Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (578)

Search Parameters:
Keywords = O–H···N hydrogen bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3427 KiB  
Article
Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials
by Hongzhi Hu, Adila Abuduheni, Yujin Zhao, Yuhao Lin, Yang Liu and Zunqi Liu
Molecules 2025, 30(15), 3107; https://doi.org/10.3390/molecules30153107 - 24 Jul 2025
Viewed by 189
Abstract
Polyoxometalate (POM)-type supramolecular materials have unique structures and hold immense potential for development in the fields of biomedicine, information storage, and electrocatalysis. In this study, (NH4)3 [AlMo6O24H6]·7H2O was employed as a polyacid [...] Read more.
Polyoxometalate (POM)-type supramolecular materials have unique structures and hold immense potential for development in the fields of biomedicine, information storage, and electrocatalysis. In this study, (NH4)3 [AlMo6O24H6]·7H2O was employed as a polyacid anion template, pentacyclic imidazole molecules served as organic ligands, and the moderate-temperature hydrothermal and natural evaporation methods were used in combination for the design and synthesis of two octamolybdenum-oxo cluster (homopolyacids containing molybdenum-oxygen structures as the main small-molecular structures)-based organic–inorganic hybrid compounds, [(C3N2H5)(C3N2H4)][(β-Mo8O26H2)]0.5 (1) and {Zn(C3N2H4)4}{[(γ-Mo8O26)(C3N2H4)2]0.5}·2H2O (2). Structural and property characterization revealed that both compounds crystallized in the P-1 space group with relatively stable three-dimensional structures under the action of hydrogen bonding. Upon temperature stimulation, the [Zn(C3N2H4)4]2+ cation and water molecules in 2 exhibited obvious oscillations, leading to significant dielectric anomalies at approximately 250 and 260 K when dielectric testing was conducted under heating conditions. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 6546 KiB  
Article
Structural Comparison of Three N-(4-Methoxyphenyl)-Nitrobenzenesulfonamide Derivatives
by Mark Oblazny and Christhoper G. Hamaker
Crystals 2025, 15(8), 673; https://doi.org/10.3390/cryst15080673 - 23 Jul 2025
Viewed by 335
Abstract
The series of all three N-(4-methoxyphenyl)-nitrobenzenesulfonamides has been synthesized and their crystal structures analyzed. The bond lengths and angles are all very similar, only the C-S-N-C torsion angles are significantly different in the three molecules, leading to different orientations of the phenyl [...] Read more.
The series of all three N-(4-methoxyphenyl)-nitrobenzenesulfonamides has been synthesized and their crystal structures analyzed. The bond lengths and angles are all very similar, only the C-S-N-C torsion angles are significantly different in the three molecules, leading to different orientations of the phenyl rings in the molecules. All three molecules exhibit N–HO hydrogen bonds with the sulfonamide group; however, in only two of the three is the acceptor an oxygen atom on the sulfonamide group. In the third, the acceptor oxygen is the methoxy oxygen atom. Compound A forms an infinite three-dimensional network, compound B exhibits ladder-shaped sheets, and C shows infinite sheets that are fairly planar. Overall, the differences in overall intermolecular interactions appear to be driven by packing rather than by the overall shapes of the molecules themselves. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

7 pages, 636 KiB  
Short Note
Benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate
by Lucrezia Spinelli, Matteo Mori and Laura Fumagalli
Molbank 2025, 2025(3), M2040; https://doi.org/10.3390/M2040 - 21 Jul 2025
Viewed by 497
Abstract
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties [...] Read more.
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties make them indispensable in drug design. This study focuses on the synthesis of a key heterocyclic intermediate: benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate. This molecule incorporates a thiazole ring, known for its rigidity and electronic properties, that enhances target interactions. The 2-position bears a Cbz-protected amine, enabling orthogonal deprotection, while the 4-position features a hydroxyethyl side chain, providing a handle for further chemical modifications via nucleophilic substitution. Herein, we report the successful synthesis of this intermediate along with its full 1H and 13C NMR spectra, melting point, and crystal structure, confirming its identity and purity. Full article
Show Figures

Figure 1

21 pages, 4054 KiB  
Article
Benzo[c]cinnolinium Trifluoromethanesulfonate Architectures Induced by Organotin(IV) Complexes
by Hélène Cattey and Laurent Plasseraud
Crystals 2025, 15(7), 655; https://doi.org/10.3390/cryst15070655 - 17 Jul 2025
Viewed by 352
Abstract
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation [...] Read more.
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation of the new salts results from reactions involving the dimeric hydroxo di-n-butylstannane trifluoromethanesulfonato complex [n-Bu2Sn(OH)(H2O)(CF3SO3)]2 (1) and benzo[c]cinnoline (C12H8N2, BCC). Organic salts I, II, III, and IV were crystallized through slow evaporation at room temperature from a mixture of toluene/dichloromethane. The cystallographic structures of I, II, and IV exhibit the presence of monoprotonated benzo[c]cinnolinium cations in interactions with a free benzo[c]cinnoline molecule through N–H···N hydrogen bonding, while for salt III, the monoprotonated cation directly interacts with the CF3SO3 anion via an N–H···O interaction. For all four salts, aromatic π-π interactions involving rings of various components (free benzo[c]cinnoline molecule, benzo[c]cinnolinium cation, toluene molecule), combined with weak C–H···O and C–H···F interactions implying the trifluoromethanesulfonate anion, promote the solid-state self-assembly of supramolecular stacks. In parallel to the formation of benzo[c]cinnolinium based-salts, organotin(IV) 1 was converted into a distannoxane compound, 2{[n-Bu2(μ-OH)SnOSn(μ-η2-O3SCF3)n-Bu2]2[n-Bu2(η1-O3SCF3)SnOSn(μ-OH)n-Bu2]2} (3), which was also isolated as a single crystal and whose crystallographic structure was previously established by us. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

30 pages, 5942 KiB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Viewed by 414
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

9 pages, 3599 KiB  
Communication
The Synthesis, Structure, and Properties of a Polynitro Energetic Complex with a Hexaamminecobalt(III) Ion as a Stabilizing Core
by Zhiwei He, Feng Yang, Xianfeng Wang and Ming Lu
Materials 2025, 18(13), 3004; https://doi.org/10.3390/ma18133004 - 25 Jun 2025
Viewed by 335
Abstract
Energetic complexes with multi-component architectures represent a frontier in contemporary energetic materials research. In this work, we report a novel high-energy complex—bis(5-nitro-3-(dinitromethyl)-1,2,4-triazole)-hexaamminecobalt(III) [[Co(NH3)6](HNTD)(NTD)·H2O]—that is synthesized using the oxygen-rich energetic compound 5-nitro-3-(trinitromethyl)-1,2,4-triazole (HNTF) as a precursor. Compared with [...] Read more.
Energetic complexes with multi-component architectures represent a frontier in contemporary energetic materials research. In this work, we report a novel high-energy complex—bis(5-nitro-3-(dinitromethyl)-1,2,4-triazole)-hexaamminecobalt(III) [[Co(NH3)6](HNTD)(NTD)·H2O]—that is synthesized using the oxygen-rich energetic compound 5-nitro-3-(trinitromethyl)-1,2,4-triazole (HNTF) as a precursor. Compared with metallic H2NTD salts, [Co(NH3)6](HNTD)(NTD)·H2O exhibits a higher density (ρ = 1.886 g cm−3) and unrivaled energy properties (Vd = 8030 m s−1 and P = 29.2 GPa). The formation of a dense hydrogen-bonding network—mediated by ammonium groups in the [Co(NH3)6]3+ core and nitro groups of HNTD and NTD2−—significantly dampens the mechanical sensitivity (IS = 10 J and FS = 140 N). These combined attributes establish [Co(NH3)6](HNTD)(NTD)·H2O as a promising high-energy-density material (HEDM), offering critical insights for the design of next-generation energetic complexes. Full article
Show Figures

Figure 1

15 pages, 14240 KiB  
Article
Substituent Effects on Crystal Engineering of DNBT-Based Energetic Cocrystals: Insights from Multiscale Computational Analysis
by Lu Shi, Min Liu, Shangrui Xie, Song Li, Shuxin Liu, Shen Yuan, Xiaohui Duan and Hongzhen Li
Materials 2025, 18(13), 2995; https://doi.org/10.3390/ma18132995 - 24 Jun 2025
Viewed by 353
Abstract
The substituent effects on crystal stacking topology and stability of the 5,5-dinitro-2H,2H-3,3-bi-1,2,4-triazole (DNBT) and its three energetic cocrystals with 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrotoluene (TNT), and picric acid (PA) were systematically investigated through combined density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. [...] Read more.
The substituent effects on crystal stacking topology and stability of the 5,5-dinitro-2H,2H-3,3-bi-1,2,4-triazole (DNBT) and its three energetic cocrystals with 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrotoluene (TNT), and picric acid (PA) were systematically investigated through combined density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. The interaction mechanism and detonation performance of the three energetic cocrystals were implemented to the electrostatic potential (ESP), Hirshfeld surface analysis, radial distribution function (RDF), binding energy, and detonation parameters. In contrast to N-H⋯O interactions in DNBT, three cocrystals exhibited more distinctly weak C-H⋯O intermolecular hydrogen bonds and NO2-π stacking interactions to stabilize the lattice. Notably, the highest binding energy of PA/DNBT shows the largest stability and lowest impact sensitivity is related to the more intermolecular interactions. Although the introduction of substituents slightly affects the crystal density of DNBT crystals, it significantly reduces the impact sensitivity. Moreover, the balanced detonation performance and impact sensitivity of DNBT-based cocrystals make it a candidate to expand the applications of DNBT crystals. These findings contribute to a broadened understanding of construction and design strategies for the energy release mechanisms of energetic compounds with the azoles ring family. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

15 pages, 4734 KiB  
Article
Hyaluronic Acid Dipeptide Gels Studied by Raman Spectroscopy
by Vlasta Mohaček-Grošev and Jože Grdadolnik
Crystals 2025, 15(6), 559; https://doi.org/10.3390/cryst15060559 - 13 Jun 2025
Viewed by 526
Abstract
This study presents a detailed Raman spectroscopic investigation of hydrogels composed of sodium hyaluronate and two N-terminally blocked dipeptides: N-acetyl-L-alanine-methyl-amide (NAcAlaNHMA) and N-acetyl-L-tyrosine-methyl-amide (NAcTyrNHMA). Vibrational spectra of the dipeptides in both crystalline and aqueous forms were analyzed and supported by density functional theory [...] Read more.
This study presents a detailed Raman spectroscopic investigation of hydrogels composed of sodium hyaluronate and two N-terminally blocked dipeptides: N-acetyl-L-alanine-methyl-amide (NAcAlaNHMA) and N-acetyl-L-tyrosine-methyl-amide (NAcTyrNHMA). Vibrational spectra of the dipeptides in both crystalline and aqueous forms were analyzed and supported by density functional theory (DFT) calculations. Spectral features of the hyaluronan component were elucidated by simulating the vibrational modes of its two principal disaccharide building blocks. Gels were prepared with varying dipeptide-to-hyaluronan ratios, and their structural characteristics were examined using Raman spectroscopy and atomic force microscopy. The results showed that while NAcAlaNHMA exhibited no significant interaction with the HA matrix, NAcTyrNHMA demonstrated specific binding behavior, as evidenced by notable shifts in its N–H and C–O–H vibrational bands. These findings indicate that NAcTyrNHMA binds to hyaluronic acid via hydrogen bonding, likely involving carboxyl and hydroxyl functional groups. This study highlights the potential for selective tuning of HA-based hydrogels using dipeptides, with implications for biomedical applications such as drug delivery, antimicrobial gels and biomaterial design. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Graphical abstract

19 pages, 6947 KiB  
Article
Simulation of the Pyrolysis Process of Cyclohexane-Containing Semi-Aromatic Polyamide Based on ReaxFF-MD
by Xiaotong Zhang, Yuanbo Zheng, Qian Zhang, Kai Wu, Qinwei Yu and Jianming Yang
Polymers 2025, 17(12), 1593; https://doi.org/10.3390/polym17121593 - 6 Jun 2025
Viewed by 760
Abstract
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs [...] Read more.
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations to establish a pyrolysis model for poly(terephthaloyl-hexahydro-m-xylylenediamine) (PHXDT), systematically probing its pyrolysis kinetics and evolutionary pathways under elevated temperatures. The simulation results reveal an activation energy of 107.55 kJ/mol and a pre-exponential factor of 9.64 × 1013 s−1 for the pyrolysis process. The primary decomposition pathway involves three distinct stages. The first is initial backbone scission generating macromolecular fragments, followed by secondary fragmentation that preferentially occurs at short-chain hydrocarbon formation sites alongside radical recombination. Ultimately, the process progresses to deep dehydrogenation, carbonization, and heteroatom elimination through sequential reaction steps. Mechanistic analysis identifies multi-pathway pyrolysis involving carboxyl/amide bond cleavage and radical-mediated transformations (N-C-O, C-C-O, OH· and H·), yielding primary products including H2, CO, H2O, CH3N, C2H2, and C2H4. Crucially, the cyclohexane structure demonstrates preferential participation in dehydrogenation and hydrogen transfer reactions due to its conformational dynamic instability and low bond dissociation energy, significantly accelerating the rapid generation of small molecules like H2. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

11 pages, 2894 KiB  
Article
Macrocyclic Azopyrrole: Synthesis, Structure and Fluoride Recognition
by Ying An, Ying Sun and Zhenming Yin
Organics 2025, 6(2), 25; https://doi.org/10.3390/org6020025 - 5 Jun 2025
Viewed by 425
Abstract
A macrocyclic receptor based on azopyrrole and polyether was synthesized, and its structure was characterized by NMR (1H and 13C), HRMS and X-ray crystallography. In the solid state, the macrocyclic molecules could bind methanol through a pair of N-H…O hydrogen [...] Read more.
A macrocyclic receptor based on azopyrrole and polyether was synthesized, and its structure was characterized by NMR (1H and 13C), HRMS and X-ray crystallography. In the solid state, the macrocyclic molecules could bind methanol through a pair of N-H…O hydrogen bonds and further self-assembled into tubular structures through C-H…N hydrogen bonds. This revealed that the crystal could still keep its porous properties after the included molecules were removed. The UV–Vis titration indicates that the macrocylic receptor can chromogenically and selectively sense fluoride ion in DMSO solution, and the sensing mechanism was rationalized by 1H NMR. Full article
Show Figures

Figure 1

15 pages, 2769 KiB  
Article
Converting Agroforestry Biowaste into Stable Near-Natural Chars via Hydrothermal Humification and Pyrolysis for Immobilizing Plasticizer
by Tao Xue, Yi Li, Zimo Chen, Chao Kong, Biyun Feng, Changyin Zhu, Yinlong Zhang, Jianming Xue and Hu Cheng
Agriculture 2025, 15(11), 1177; https://doi.org/10.3390/agriculture15111177 - 29 May 2025
Viewed by 326
Abstract
To ensure agricultural safety and ecological security, it is crucial to effectively immobilize emerging organic pollutants, such as plasticizers, to prevent their migration in various environmental matrices. However, the ideal immobilization agent with the advantages of being environmentally friendly is very rare. In [...] Read more.
To ensure agricultural safety and ecological security, it is crucial to effectively immobilize emerging organic pollutants, such as plasticizers, to prevent their migration in various environmental matrices. However, the ideal immobilization agent with the advantages of being environmentally friendly is very rare. In this study, low-cost and stable near-natural immobilization agents, char-derived artificial humic acids, CHAs, were proposed and prepared via hydrothermal humification (180 °C) and pyrolysis (300, 500, or 700 °C) of agroforestry biowaste. The resulting CHAs exhibit high purity (composed primarily of C (67.28–81.35%), O (6.65–21.64%), H (1.40–5.28%), and N (0.36–0.58%)) with remarkably low ash content (5.43–10.02%). Characterization revealed a compact structure with a limited porosity with small surface area (0.27–0.32 m2 g−1) and pore volume (2.99–3.43 × 10−4 cm3 g−1). Notably, high-temperature pyrolysis induced consumption of oxygen-containing functional groups while promoting aromatic structure formation. The sorption behavior of diethyl phthalate, a representative plasticizer, on CHAs was well described by both Langmuir isotherm and pseudo-second-order kinetic models. The CHAs exhibited remarkable sorption performance for diethyl phthalate, with a maximum sorption capacity reaching 3345 mg kg−1 as determined by the Langmuir model. The sorption of diethyl phthalate onto CHAs is mainly multi-layer sorption dominated by physical processes, mainly including pore filling, partitioning, hydrogen bonding, and π–π stacking. Mean sorption energies ranging from 2.56 to 4.99 × 10−3 kJ mol−1 indicate the predominance of physical sorption mechanisms. This study developed a method to convert the liquid by-product produced during hydrothermal humification of biowaste into stable near-natural and carbon-rich char materials, and the proposed materials show great promise in immobilizing pollutants from various environmental matrices. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
Structure–Property Relationships in Zwitterionic Pyridinium–Triazole Ligands: Insights from Crystal Engineering and Hirshfeld Surface Analysis
by Gerzon E. Delgado, Jonathan Cisterna, Jaime Llanos, Ruth Pulido, Nelson Naveas, Pilar Narea, Pilar Amo-Ochoa, Félix Zamora, Yasna León and Iván Brito
Int. J. Mol. Sci. 2025, 26(11), 5123; https://doi.org/10.3390/ijms26115123 - 27 May 2025
Viewed by 584
Abstract
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics—n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)—which were derived from an aqueous solution of the corresponding sodium salts in [...] Read more.
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics—n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)—which were derived from an aqueous solution of the corresponding sodium salts in an acidic medium (HCl). These compounds are successfully synthesized and characterized with FT-IR and multinuclear NMR spectroscopy; likewise, proper single crystals are obtained for each compound. All compounds adopt zwitterionic forms in the solid state, which are stabilized via intermolecular proton transfer processes involving HCl and solvent molecules. A single-crystal X-ray analysis revealed how positional isomerism and molecular flexibility influence the supramolecular topology. Specifically, 3-PTCA and 4-PTCA exhibit isomorphic hydrogen bond networks, while 3-MPTCA and 4-MPTCA display distinct packing motifs, attributed to the presence of a methylene spacer between the pyridinium and triazole rings. The Hirshfeld surface analysis quantitatively confirmed the dominance of O···H/H···O and N···H/H···N interactions in the solid-state architecture. These strong hydrogen-bonding networks are indicative of the potential proton-conductive behavior in the crystalline state, positioning these compounds as promising candidates for applications in proton-conducting materials. The structural insights gained underscore the pivotal role of molecular topology in tailoring crystal packing, with implications for the rational design of zwitterionic ligands in functional materials, including MOFs and coordination polymers. The calculated HOMO-LUMO energy gaps reveal a significant electronic variability among the ligands, influenced primarily by the positional isomerism and structural flexibility introduced by the methylene spacer. Full article
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Efficient Hydrogen Production from Ammonia Using Ru Nanoparticles on Ce-Based Metal–Organic Framework (MOF)-Derived CeO2 with Oxygen Vacancies
by Wenying Wu, Wenhao Yao, Yitong Liu, Senliang Xi and Teng Zhang
Molecules 2025, 30(11), 2301; https://doi.org/10.3390/molecules30112301 - 23 May 2025
Viewed by 593
Abstract
Ammonia is a promising hydrogen storage material because it is easy to store and decompose into COX-free hydrogen. A Ru-based catalyst exhibits good catalytic performance in ammonia decomposition, and enhancing the interaction between the Ru atoms and the support is an [...] Read more.
Ammonia is a promising hydrogen storage material because it is easy to store and decompose into COX-free hydrogen. A Ru-based catalyst exhibits good catalytic performance in ammonia decomposition, and enhancing the interaction between the Ru atoms and the support is an important way to further improve its catalytic activity. In this study, CeO2 was prepared by calcination using a cerium-based metal–organic framework (MOF) as the precursor, and the number of oxygen vacancies on the surface of CeO2 was regulated by hydrogen reduction. The XPS and Raman results showed that abundant oxygen vacancies were formed on the surface of these CeO2, and their number increased with an increase in the reduction time. The Ru/CeO2-4 h catalyst, using CeO2 reduced for 4 h as the support, exhibited good catalytic activity in ammonia decomposition, reaching 98.9% ammonia conversion and 39.74 mmol gcat−1 min−1 hydrogen yield under the condition of GHSV = 36,000 mL gcat−1 h−1 at 500 °C. The XAFS results demonstrated that Ru was stably anchored with oxygen vacancies on the surface of CeO2 via Ru-O-Ce bonds. Density functional theory calculations further showed that these bondings lower the reaction energy barrier for N-H bond cleavage, thereby significantly enhancing the catalytic activity. Full article
Show Figures

Figure 1

14 pages, 3114 KiB  
Article
A Comparative Study on Absorption of Gaseous Formaldehyde by Electrospun Biomass Carbon Nanofiber Membranes Modified by Plasma Activation and Chemical Treatment
by Qian He, Jinhui Xiong, Huanbo Wang, Linkun Xie, Xijuan Chai, Lianpeng Zhang, Siqun Wang, Guanben Du and Kaimeng Xu
Molecules 2025, 30(10), 2184; https://doi.org/10.3390/molecules30102184 - 16 May 2025
Viewed by 515
Abstract
To comparatively study the effects of cold plasma activation and chemical treatment on the adsorption capacities of biomass carbon nanofiber membranes (BCNMs), microcrystalline cellulose (MCC) and chitosan (CS) were used to fabricate porous BCNMs by electrospinning and carbonization. Two modification methods, including oxygen [...] Read more.
To comparatively study the effects of cold plasma activation and chemical treatment on the adsorption capacities of biomass carbon nanofiber membranes (BCNMs), microcrystalline cellulose (MCC) and chitosan (CS) were used to fabricate porous BCNMs by electrospinning and carbonization. Two modification methods, including oxygen (O2) plasma activation and chemical treatment using nitric acid (HNO3), sulfuric acid (H2SO4), hydrogen peroxide (H2O2), and urea, were further employed to enhance their adsorption performance. Various carbonyl group (C=O), ether bond (C-O), carboxyl group (O-C=O) and pyridinic nitrogen (N), pyrrolic N, and quaternary N functional groups were successfully introduced onto the surface of the BCNMs by the two methods. The BCNM-O2 showed optimal formaldehyde absorption capacity (120.67 mg g−1), corresponding to its highest contents of N, O-containing functional groups, and intact network structure. However, chemical treatment in strong acid or oxidative solutions destructed the microporous structures and changed the size uniformity of fibers in the BCNMs, resulting in a decline in formaldehyde adsorption capacity. A synergistically physical–chemical adsorption took place during formaldehyde adsorption by the modified biomass nanofiber membranes, due to the coexistence of suitable functional groups and porous structures in the membranes. Full article
Show Figures

Figure 1

18 pages, 3933 KiB  
Article
Ru Nanoparticle Assemblies Modified with Single Mo Atoms for Hydrogen Evolution Reactions in Seawater Electrocatalysis
by Shuhan Wang, Jiani Qin, Yong Zhang, Shuai Chen, Wenjun Yan, Haiqing Zhou and Xiujun Fan
Catalysts 2025, 15(5), 475; https://doi.org/10.3390/catal15050475 - 12 May 2025
Viewed by 514
Abstract
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred [...] Read more.
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred to as MoRu-NG) are compounded via hydrothermal and chemical vapor deposition (CVD) methods. The incorporation of single Mo atoms into Ru lattices modifies the local atomic milieu around Ru centers, significantly improving HER catalytic behavior and stability. More specifically, MoRu-NG achieves overpotentials of 53 mV and 28 mV at 10 mA cm−2, with exceptional stability in acidic and alkaline seawater solutions, respectively. In MoRu-NG, Ru atoms have a special electronic structure and thus possess optimal hydrogen adsorption energy, which indicates that excellent HER activity mainly hinges upon Ru centers. To be specific, the d-electron orbitals of Ru atoms are close to half full, giving Ru atoms moderate bond energy for the assimilation and release of hydrogen, which is beneficial for the conversion of reaction intermediates. Moreover, the incorporation of single Mo atoms facilitates the formation of O and O’-bidentate ligands, significantly enhancing the structural stability of MoRu-NG in universal-pH seawater electrolysis. This work advances a feasible construction method of hexagonal octahedral configuration (Ru-O-Mo-N-C) and provides a route to synthesize an efficient and stable catalyst for electrocatalytic HER in universal-pH seawater. Full article
Show Figures

Graphical abstract

Back to TopTop