Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = Ni2P catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7374 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of –0.46 mA·cm−2 at –0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
9 pages, 798 KiB  
Article
Mechanistic Behavior of Basicity of Bimetallic Ni/ZrO2 Mixed Oxides for Stable Oxythermal Reforming of CH4 with CO2
by Hyuk Jong Bong, Nagireddy Gari Subba Reddy and A. Geetha Bhavani
Catalysts 2025, 15(8), 700; https://doi.org/10.3390/catal15080700 - 22 Jul 2025
Viewed by 324
Abstract
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and [...] Read more.
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were characterized using x-ray diffraction XRD, Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), and metal dispersion for the screening of phase purity, surface area, and morphology. The mixed oxides are subjected to CO2-TPD to quantify the basicity of every composition. The mixed oxide catalysts of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were screened for oxythermal reforming of CH4 with CO2 in a fixed bed tubular reactor at 800 °C. Among all catalysts, the Ba- and Ca- loaded Ni-Ba-Ca/ZrO2 showed high conversion by the decomposition of methane and CO2 disproportionation throughout the time on stream of 29 h. The high activity with stability led to less coke formation over Ni-Ba-Ca/ZrO2 over the surface. The stable syngas production with an active catalyst bed contributed to the improved bimetallic synergy. The high surface basicity of Ni-Ba-Ca/ZrO2 may keep actively gasifying the formed soot and allow for further stable reforming reactions. Full article
Show Figures

Figure 1

24 pages, 6684 KiB  
Article
Solvolysis and Mild Hydrogenolysis of Lignin Pyrolysis Bio-Oils for Bunker Fuel Blends
by Antigoni G. Margellou, Fanny Langschwager, Christina P. Pappa, Ana C. C. Araujo, Axel Funke and Konstantinos S. Triantafyllidis
Energies 2025, 18(14), 3683; https://doi.org/10.3390/en18143683 - 12 Jul 2025
Viewed by 404
Abstract
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into [...] Read more.
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into bunker fuel blending components. Within this study, solvolysis under critical ethanol conditions and mild catalytic hydrotreatment were applied to heavy fractions of lignin pyrolysis bio-oils with the aim of recovering bio-oils with improved properties, such as a lower viscosity, that would allow their use as bunker fuel blending components. The mild reaction conditions, i.e., low temperature (250 °C), short reaction time (1 h) and low hydrogen pressure (30–50 bar), led to up 65 wt.% recovery of upgraded bio-oil, which exhibited a high carbon content (63–73 wt.%), similar to that of the parent bio-oil (68.9 wt.%), but a lower oxygen content and viscosity, which decreased from ~298,000 cP in the parent lignin pyrolysis oil to 526 cP in the hydrotreated oil, with a 10%Ni/Beta catalyst in methanol, and which was also sulfur-free. These properties permit the potential utilization of the oils as blending components in conventional bunker fuels. Full article
(This article belongs to the Special Issue New Challenges in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

12 pages, 1652 KiB  
Article
Catalytic Degradation of Methylene Blue Using Cellulose Acetate Composite Membrane Fabricated with Nickel Nanoparticles
by Saud Bawazeer
Catalysts 2025, 15(7), 642; https://doi.org/10.3390/catal15070642 - 30 Jun 2025
Viewed by 352
Abstract
Environmental contamination from industrial dyes, particularly Methylene Blue (MB), presents a growing challenge due to their toxicity and persistence in aquatic systems. This study explored the catalytic potential of cellulose acetate-stabilized nickel (CA/Ni) nanoparticles for the degradation of MB in aqueous solutions. CA/Ni [...] Read more.
Environmental contamination from industrial dyes, particularly Methylene Blue (MB), presents a growing challenge due to their toxicity and persistence in aquatic systems. This study explored the catalytic potential of cellulose acetate-stabilized nickel (CA/Ni) nanoparticles for the degradation of MB in aqueous solutions. CA/Ni was synthesized and characterized using FTIR and SEM, confirming its successful incorporation into the cellulose acetate matrix and uniform distribution across the membrane. UV-Vis spectrophotometry was employed to monitor the catalytic degradation of MB, revealing a significant decrease in absorbance at 665 nm over 28 min, indicating 68% degradation efficiency. Kinetic analysis showed that the degradation followed pseudo-first-order kinetics, with an apparent rate constant of 0.0348 min−1 and an R2 value of 0.9851, confirming excellent catalytic performance. The effects of temperature and pH on MB degradation were investigated, with the highest efficiency observed at 35 °C and a pH of 7. A room temperature (25 °C) and acidic conditions (pH 5) reduced the degradation rate to 52%. In comparison, a higher temperature (45 °C) and an alkaline pH (pH 9) resulted in a slight decline to 55%, likely due to changes in catalyst efficiency and MB solubility. These findings highlight the potential of Ni NP-stabilized membranes for wastewater treatment applications, providing a scalable and efficient approach to dye removal. Full article
Show Figures

Figure 1

15 pages, 3620 KiB  
Article
ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting
by Lanqi Wang, Hui Ni, Jianing Yu, Jingyuan Zhang and Bin Zhao
Catalysts 2025, 15(6), 576; https://doi.org/10.3390/catal15060576 - 10 Jun 2025
Viewed by 1022
Abstract
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a [...] Read more.
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a hierarchical structure was synthesized using the Prussian blue analogue (PBA)/zeolitic imidazolate framework-L (ZIF-L) template. Benefiting from the hierarchical structure of the PBA/ZIF-L precursor and the electronic structure modulation induced by Ni doping, the resulting CoFeNi0.2P demonstrates impressive bifunctional electrocatalytic activity. Specifically, in 1 M KOH electrolyte, the CoFeNi0.2P catalyst requires an overpotential of only 88 mV to deliver 10 mA cm−2 for the HER and 248 mV to achieve 50 mA cm−2 for the OER. Moreover, it demonstrates satisfactory stability toward both the HER and OER. When integrated into a two-electrode electrolyzer, CoFeNi0.2P enables a current density of 10 mA cm−2 at a cell voltage of 1.59 V, maintaining robust performance for over 25 h. This study provides a feasible strategy for the rational design of hierarchical electrocatalysts for efficient overall water splitting. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

16 pages, 2807 KiB  
Article
Enhancing Water Splitting Performance via NiFeP-CoP on Cobalt Foam: Synergistic Effects and Structural Optimization
by Shihu Zhu, Yingxing Yang, Mengyao Zhao, Hui Zhao, Siyuan Liu and Jinyou Zheng
Nanomaterials 2025, 15(12), 883; https://doi.org/10.3390/nano15120883 - 7 Jun 2025
Viewed by 550
Abstract
Hydrogen energy holds great promise for alleviating energy and environmental issues, with alkaline electrochemical water splitting being a key approach for hydrogen production. However, the high cost and limited availability of noble-metal catalysts hinder its widespread application. This study presents a novel method [...] Read more.
Hydrogen energy holds great promise for alleviating energy and environmental issues, with alkaline electrochemical water splitting being a key approach for hydrogen production. However, the high cost and limited availability of noble-metal catalysts hinder its widespread application. This study presents a novel method to fabricate a NiFeP-CoP/CF electrode. By growing CoOOH nanosheets on Co foam at low temperatures and filling the gaps between nanosheets with Ni and Fe phosphides, the prepared electrode exhibits outstanding electrocatalytic performance. For the oxygen evolution reaction (OER) in alkaline media, it requires overpotentials of only 235 mV and 290 mV to reach current densities of 10 mA cm−2 and 100 mA cm−2, respectively. In the case of the hydrogen evolution reaction (HER), overpotentials of 89 mV and 172 mV are needed to achieve current densities of −10 mA cm−2 and −100 mA cm−2. The NiFeP-CoP/CF-based electrolytic cell requires a cell voltage of only 1.70 V to achieve a current density of 100 mA cm−2 for overall water splitting. Moreover, during long-term continuous operation at 100 mA cm−2, the overpotential for OER remains constant while that for HER decreases. The low-temperature growth of CoOOH nanosheets on Co foam provides a new strategy for large-scale electrode production applicable in electrochemical processes and pollutant degradation. Significantly, filling the nanosheet gaps with phosphides effectively enhances the electrocatalytic performance of the system. This work offers a facile and cost-effective technique for the large-scale production of metallic (oxyhydr)hydroxides for electrocatalytic water splitting, showing great potential for industrial applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

13 pages, 2374 KiB  
Article
Preparation of Metal-Hybridized Magnetic Nanocellulose for ω-Transaminase Immobilization
by Jiayao Yang, Xingxing Wang, Hongpeng Wang and Jun Huang
Catalysts 2025, 15(6), 510; https://doi.org/10.3390/catal15060510 - 22 May 2025
Viewed by 518
Abstract
The enzyme ω-transaminase (ω-TA) has garnered significant attention due to its capacity to catalyze the synthesis of chiral amines with high efficiency. Nevertheless, the lack of stability of ω-TA and the difficulty of recycling and reuse are still challenges that limit its application. [...] Read more.
The enzyme ω-transaminase (ω-TA) has garnered significant attention due to its capacity to catalyze the synthesis of chiral amines with high efficiency. Nevertheless, the lack of stability of ω-TA and the difficulty of recycling and reuse are still challenges that limit its application. This study developed a novel magnetic nanocellulose composite carrier (NNC@Fe3O4@Ni), synthesized from microcrystalline cellulose via low-eutectic solvent treatment, amine modification, and metal hybridization. The NNC@Fe3O4@Ni was characterized by FTIR, XPS, XRD, BET, and VSM. Additionally, the performance and catalytic behavior of the immobilized enzyme were investigated. The results revealed that NNC@Fe3O4@Ni exhibited a high specific surface area, superparamagnetism, and dual-site functionality (amine/Ni2⁺). Response Surface Methodology (RSM) optimized the carrier-enzyme interaction parameters, yielding optimal immobilization conditions: a mass ratio of 50.8 mg g−1, temperature of 12.5 °C, and duration of 58.6 min, achieving 82.91% enzyme activity recovery. Compared to free enzymes, the immobilized variant demonstrated enhanced catalytic stability, with expanded optimal pH (9.0) and temperature (30 °C). Thermal stability assessments showed 84.39% activity retention after 5 h at 30 °C and 90.30% residual activity post-120 h storage. The catalyst maintained >80% efficiency over 10 reuse cycles. These findings confirm the efficacy of magnetic nanocellulose carriers in enhancing ω-TA stability, reusability, and catalytic performance, offering a viable strategy for industrial biocatalytic processes. Full article
(This article belongs to the Special Issue Catalyst Immobilization)
Show Figures

Figure 1

14 pages, 3084 KiB  
Article
Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites
by Yujian Wu, Xiwei Xu, Xudong Fan, Yan Sun, Ren Tu, Enchen Jiang, Qing Xu and Chunbao Charles Xu
Catalysts 2025, 15(5), 498; https://doi.org/10.3390/catal15050498 - 20 May 2025
Viewed by 483
Abstract
Bio-oil is a potential source for the production of alternative fuels and chemicals. In this work, Ni-V bimetallic zeolite catalysts were synthesized and evaluated in in situ catalytic hydrodeoxygenation (HDO) of pyrolysis volatiles of pine nut shell for upgraded bio-oil products. The pH [...] Read more.
Bio-oil is a potential source for the production of alternative fuels and chemicals. In this work, Ni-V bimetallic zeolite catalysts were synthesized and evaluated in in situ catalytic hydrodeoxygenation (HDO) of pyrolysis volatiles of pine nut shell for upgraded bio-oil products. The pH and lower heating value (LHV) of the upgraded bio-oil products were improved by in situ catalytic HDO, while the moisture content and density of the oil decreased. The O/C ratio of the upgraded bio-oil products decreased significantly, and the oxygenated compounds in the pyrolysis volatiles were converted efficiently via deoxygenation over Ni-V zeolite catalysts. The highest HDO activity was obtained with NiV/MesoY, where the obtained bio-oil had the lowest O/C atomic ratio (0.27), a higher LHV (27.03 MJ/kg) and the highest selectivity (19.6%) towards target arenes. Owing to the more appropriate pore size distribution and better dispersion of metal active sites, NiV/MesoY enhanced the transformation of reacting intermediates, obtaining the dominant products of phenols and arenes. A higher HDO temperature improved the catalytic activity of pyrolysis volatiles to form more deoxygenated arenes. Higher Ni loading could generate more metal active sites, thus promoting the catalyst’s HDO activity for pyrolysis volatiles. This study contributes to the development of cost-efficient and eco-friendly HDO catalysts, which are required for producing high-quality biofuel products. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Figure 1

20 pages, 3722 KiB  
Article
Enhanced Photoelectrochemical Water Splitting Using a NiFe2O4/NG@MIL-100(Fe)/TiO2 Composite Photoanode: Synthesis, Characterization, and Performance
by Waheed Rehman, Faiq Saeed, Samia Arain, Muhammad Usman, Bushra Maryam and Xianhua Liu
J. Compos. Sci. 2025, 9(5), 250; https://doi.org/10.3390/jcs9050250 - 17 May 2025
Cited by 1 | Viewed by 656
Abstract
NiFe2O4 and TiO2 are widely studied for photoelectrochemical (PEC) applications due to their unique properties. Nitrogen-doped graphene (NG) and metal–organic frameworks (MOFs), such as MIL-100(Fe) (where MIL stands for Materials of Lavoisier Institute), are commonly incorporated to enhance PEC [...] Read more.
NiFe2O4 and TiO2 are widely studied for photoelectrochemical (PEC) applications due to their unique properties. Nitrogen-doped graphene (NG) and metal–organic frameworks (MOFs), such as MIL-100(Fe) (where MIL stands for Materials of Lavoisier Institute), are commonly incorporated to enhance PEC performance by offering a high surface area and facilitating efficient charge transport. Composite systems are commonly employed to overcome the limitations of individual PEC catalysts. In this study, a highly efficient NiFe2O4/NG@MIL-100(Fe)/TiO2 photoanode was developed to enhance photoelectrochemical water-splitting performance. The composite was synthesized via a hydrothermal method with a two-step heating process. X-ray diffraction confirmed the expected crystal structures, with peak broadening in NiFe2O4 indicating reduced crystallite size and increased lattice strain. X-ray photoelectron spectroscopy of the Ni 2p and Fe 2p regions validated the successful integration of NiFe2O4 into the composite. Electrochemical analysis demonstrated excellent performance, with linear sweep voltammetry achieving a peak photocurrent density of 3.5 mA cm−2 at 1.23 V (vs RHE). Electrochemical impedance spectroscopy revealed a reduced charge-transfer resistance of 50 Ω, indicating improved charge transport. Optical and electronic properties were evaluated using UV-Vis spectroscopy and Tauc plots, revealing a direct bandgap of 2.1 eV. The composite exhibited stable photocurrent under amperometric J-t testing for 2000 s, demonstrating its durability. These findings underscore the potential of NiFe2O4/NG@MIL-100(Fe)/TiO2 as a promising material for renewable energy applications, particularly in photoelectrochemical water splitting. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

15 pages, 3410 KiB  
Article
CeO2-Modified Ni2P/Fe2P as Efficient Bifunctional Electrocatalyst for Water Splitting
by Xinyang Wu, Dandan Wang, Yongpeng Ren, Haiwen Zhang, Shengyu Yin, Ming Yan, Yaru Li and Shizhong Wei
Materials 2025, 18(10), 2221; https://doi.org/10.3390/ma18102221 - 11 May 2025
Viewed by 674
Abstract
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement [...] Read more.
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement of satisfactory performance. Therefore, this study presents the highly efficient bifunctional electrocatalyst of CeO2-modified NiFe phosphide on nickel foam (CeO2/Ni2P/Fe2P/NF). Ni2P/Fe2P coupled with CeO2 was deposited on nickel foam through hydrothermal synthesis and sequential calcination processes. The electrocatalytic performance of the catalyst was evaluated in an alkaline solution, and it exhibited an HER overpotential of 87 mV at the current density of 10 mA cm−2 and an OER overpotential of 228 mV at the current density of 150 mA cm−2. Furthermore, the catalyst demonstrated good stability, with a retention rate of 91.2% for the HER and 97.3% for the OER after 160 h of stability tests. The excellent electrochemical performance can be attributed to the following factors: (1) The interface between Ni2P/Fe2P and CeO2 facilitates electron transfer and reactant adsorption, thereby improving catalytic activity. (2) The three-dimensional porous structure of nickel foam provides an ideal substrate for the uniform distribution of Ni2P, Fe2P, and CeO2 nanoparticles, while its high conductivity facilitates electron transport. (3) The incorporation of larger Ce3⁺ ions in place of smaller Fe3⁺ ions leads to lattice distortion and an increase in defects within the NiFe-layered double hydroxide structure, significantly enhancing its catalytic performance. This research finding offers an effective strategy for the design and synthesis of low-cost, high-potential catalysts for water electrolysis. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 5851 KiB  
Article
Unlocking Synergistic Catalysis in NiP: Dual Role of Electronic Structure and Lewis Acidity for Enhanced Oxygen Evolution Reaction
by Jiazhou Liang, Jiawei Li, Jiani Yan, Andrew M. Rappe and Jing Yang
Catalysts 2025, 15(5), 457; https://doi.org/10.3390/catal15050457 - 7 May 2025
Viewed by 480
Abstract
Nickel phosphides (NixPy) are recognized as promising alternatives to noble-metal catalysts for the oxygen evolution reaction (OER). NiP, consisting of the equal stoichiometric ratio of Ni and P, could help quantify the catalytic effect of P and Ni. In [...] Read more.
Nickel phosphides (NixPy) are recognized as promising alternatives to noble-metal catalysts for the oxygen evolution reaction (OER). NiP, consisting of the equal stoichiometric ratio of Ni and P, could help quantify the catalytic effect of P and Ni. In this work, density functional theory (DFT) is employed to investigate the OER mechanism on NiP surfaces. We found that P atoms help stabilize O* at the adsorption sites. The rich electron donation from the Ni atom can alter the local charge distribution and enhance the interaction between O* and P atoms. Both oxygen intermediate adsorption energy and OER overpotential exhibit linear correlations with the charge of adsorption sites. Electron loss at the site induces the overall system to exhibit Lewis acidic characteristics, facilitating the OER and leading to a substantial overpotential reduction of up to 0.61 V compared to Lewis basic structures. Leveraging electronic structure theory and Lewis acid–base theory, we offer a new insight into the OER mechanism on the NiP surface, demonstrating that the catalytic activity of bulk metallic surface materials like NiP can be optimized by tailoring the local surface chemical environment. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Graphical abstract

27 pages, 2510 KiB  
Article
Norfloxacin Oxidative Degradation and Toxicity in Aqueous Media: Reciprocal Effects of Acidity Evolution on Metal Cations and Clay Catalyst Dispersion
by Roumaissa Djidja, David Dewez and Abdelkrim Azzouz
Int. J. Mol. Sci. 2025, 26(9), 4347; https://doi.org/10.3390/ijms26094347 - 2 May 2025
Viewed by 681
Abstract
The ozonation of norfloxacin (NOF), a widely used fluoroquinolone antibiotic, in the presence of Na+, Fe2+, Cu2+, Ni2+, and Co2+ cations and their montmorillonite-supported counterparts was investigated. The NOF degradation and the toxicity of [...] Read more.
The ozonation of norfloxacin (NOF), a widely used fluoroquinolone antibiotic, in the presence of Na+, Fe2+, Cu2+, Ni2+, and Co2+ cations and their montmorillonite-supported counterparts was investigated. The NOF degradation and the toxicity of the ozonized mixtures towards an aquatic organism (Lemna minor) were evaluated in terms of changes in its frond number, chlorophyll content, photosynthesis efficacy, and production of reactive oxygen species (ROS). The evolution over time of the NOF degradation grade and the toxicity were discussed in terms of i. the observed changes in the interactions of the cation and clay catalyst with NOF molecules; ii. the pH decay, during ozonation. Ion-exchange and Lewis acid–base interactions appear to govern NOF adsorption and clay catalyst dispersion in correlation with the progressive formation of acidic species in the aqueous media. These findings reveal promising prospects for tailoring optimum oxidative water treatments with minimum toxicity and for predicting their environmental impacts on aquatic media. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

22 pages, 3114 KiB  
Article
Nickel-Decorated Carbocatalysts for the UV-Driven Photodegradation of Rhodamine B
by Juan Matos, Rory A. Smith, Ruby Bello, Po S. Poon, Rodrigo Segura-del-Río, Néstor Escalona and Svetlana Bashkova
Catalysts 2025, 15(4), 385; https://doi.org/10.3390/catal15040385 - 16 Apr 2025
Viewed by 409
Abstract
Nickel-decorated carbocatalysts were synthesized by the evaporation-induced self-assembly (EISA) method. The influence of the metal content and pyrolysis temperature upon the photoactivity was assessed through rhodamine B degradation under UV irradiation. The characterization revealed a mesoporous framework with a granular morphology composed of [...] Read more.
Nickel-decorated carbocatalysts were synthesized by the evaporation-induced self-assembly (EISA) method. The influence of the metal content and pyrolysis temperature upon the photoactivity was assessed through rhodamine B degradation under UV irradiation. The characterization revealed a mesoporous framework with a granular morphology composed of amorphous carbon, where the pyrolysis temperature influenced the metal dispersion on the carbon surface. The primary metallic phases consisted of elemental nickel crystallites and nickel carbide phases. The kinetic parameters for adsorption and dye photodegradation under UV irradiation were determined and compared to TiO2-P25. Correlations were found between the adsorption parameters, photocatalytic activity, and nickel content, the pyrolysis method (one-step vs. two-step pyrolysis), and the pyrolysis temperature. The sample with a 1:1:0.25 tannin/Pluronic®F-127/Ni weight ratio pyrolyzed at 700 °C exhibited the highest photoactivity, achieving rhodamine B degradation rates up to 68 and 2.5 times greater than photolysis and TiO2-P25. In terms of the normalized weight of the catalysts, it can be concluded that the present Ni-based catalysts are up to two orders of magnitude more photoactive than TiO2-P25 under UV irradiation, opening a door for indoor UV-driven photoreactors. These findings demonstrate that the EISA method is an effective, low-cost, and ecofriendly approach for synthesizing Ni-decorated carbocatalysts. Full article
(This article belongs to the Special Issue Hybrid Materials, Semiconductors and Carbon Photocatalysis)
Show Figures

Figure 1

12 pages, 3697 KiB  
Article
Ni-Doped Co-Based Metal–Organic Framework with Its Derived Material as an Efficient Electrocatalyst for Overall Water Splitting
by Jingyuan Zhang, Hui Ni, Jianing Yu and Bin Zhao
Catalysts 2025, 15(4), 355; https://doi.org/10.3390/catal15040355 - 5 Apr 2025
Viewed by 825
Abstract
Composite catalysts combining a metal–organic framework (MOF) with its derivatives have attracted significant attention in electrocatalysis due to their unique properties. In this study, we report the synthesis of a Ni-doped Co-1,4-benzenedicarboxylate (defined as Co3Ni1BDC) metal–organic framework via a [...] Read more.
Composite catalysts combining a metal–organic framework (MOF) with its derivatives have attracted significant attention in electrocatalysis due to their unique properties. In this study, we report the synthesis of a Ni-doped Co-1,4-benzenedicarboxylate (defined as Co3Ni1BDC) metal–organic framework via a straightforward solvothermal method, aiming to enhance oxygen evolution reaction (OER) activity. The introduction of Ni modulated the electronic structure, yielding high catalytic activity with an overpotential (η100) of 300 mV and excellent stability for the OER. The Co3Ni1BDC material was further encapsulated with Co2P nanoparticles via a controlled phosphating annealing process, forming a hybrid electrocatalyst (Co3Ni1BDC@Co2P) to boost hydrogen evolution reaction (HER) performance. The Co3Ni1BDC@ Co2P catalysts exhibited superior HER performance with low overpotentials of η10 = 20 mV and η100 = 127 mV, outperforming the Co3Ni1BDC precursor. An alkaline electrolyzer assembled with Co3Ni1BDC//Co3Ni1BDC@Co2P achieved a cell voltage of 1.70 V at a current density of 20 mA cm−2. This work provides a valuable idea for designing efficient electrocatalysts for overall water splitting. Full article
Show Figures

Graphical abstract

9 pages, 6125 KiB  
Communication
Computational Search for a Novel Effective Ligand for Ni-Catalyzed Asymmetric Hydrogenation
by Evgeny V. Pospelov, Ivan S. Golovanov, Jianzhong Chen, Wanbin Zhang and Ilya D. Gridnev
Catalysts 2025, 15(4), 352; https://doi.org/10.3390/catal15040352 - 3 Apr 2025
Viewed by 539
Abstract
Using the DFT method, an analogue of R,R-t-Bu-BenzP* was tried as a potential ligand for Ni-catalyzed asymmetric hydrogenation. This ligand contains benzyl groups instead of the t-Bu groups in R,R-t-Bu-BenzP*. Computational results [...] Read more.
Using the DFT method, an analogue of R,R-t-Bu-BenzP* was tried as a potential ligand for Ni-catalyzed asymmetric hydrogenation. This ligand contains benzyl groups instead of the t-Bu groups in R,R-t-Bu-BenzP*. Computational results imply that the R,R-Benz-BenzP* ligand (1) is expected to provide excellent enantioselectivity in the Ni-catalyzed asymmetric hydrogenation of 1-phenylethanone oxime. The computed effectiveness of the R,R-Benz-BenzP* ligand is stipulated by its conformational flexibility, which helps stabilize the crucial transition states via a non-bonding interaction between the substrate and the catalyst. R,R-Benz-BenzP* ligands with CN- and OMe-substituted benzyl rings were also computed to possess the same effectiveness. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

Back to TopTop