ijms-logo

Journal Browser

Journal Browser

Chemical Bond and Bonding: Fundamental Aspects and Recent Developments

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Physical Chemistry and Chemical Physics".

Deadline for manuscript submissions: closed (20 September 2024) | Viewed by 2344

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
Interests: molecular modeling with unusual bonding and reactivity; ligand supported transient species; catalysis; small molecule activation; hydrogen storage; conceptual density functional theory; noble gas compounds

Special Issue Information

Dear Colleagues,

Chemical bonds, as the result of interactions between different atoms, are integral to chemical substances, directly affecting their properties and manifestations in different environments. Chemical bonds are relevant to various disciplines and fields, such as chemistry, physics, quantum science, mathematics, biology, ecology, environmental protection, food, medicine and pharmaceuticals, etc., and play an important role in various biological processes. The structure and function of chemical molecules such as DNA and protein are related to chemical bonds. It goes without saying that they are of great significance to the development and progress of science and technology, as well as human life and health.

This Special Issue invites scientists from different experimental and theoretical fields to contribute their results. Contributions will include modern bonding concepts and some unconventional types of bonding introduced to describe new chemical species, providing a diversified view on chemical bonding and its related issues.

Prof. Dr. Sudip Pan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bonding
  • covalent bond
  • coordination bond
  • non-covalent bond
  • metallic and ionic bond
  • hydrogen bond
  • halogen bond
  • chalcogen bond
  • weak bonding

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5051 KiB  
Article
Unveiling the Nature and Strength of Selenium-Centered Chalcogen Bonds in Binary Complexes of SeO2 with Oxygen-/Sulfur-Containing Lewis Bases: Insights from Theoretical Calculations
by Tao Lu, Renhua Chen, Qingyu Liu, Yeshuang Zhong, Fengying Lei and Zhu Zeng
Int. J. Mol. Sci. 2024, 25(11), 5609; https://doi.org/10.3390/ijms25115609 - 21 May 2024
Viewed by 812
Abstract
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π–hole-type Se∙∙∙O/S ChBs in [...] Read more.
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π–hole-type Se∙∙∙O/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from −4.68 kcal/mol to −10.83 kcal/mol for the Se∙∙∙O chalcogen-bonded complexes and vary between −3.53 kcal/mol and −13.77 kcal/mol for the Se∙∙∙S chalcogen-bonded complexes. The Se∙∙∙O/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The Se∙∙∙O/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these Se∙∙∙O/S ChBs generally surpasses that of the C/O–H∙∙∙O hydrogen bonds within the same complex. It should be noted that additional C/O–H∙∙∙O interactions have a large effect on the geometric structures and strength of Se∙∙∙O/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2∙∙∙HCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well. Full article
Show Figures

Figure 1

12 pages, 4803 KiB  
Communication
Spectral Physics of Stable Cu(III) Produced by Oxidative Addition of an Alkyl Halide
by En Cao and Mengtao Sun
Int. J. Mol. Sci. 2023, 24(21), 15694; https://doi.org/10.3390/ijms242115694 - 28 Oct 2023
Viewed by 971
Abstract
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds [...] Read more.
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds of products of Cu(III) complexes are visualized with the density of state (DOS) and orbital energy levels of HOMO and LUMO. The visually manifested static and dynamic polarizability as well as the first hyperpolarizability are employed to reveal the vibrational modes of the normal and resonance Raman spectra of two Cu(III) complexes. The nuclear magnetic resonance (NMR) spectra are not only used to identify the reactants and products but also to distinguish between two Cu(III) complexes. The charge difference density (CDD) reveals intramolecular charge transfer in electronic transitions in optical absorption spectra. The CDDs in fluorescence visually reveal electron–hole recombination. Our results promote a deeper understanding of the physical mechanism of stable Cu(III) produced by the oxidative addition of an alkyl halide. Full article
Show Figures

Figure 1

Back to TopTop