ijms-logo

Journal Browser

Journal Browser

Chemical Bond and Bonding: Fundamental Aspects and Recent Developments

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Physical Chemistry and Chemical Physics".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 3979

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
Interests: molecular modeling with unusual bonding and reactivity; ligand supported transient species; catalysis; small molecule activation; hydrogen storage; conceptual density functional theory; noble gas compounds

Special Issue Information

Dear Colleagues,

Chemical bonds, as the result of interactions between different atoms, are integral to chemical substances, directly affecting their properties and manifestations in different environments. Chemical bonds are relevant to various disciplines and fields, such as chemistry, physics, quantum science, mathematics, biology, ecology, environmental protection, food, medicine and pharmaceuticals, etc., and play an important role in various biological processes. The structure and function of chemical molecules such as DNA and protein are related to chemical bonds. It goes without saying that they are of great significance to the development and progress of science and technology, as well as human life and health.

This Special Issue invites scientists from different experimental and theoretical fields to contribute their results. Contributions will include modern bonding concepts and some unconventional types of bonding introduced to describe new chemical species, providing a diversified view on chemical bonding and its related issues.

Prof. Dr. Sudip Pan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bonding
  • covalent bond
  • coordination bond
  • non-covalent bond
  • metallic and ionic bond
  • hydrogen bond
  • halogen bond
  • chalcogen bond
  • weak bonding

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 8839 KiB  
Article
Microheterogeneity in Liquid Water Associated with Hydrogen-Bond Cooperativity-IR Spectroscopic and MD Simulation Study of Temperature Effect
by Paulina Filipczak, Marcin Kozanecki, Joanna Szala-Rearick and Dorota Swiatla-Wojcik
Int. J. Mol. Sci. 2025, 26(11), 5187; https://doi.org/10.3390/ijms26115187 - 28 May 2025
Viewed by 56
Abstract
Structural microheterogeneity arising from the cooperative nature of hydrogen bonding is a critical yet often overlooked factor in the mechanistic understanding of physicochemical and biological processes occurring in aqueous environments. MD simulations using a potential that accounts for molecular flexibility and directional interactions [...] Read more.
Structural microheterogeneity arising from the cooperative nature of hydrogen bonding is a critical yet often overlooked factor in the mechanistic understanding of physicochemical and biological processes occurring in aqueous environments. MD simulations using a potential that accounts for molecular flexibility and directional interactions revealed inhomogeneity arising from patches of continuously connected, four-bonded molecules embedded within a less ordered, space-filling hydrogen-bond network. The size of these patches follows a statistical distribution that is strongly temperature-dependent. With increasing temperature, the average size of the patches decreases, whereas the contribution of molecules forming the inter-patch zones becomes more pronounced. The nature of microheterogeneity is evidenced by temperature-dependent changes in the asymmetry of calculated power spectra as well as in the measured IR absorption within the stretching, bending, and combination band regions. A novel method for band analysis incorporates the calculation of skewness and a mirroring procedure for more accurate determination of FWHM of asymmetric bands. Discontinuities in the temperature dependence of spectral parameters observed within the 5–80 °C range correspond to the thermodynamic anomalies of liquid water. We show that structural microheterogeneity persists near 100 °C, suggesting that aqueous processes are better described by statistical distributions than by uniform models. Molecular simulations and IR spectroscopy offer key insights into these distributions. Full article
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
Structure–Property Relationships in Zwitterionic Pyridinium–Triazole Ligands: Insights from Crystal Engineering and Hirshfeld Surface Analysis
by Gerzon E. Delgado, Jonathan Cisterna, Jaime Llanos, Ruth Pulido, Nelson Naveas, Pilar Narea, Pilar Amo-Ochoa, Félix Zamora, Yasna León and Iván Brito
Int. J. Mol. Sci. 2025, 26(11), 5123; https://doi.org/10.3390/ijms26115123 - 27 May 2025
Viewed by 105
Abstract
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics—n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)—which were derived from an aqueous solution of the corresponding sodium salts in [...] Read more.
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics—n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)—which were derived from an aqueous solution of the corresponding sodium salts in an acidic medium (HCl). These compounds are successfully synthesized and characterized with FT-IR and multinuclear NMR spectroscopy; likewise, proper single crystals are obtained for each compound. All compounds adopt zwitterionic forms in the solid state, which are stabilized via intermolecular proton transfer processes involving HCl and solvent molecules. A single-crystal X-ray analysis revealed how positional isomerism and molecular flexibility influence the supramolecular topology. Specifically, 3-PTCA and 4-PTCA exhibit isomorphic hydrogen bond networks, while 3-MPTCA and 4-MPTCA display distinct packing motifs, attributed to the presence of a methylene spacer between the pyridinium and triazole rings. The Hirshfeld surface analysis quantitatively confirmed the dominance of O···H/H···O and N···H/H···N interactions in the solid-state architecture. These strong hydrogen-bonding networks are indicative of the potential proton-conductive behavior in the crystalline state, positioning these compounds as promising candidates for applications in proton-conducting materials. The structural insights gained underscore the pivotal role of molecular topology in tailoring crystal packing, with implications for the rational design of zwitterionic ligands in functional materials, including MOFs and coordination polymers. The calculated HOMO-LUMO energy gaps reveal a significant electronic variability among the ligands, influenced primarily by the positional isomerism and structural flexibility introduced by the methylene spacer. Full article
Show Figures

Figure 1

18 pages, 5051 KiB  
Article
Unveiling the Nature and Strength of Selenium-Centered Chalcogen Bonds in Binary Complexes of SeO2 with Oxygen-/Sulfur-Containing Lewis Bases: Insights from Theoretical Calculations
by Tao Lu, Renhua Chen, Qingyu Liu, Yeshuang Zhong, Fengying Lei and Zhu Zeng
Int. J. Mol. Sci. 2024, 25(11), 5609; https://doi.org/10.3390/ijms25115609 - 21 May 2024
Cited by 1 | Viewed by 1689
Abstract
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π–hole-type Se∙∙∙O/S ChBs in [...] Read more.
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π–hole-type Se∙∙∙O/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from −4.68 kcal/mol to −10.83 kcal/mol for the Se∙∙∙O chalcogen-bonded complexes and vary between −3.53 kcal/mol and −13.77 kcal/mol for the Se∙∙∙S chalcogen-bonded complexes. The Se∙∙∙O/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The Se∙∙∙O/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these Se∙∙∙O/S ChBs generally surpasses that of the C/O–H∙∙∙O hydrogen bonds within the same complex. It should be noted that additional C/O–H∙∙∙O interactions have a large effect on the geometric structures and strength of Se∙∙∙O/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2∙∙∙HCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well. Full article
Show Figures

Figure 1

12 pages, 4803 KiB  
Communication
Spectral Physics of Stable Cu(III) Produced by Oxidative Addition of an Alkyl Halide
by En Cao and Mengtao Sun
Int. J. Mol. Sci. 2023, 24(21), 15694; https://doi.org/10.3390/ijms242115694 - 28 Oct 2023
Viewed by 1525
Abstract
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds [...] Read more.
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds of products of Cu(III) complexes are visualized with the density of state (DOS) and orbital energy levels of HOMO and LUMO. The visually manifested static and dynamic polarizability as well as the first hyperpolarizability are employed to reveal the vibrational modes of the normal and resonance Raman spectra of two Cu(III) complexes. The nuclear magnetic resonance (NMR) spectra are not only used to identify the reactants and products but also to distinguish between two Cu(III) complexes. The charge difference density (CDD) reveals intramolecular charge transfer in electronic transitions in optical absorption spectra. The CDDs in fluorescence visually reveal electron–hole recombination. Our results promote a deeper understanding of the physical mechanism of stable Cu(III) produced by the oxidative addition of an alkyl halide. Full article
Show Figures

Figure 1

Back to TopTop