Wang, H.; Fenno, L.; Deisseroth, K.; Malliaras, G.G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017, 3, e1601649. [Google Scholar] [CrossRef] [PubMed]
- Dallmer-Zerbe, I.; Jiruska, P.; Hlinka, J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia 2023, 64, 2221–2238. [Google Scholar] [CrossRef]
- Famm, K.; Litt, B.; Tracey, K.J.; Boyden, E.S.; Slaoui, M. A jump-start for electroceuticals. Nature 2013, 496, 159–161. [Google Scholar] [CrossRef]
- Takao, S.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef]
- Malliaras, G.G. Organic bioelectronics: A new era for organic electronics. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 4286–4287. [Google Scholar] [CrossRef] [PubMed]
- Khodagholy, D.; Gelinas, J.N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G.G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Lee, V.A.; Raphael, Y.; Wiler, J.A.; Hetke, J.F.; Anderson, D.J.; Martin, D.C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2001, 56, 261–272. [Google Scholar] [CrossRef]
- Dominguez-Alfaro, A.; Mitoudi-Vagourdi, E.; Dimov, I.; Picchio, M.L.; Lopez-Larrea, N.; de Lacalle, J.L.; Tao, X.; Serrano, R.R.M.; Gallastegui, A.; Vassardanis, N.; et al. Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics. Adv. Sci. 2024, 11, 2306424. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Liu, Q.; Leong, W.L.; Fairfull-Smith, K.E.; Sonar, P. Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 2021, 33, 2101874. [Google Scholar] [CrossRef]
- Heiduschka, P.; Thanos, S. Implantable bioelectronic interfaces for lost nerve functions. Prog. Neurobiol. 1998, 55, 433–461. [Google Scholar] [CrossRef]
- Stieglitz, T.; Meyer, J.-U. Microtechnical Interfaces to Neurons; Springer: Berlin/Heidelberg, Germany, 1998; pp. 131–162. [Google Scholar]
- Lee, S.; Jung, S.W.; Ahn, J.; Yoo, H.J.; Oh, S.J. Microelectrode array with integrated nanowire FET switches for high-resolution retinal prosthetic systems. J. Micromech. Microeng. 2014, 24, 075018. [Google Scholar] [CrossRef]
- Cota, V.R.; Drabowski, B.M.B.; de Oliveira, J.C.; Moraes, M.F.D. The epileptic amygdala: Toward the development of a neural prosthesis by temporally coded electrical stimulation. J. Neurosci. Res. 2016, 94, 463–485. [Google Scholar] [CrossRef]
- Chen, W.M.; Chiueh, H.; Chen, T.J.; Ho, C.L.; Jeng, C.; Ker, M.D.; Lin, C.Y.; Huang, Y.C.; Chou, C.W.; Fan, T.Y.; et al. A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J. Solid-State Circuits 2013, 49, 232–247. [Google Scholar] [CrossRef]
- Malone Jr, D.A.; Dougherty, D.D.; Rezai, A.R.; Carpenter, L.L.; Friehs, G.M.; Eskandar, E.N.; Rauch, S.L.; Rasmussen, S.A.; Machado, A.G.; Kubu, C.S.; et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 2009, 65, 267–275. [Google Scholar] [CrossRef]
- Tjandra, J.J.; Chan, M.K.; Yeh, C.H.; Murray-Green, C. Sacral nerve stimulation is more effective than optimal medical therapy for severe fecal incontinence: A randomized, controlled study. Dis. Colon Rectum 2008, 51, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Shaker, H.S.; Hassouna, M. Sacral nerve root neuromodulation: An effective treatment for refractory urge incontinence. J. Urol. 1998, 159, 1516–1519. [Google Scholar] [CrossRef]
- Kemler, M.A.; Barendse, G.A.; Van Kleef, M.; De Vet, H.C.; Rijks, C.P.; Furnée, C.A.; Van Den Wildenberg, F.A. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N. Engl. J. Med. 2000, 343, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; Callaghan, J.O.; Eisenberg, E.; Milbouw, G.; et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132, 179–188. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alzahrani, M.S.; Alahmadi, A.N. Electron transport layer optimization for efficient PTB7:PC70BM bulk-heterojunction solar cells. Polymers 2022, 14, 3610. [Google Scholar] [CrossRef]
- Kim, J.N.; Lee, J.; Lee, H.; Oh, I.K. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 2021, 82, 105705. [Google Scholar] [CrossRef]
- Jimenez-Shahed, J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson’s disease and related disorders. Expert Rev. Med. Devices 2021, 18, 319–332. [Google Scholar] [CrossRef]
- Roy, A.; Bersellini Farinotti, A.; Arbring Sjöström, T.; Abrahamsson, T.; Cherian, D.; Karaday, M.; Tybrandt, K.; Nilsson, D.; Berggren, M.; Poxson, D.J.; et al. Electrophoretic Delivery of Clinically Approved Anesthetic Drug for Chronic Pain Therapy. Adv. Ther. 2023, 6, 2300083. [Google Scholar] [CrossRef]
- Chen, H.; Cai, Y.; Han, Y.; Huang, H. Towards artificial visual sensory system: Organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 2024, 63, e202313634. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, Y.; Lin, Q.; Liu, T.; Wang, S.; Chen, H.; Li, C.; Gu, X.; Zhang, X.; Huang, H. Organic optoelectronic synapses for sound perception. Nano-Micro Lett. 2023, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Martino, N.; Ghezzi, D.; Benfenati, F.; Lanzani, G.; Antognazza, M.R. Organic semiconductors for artificial vision. J. Mater. Chem. B 2013, 1, 3768–3780. [Google Scholar] [CrossRef]
- Tang, X.; Shen, H.; Zhao, S.; Li, N.; Liu, J. Flexible brain–computer interfaces. Nat. Electron. 2023, 6, 109–118. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Guger, C.; Ince, N.F.; Korostenskaja, M.; Allison, B.Z. Brain-Computer Interface Research: A State-of-the-Art Summary 11. In Brain-Computer Interface Research: A State-of-the-Art Summary 11; Springer Nature: Cham, Switzerland, 2024; pp. 1–11. [Google Scholar]
- Liu, Y.; Yu, Q.; Yang, L.; Cui, Y. Materials and biomedical applications of implantable electronic devices. Adv. Mater. Technol. 2023, 8, 2200853. [Google Scholar] [CrossRef]
- Koydemir, H.C.; Ozcan, A. Wearable and implantable sensors for biomedical applications. Annu. Rev. Anal. Chem. 2018, 11, 127–146. [Google Scholar] [CrossRef]
- Li, S.; Zuo, X.; Carpenter, M.D.; Verduzco, R.; Ajo-Franklin, C.M. Microbial bioelectronic sensors for environmental monitoring. Nat. Rev. Bioeng. 2025, 3, 30–49. [Google Scholar] [CrossRef]
- Lee, E.K.; Lee, M.Y.; Park, C.H.; Lee, H.R.; Oh, J.H. Toward environmentally robust organic electronics: Approaches and applications. Adv. Mater. 2017, 29, 1703638. [Google Scholar] [CrossRef]
- Ali, J.; Najeeb, J.; Ali, M.A.; Aslam, M.F.; Raza, A.J.J.B.B. Biosensors: Their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron 2017, 8, 235. [Google Scholar] [CrossRef]
- McCormick, A.J.; Bombelli, P.; Bradley, R.W.; Thorne, R.; Wenzel, T.; Howe, C.J. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 1092–1109. [Google Scholar] [CrossRef]
- Idris, A.O.; Orimolade, B.; Dennany, L.; Mamba, B.; Azizi, S.; Kaviyarasu, K.; Maaza, M. A review on monitoring of organic pollutants in wastewater using electrochemical approach. Electrocatalysis 2023, 14, 659–687. [Google Scholar] [CrossRef]
- Biglari, N.; Zare, E.N. Conjugated polymer-based composite scaffolds for tissue engineering and regenerative medicine. Alex. Eng. J. 2024, 87, 277–299. [Google Scholar] [CrossRef]
- Sultana, N.; Chang, H.C.; Jefferson, S.; Daniels, D.E. Application of conductive poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)(PEDOT:PSS) polymers in potential biomedical engineering. J. Pharm. Investig. 2020, 50, 437–444. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Mano, J.F. Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol. Prog. 2011, 27, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Jin, L.; Oliveira, J.M.; Reis, R.L.; Zhong, Q.; Mao, Z.; Gao, C. Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact. Mater. 2021, 6, 1375–1387. [Google Scholar] [CrossRef]
- Xing, F.; Xu, J.; Zhou, Y.; Yu, P.; Zhe, M.; Xiang, Z.; Duan, X.; Ritz, U. Recent advances in metal–organic frameworks for stimuli-responsive drug delivery. Nanoscale 2024, 16, 4434–4483. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Gao, R.; Jiang, L.; Zhang, G.; Zhao, Y.; Miao, Y.B.; Shi, Y. Spatiotemporal manipulation metal–organic frameworks as oral drug delivery systems for precision medicine. Coord. Chem. Rev. 2024, 502, 215615. [Google Scholar] [CrossRef]
- Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 2001, 73, 137–172. [Google Scholar] [CrossRef]
- Olvera, D.; Monaghan, M.G. Electroactive material-based biosensors for detection and drug delivery. Adv. Drug Deliv. Rev. 2021, 170, 396–424. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Wang, H.; Ullah, I.; Xie, W.; Lin, T.; Tan, Q.; Pan, X.; Yuan, Y. A Wireless Operated Flexible Bioelectronic Microneedle Patch for Actively Controlled Transdermal Drug Delivery. Adv. Mater. 2025, 37, 2417136. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lu, Y.; Zhang, F.; Liu, Q. Electronically powered drug delivery devices: Considerations and challenges. Expert Opin. Drug Deliv. 2022, 19, 1636–1649. [Google Scholar] [CrossRef]
- Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J. 2015, 17, 1327–1340. [Google Scholar] [CrossRef]
- Mariello, M.; Eş, I.; Proctor, C.M. Soft and flexible bioelectronic micro-systems for electronically controlled drug delivery. Adv. Healthc. Mater. 2023, 13, 2302969. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.; Copley, S.; Nevitt, S.; Maden, M.; Al-Ali, A.M.; Dupoiron, D.; Eldabe, S. Effectiveness and safety of intrathecal drug delivery systems for the management of cancer pain: A systematic review and meta-analysis. Neuromodul. Technol. Neural Interface 2023, 26, 1126–1141. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Zhou, P.; Zou, Y.; Yang, J.; Haick, H.; Wang, Y. Soft bioelectronics for therapeutics. ACS Nano 2023, 17, 17634–17667. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Su, M.; Sun, X.; Li, J.; Sun, Y.; Qiu, H.; Shi, Y.; Pan, L. Hydrogel-based bioelectronics and their applications in health monitoring. Biosensors 2023, 13, 696. [Google Scholar] [CrossRef]
- Morsada, Z.; Hossain, M.M.; Islam, M.T.; Mobin, M.A.; Saha, S. Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Appl. Mater. Today 2021, 25, 101257. [Google Scholar] [CrossRef]
- Xue, A.S.; Koshy, J.C.; Weathers, W.M.; Wolfswinkel, E.M.; Kaufman, Y.; Sharabi, S.E.; Brown, R.H.; Hicks, M.J.; Hollier, L.H., Jr. Local foreign-body reaction to commercial biodegradable implants: An in vivo animal study. Craniomaxillofac. Trauma Reconstr. 2014, 7, 27–33. [Google Scholar] [CrossRef]
- Silva, J.M.; Videira, M.; Gaspar, R.; Préat, V.; Florindo, H.F. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 2013, 168, 179–199. [Google Scholar] [CrossRef]
- Wang, Z.; Li, N.; Li, R.; Li, Y.; Ruan, L. Biodegradable intestinal stents: A review. Prog. Nat. Sci. Mater. Int. 2014, 24, 423–432. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Tracey, K.J. Bioelectronic medicine: Updates, challenges and paths forward. Bioelectron. Med. 2019, 5, 1. [Google Scholar] [CrossRef]
- Garg, I.; Verma, M.; Kumar, H.; Maurya, R.; Negi, T.; Jain, P. Bioelectronic Therapeutics: A Revolutionary Medical Practice in Health Care. Bioelectricity 2025, 7, 2–28. [Google Scholar] [CrossRef]
- Packer, S.; Mercado, N.; Haridat, A. Bioelectronic medicine—Ethical concerns. Cold Spring Harb. Perspect. Med. 2019, 9, a034363. [Google Scholar] [CrossRef]
- Moser, M.; Ponder Jr, J.F.; Wadsworth, A.; Giovannitti, A.; McCulloch, I. Materials in organic electrochemical transistors for bioelectronic applications: Past, present, and future. Adv. Funct. Mater. 2019, 29, 1807033. [Google Scholar] [CrossRef]
- Kim, Y.; Noh, H.; Paulsen, B.D.; Kim, J.; Jo, I.Y.; Ahn, H.; Rivnay, J.; Yoon, M.H. Strain-engineering induced anisotropic crystallite orientation and maximized carrier mobility for high-performance microfiber-based organic bioelectronic devices. Adv. Mater. 2021, 33, 2007550. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Charge transfer and biocompatibility aspects in conducting polymer-based enzymatic biosensors and biofuel cells. Nanomaterials 2021, 11, 371. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, Q.; Chen, R.; Shao, H.; Ma, Y.; Zhao, Y. Recent progress in biocompatible miniature supercapacitors. Energy Mater. 2025, 5, 500070. [Google Scholar] [CrossRef]
- Huang, G.; Chen, X.; Liao, C. AI-Driven Wearable Bioelectronics in Digital Healthcare. Biosensors 2025, 15, 410. [Google Scholar] [CrossRef] [PubMed]
- Carnicer-Lombarte, A.; Malliaras, G.G.; Barone, D.G. The future of biohybrid regenerative Bioelectronics. Adv. Mater. 2025, 37, 2408308. [Google Scholar] [CrossRef]
- Belleri, P.; Pons i Tarrés, J.; McCulloch, I.; Blom, P.W.; Kovács-Vajna, Z.M.; Gkoupidenis, P.; Torricelli, F. Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics. Nat. Commun. 2024, 15, 5350. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, X.; Meng, Q.; Chen, C.; Sun, J.; Yu, H. Intelligent knee prostheses: A systematic review of control strategies. J. Bionic Eng. 2022, 19, 1242–1260. [Google Scholar] [CrossRef]
- Orgiu, E.; Samorì, P. 25th anniversary article: Organic electronics marries photochromism: Generation of multifunctional interfaces, materials, and devices. Adv. Mater. 2014, 26, 1827–1845. [Google Scholar] [CrossRef]
- Pitsalidis, C.; Pappa, A.M.; Boys, A.J.; Fu, Y.; Moysidou, C.M.; van Niekerk, D.; Saez, J.; Savva, A.; Iandolo, D.; Owens, R.M. Organic bioelectronics for in vitro systems. Chem. Rev. 2021, 122, 4700–4790. [Google Scholar] [CrossRef]
- Cheng, F.; Cao, X.; Li, H.; Liu, T.; Xie, X.; Huang, D.; Maharjan, S.; Bei, H.P.; Gómez, A.; Li, J.; et al. Generation of cost-effective paper-based tissue models through matrix-assisted sacrificial 3D printing. Nano Lett. 2019, 19, 3603–3611. [Google Scholar] [CrossRef]
- Song, J.; Liu, H.; Zhao, Z.; Lin, P.; Yan, F. Flexible organic transistors for biosensing: Devices and applications. Adv. Mater. 2024, 36, 2300034. [Google Scholar] [CrossRef]
- Zavanelli, N.; Kim, J.; Yeo, W.H. Recent advances in high-throughput nanomaterial manufacturing for hybrid flexible bioelectronics. Materials 2021, 14, 2973. [Google Scholar] [CrossRef]
- González-González, M.A.; Conde, S.V.; Latorre, R.; Thébault, S.C.; Pratelli, M.; Spitzer, N.C.; Verkhratsky, A.; Tremblay, M.E.; Akcora, C.G.; Hernández-Reynoso, A.G.; et al. Bioelectronic Medicine: A multidisciplinary roadmap from biophysics to precision therapies. Front. Integr. Neurosci. 2024, 18, 1321872. [Google Scholar] [CrossRef]
- Hinze, S. Bibliographical cartography of an emerging interdisciplinary discipline: The case of bioelectronics. Scientometrics 1994, 29, 353–376. [Google Scholar] [CrossRef]
- Castagnola, V.; Descamps, E.; Lecestre, A.; Dahan, L.; Remaud, J.; Nowak, L.G.; Bergaud, C. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens. Bioelectron. 2015, 67, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; De Salvo, A.; Asplund, M.; Carli, S.; Di Lauro, M.; Schulze-Bonhage, A.; Stieglitz, T.; Fadiga, L.; Biscarini, F. Poly (3, 4-ethylenedioxythiophene)-based neural interfaces for recording and stimulation: Fundamental aspects and in vivo applications. Adv. Sci. 2022, 9, 2104701. [Google Scholar] [CrossRef]
- Li, J.; Mo, D.; Hu, J.; Wang, S.; Gong, J.; Huang, Y.; Li, Z.; Yuan, Z.; Xu, M. PEDOT: PSS-based bioelectronics for brain monitoring and modulation. Microsyst. Nanoeng. 2025, 11, 87. [Google Scholar] [CrossRef]
- Fan, J.; Pico, A.A.F.; Gupta, M. A functionalization study of aerosol jet printed organic electrochemical transistors (OECTs) for glucose detection. Mater. Adv. 2021, 2, 7445–7455. [Google Scholar] [CrossRef]
- Rodriguez-León, C.; Villalonga, C.; Munoz-Torres, M.; Ruiz, J.R.; Banos, O. Mobile and wearable technology for the monitoring of diabetes-related parameters: Systematic review. JMIR Mhealth Uhealth 2021, 9, e25138. [Google Scholar] [CrossRef] [PubMed]
- Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable electrochemical glucose sensors in diabetes management: A comprehensive review. Chem. Rev. 2023, 123, 7854–7889. [Google Scholar] [CrossRef]
- Tena, F.; Garnica, O.; Davila, J.L.; Hidalgo, J.I. An lstm-based neural network wearable system for blood glucose prediction in people with diabetes. IEEE J. Biomed. Health Inform. 2023, 29, 5515–5526. [Google Scholar] [CrossRef] [PubMed]
Domain of Applications | Examples | Essential Required Attributes | Common Materials/Device Categories | References |
---|---|---|---|---|
Neural Interfaces | Cortical recording, Deep Brain Stimulation, Spinal cord stimulation, Peripheral nerve interfaces, Vagus nerve stimulation | Biocompatibility, Low Impedance, Conformability, Chronic Stability, Charge Injection Capacity | Organic nanocolloids, PEDOT:PSS, PPy-based electrodes; OECTs; Soft hydrogel coatings, CNT | [73,74] |
Implantable Sensors | Glucose monitoring, metabolite sensing, pH sensors | Biocompatibility, Selectivity, Sensitivity, Stability in biofluid, Miniaturization | Enzyme-functionalized OECTs; PANI/Ppy-based amperometric sensors, Poly(glycerol sebacate) (PGS) based dielectric sensors | [75,76] |
Tissue Engineering Scaffolds | Cardiac patches, Nerve guidance conduits, Bone regeneration, Skeletal muscle regeneration | Biocompatibility, Biodegradability (often), Electroactivity, Appropriate Young’s Modulus (to match tissue), Porosity | modified polyurethane, PPy, PEDOT, PANI composites with PLGA, collagen, chitosan, Alginate (sodium), Silk fibroin | [77] |
Wearable Sensors | Epidermal ECG/EEG, sweat biosensors | Flexibility/Stretchability, Comfort, Stability under deformation, Sensitivity | PEDOT:PSS/elastomer blends; CNT/polymer composites; Screen-printed OECTs, Polypyrrole (PPy) | [78] |
Optogenetic Devices | OLED-based neural stimulators | Biocompatibility, High Luminescence Efficiency, Flexibility, Spatial Resolution, sensitive to local electric fields | Flexible OLEDs; Light-emitting polymers | [79] |
Drug Delivery Systems | Iontophoretic patches, responsive release systems | Biocompatibility, Stimuli-Responsiveness (redox, pH), Controllable Kinetics, Biodegradability (for implants) | Fullerence Drtivaties, Conducting polymer membranes (PPy, PEDOT); Hydrogel composites, Fluorescent Organic Nanoparticles | [80] |
Bioelectronic Actuators | Artificial muscles, microfluidic pumps | Large Strain, Fast Response, Cyclical Stability, Low Operating Voltage | Conducting polymer actuators; Ionic polymer-metal composites (IPMCs) | [81,82] |
Organic Material | Electronic Device | Application | References |
---|---|---|---|
Polydopamine (PDA) | OECT | Cancer progression and aggressiveness biomarkers | [168] |
PANI (membrane) | Interdigital | pH Sensor | [169] |
PANI | Impedance | Humidity Sensor | [170] |
PANI (nanopillars) | Electrode | pH Sensor | [161] |
PEDOT:BTB | OECT | pH Sensor | [171] |
PEDOT:PSS | OECT | Cl− Sensor | [172] |
PEDOT: Tosylate-polyamine | OECT | glucose biosensing in human urine samples | [173] |
PEDOT:PSS | OECT | Na+, K+ | [174] |
PEDOT:PSS | OECT | Na+, K+, and pH Sensor | [175] |
PEDOT:PSS | OECT | NH4+, and Ca2+ | [176] |
Manganese tetraphenylporphyrin (MnTPP) | OECT | Tyrosine | [177] |
PEDOT: PSS | OECT | Electrochemical Compound Sensor | [178] |
PEDOT: PSS | OECT | miRNA 21, cancer biomarker detectors | [179] |
PANI | OECT | Electrochemical Compound Sensor | [180,181] |
PANI | Impedimetric Sensor | Lactate | [182] |
PANI@rGO | Amperometric Sensor | Glucose | [183] |
PEDOT:PSS | OECT | EP, DA, AA | [184] |
PEDOT:PSS | OECT | Cartisol | [185] |
PEDOT:PSS | OECT | miRNA 21, Biological Interfacing applications | [186] |
GO-doped PU@PEDOT | Nanofiber-Based Electronic Skin with Pressure, Strain sensor | Monitoring of human health and | [187] |
Nanofibers | full-range motions | ||
MWCNT/carbon nanofiber/PEDOT:PSS | Electrospinning/drop casting | Muscular Actuator Sensor | [188] |
PPY | Inkjet Strip | H2O2, Glucose Sensor | [189] |
AgNW-PDMS | flexible and wearable electronic devices | Resistive strain sensor | [190] |
AgNWs and Ecoflex | electronic capacitor devices | Wearable multifunctional sensors | [191] |
Polydiacetylene-Polydimethylsiloxane | Chloroform Sensor | [192] | |
PMNT | DNA fluorescent sensor | ||
Aptamer-molecularly imprinted polymer (Apta-MIP) | molecularly imprinted polymer based electrochemical capacitance sensor | electrochemical sensor for the detection of bacteria | [193] |
Graphene Oxide | OECT | Human cervical cancer (miRNA 21) | [194] |
GCE/MWCNT/DOMIP s | OECT | serotonin (SE) detection | [195] |
poly(benzimidazobenzophenanthroline) | OECT | on-skin detection of glucose, lactate, and | [196] |
uric acid | |||
PEDOT:PSS | OECT | Oxygen Sensor | [190] |
Pentacene | OECT | Humidity Sensor | [197] |
P3HT | OECT | Ion sensor (K+) | [198] |
P3HT | ISFET | Na+, K+, Ca2+ | [199] |
PDTT | OFET | SO42− | [200] |
NiPC | OFET | Photosensor, humidity sensor | [201] |
OND | OECT | Electrochemical Sensor | [202,203] |
OND | [204] | ||
PTAA | Dual Gate FET | pH Sensor | [205] |
DDFTTF | OTFT | pH Sensor | [206] |
DDFTTF | OTFT | TNT Sensor | [207] |
α6T | OTFT | Glucose Sensor | [208] |
DHα6T | OTFT | Lactic acid | [209] |
CuPC | OTFT | Pyruvic acid | [210] |
Organic Material for OECT Channel | Vth [V] | gmnorm [S cm−1] | τON [ms] | ION/IOFF (×103) | μC [F cm−1 V−1 s−1] | Ref. |
---|---|---|---|---|---|---|
PEDOT:PSS (EG-P) | NA | 5.26 | NA | NA | 100 | [231] |
p(gDPP-TT) | NA | 2.5 | NA | NA | 125 | [109] |
p(gDPP-T2) | NA | 7 | NA | NA | 342 | [109] |
BBLs | 0.18 | 4.04 | 0.43 | 200 | 10.2 | [232] |
BBLn2 | 0.21 | 1.92 | 0.52 | 83 | 4.9 | [232] |
BBLis | 0.27 | 0.617 | 0.89 | 2.9 | 1.94 | [232] |
PEDOT:PSS | NA | 8 | 37 | NA | NA | [233] |
PEDOT:PSS | NA | 7.14 | NA | NA | NA | [234,235] |
p(Cr-T2-OMe) | 0.46 | 0.1 | NA | NA | 0.07 | [236] |
p(Cr-T2-Cp-EG) | 0.32 | 0.31 | 24.6 | NA | 0.22 | [236] |
p(Cr-T2-Cp-EG) | 0.3 | 0.02 | 6.2 | NA | 0.01 | [236] |
p(Cr-T2-Cp-EG) | 0.33 | 0.01 | 12.5 | NA | 0.006 | [236] |
p(Cr-T2) | 0.3 | 2.28 | 9.6 | NA | 1.29 | [236] |
p(Cr-T2) | 0.24 | 0.63 | 7.5 | NA | 0.3 | [236] |
p(Cr-T2) | 0.27 | 0.4 | 6.3 | NA | 0.2 | [236] |
p(Cr-T2) | 0.37 | 0.15 | 12.7 | NA | 0.13 | [236] |
PEDOT:PSTFSILi100 | NA | 1.705 | 90 | NA | NA | [237] |
PEDOT:PSS | NA | 1.755 | 49 | NA | NA | [237] |
p(gDPP-MeOT2) | NA | 1.7 | NA | NA | 195 | [238] |
P90 | 0.24 | 0.009 | 41 | 1.9 | 0.0343 | [239] |
BBL | 0.19 | 0.815 | 5.2 | 1.6 | 1.99 | [239] |
2DPP-OD-TEG | 0.89 | 0.73 | 500 | 200 | 7 | [240] |
P(βNDI-βT2) | 0.26 | 0.13 | NA | 1.4 | 0.06 | [241] |
p(C6-βNDI-βT2) | 0.37 | 0.37 | NA | 2 | 0.16 | [241] |
p(C3-βNDI-βT2) | 0.25 | 0.34 | NA | 2 | 0.13 | [241] |
BBL | 0.21 | 0.359 | 900 | 6 | NA | [242] |
PgNgN | 0.21 | 0.007 | NA | 1 | 0.037 | [243] |
PgNaN | 0.37 | 0.212 | 127 | 10 | 0.662 | [244] |
P-90 | 0.26 | 0.21 | NA | 4 | NA | [244] |
P-75 | 0.29 | 0.141 | NA | 0.55 | NA | [244] |
P-50 | 0.36 | 0.067 | NA | 0.5 | NA | [244] |
P-100 | 0.25 | 0.204 | NA | 1.1 | NA | [244] |
P(βNDI-βT2) | 0.28 | 0.1085 | 5 | 3.2 | NA | [245] |
P-90:TBAF(80%) | 0.25 | 0.0833 | NA | 0.2 | NA | [223] |
P-90:TBAF(40%) | 0.22 | 0.0905 | 24 | 1.2 | NA | [223] |
P-90:TBAF(00%) | 0.25 | 0.0299 | NA | 0.17 | NA | [223] |
P-90 | 0.25 | 0.0113 | NA | 0.19 | NA | [223] |
P90, PFBT | 0.29 | 0.0111 | NA | NA | 0.0008 | [246] |
C60-TEG | 0.55 | 0.0146 | 80 | 25 | 7 | [246] |
p(NDI-T2-L2) | 0.22 | 0.84 | 40 | 0.22 | 0.0046 | [247] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiz, S.A.; Alshaikh, M.S.; Alahmadi, A.N.M. Organic Bioelectronics: Diversity of Electronics Along with Biosciences. Biosensors 2025, 15, 587. https://doi.org/10.3390/bios15090587
Moiz SA, Alshaikh MS, Alahmadi ANM. Organic Bioelectronics: Diversity of Electronics Along with Biosciences. Biosensors. 2025; 15(9):587. https://doi.org/10.3390/bios15090587
Chicago/Turabian StyleMoiz, Syed Abdul, Mohammed Saleh Alshaikh, and Ahmed N. M. Alahmadi. 2025. "Organic Bioelectronics: Diversity of Electronics Along with Biosciences" Biosensors 15, no. 9: 587. https://doi.org/10.3390/bios15090587
APA StyleMoiz, S. A., Alshaikh, M. S., & Alahmadi, A. N. M. (2025). Organic Bioelectronics: Diversity of Electronics Along with Biosciences. Biosensors, 15(9), 587. https://doi.org/10.3390/bios15090587