Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,118)

Search Parameters:
Keywords = Ni-doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2706 KB  
Article
Dual-Promoted Trimetallic CoMo-Ni/Al2O3-K2O Catalysts: Impact of K2O Doping on Guaiacol Hydrodeoxygenation Selectivity
by Kenian L. Arévalo Blanco, Wilder S. Campo Baca and Esneyder Puello Polo
Inorganics 2026, 14(2), 45; https://doi.org/10.3390/inorganics14020045 - 30 Jan 2026
Viewed by 84
Abstract
The influence of potassium oxide (K2O) doping on the hydrodeoxygenation (HDO) performance of trimetallic CoMo–Ni/Al2O3 catalysts was systematically investigated using guaiacol as a lignin-derived model compound. Catalysts containing 0, 1, 3, and 5 wt% K2O were [...] Read more.
The influence of potassium oxide (K2O) doping on the hydrodeoxygenation (HDO) performance of trimetallic CoMo–Ni/Al2O3 catalysts was systematically investigated using guaiacol as a lignin-derived model compound. Catalysts containing 0, 1, 3, and 5 wt% K2O were synthesized and characterized by SEM-EDS, N2 physisorption, XRD, FTIR, and HRTEM. SEM micrographs showed homogeneous morphologies with no significant agglomeration, while EDS analysis confirmed elemental compositions close to nominal values, with K2O contents increasing proportionally and maintaining uniform surface distribution. Adsorption–desorption isotherms confirmed mesoporous structures with specific surface areas ranging from 258 to 184 m2 g−1, decreasing with increasing K2O loading. XRD revealed γ-Al2O3, NiO, (NH4)3[CoMo6O24H6]·7H2O, and K2O phases, with slight peak shifts indicating surface modification rather than lattice incorporation of K+. FTIR spectra evidenced characteristic polyoxomolybdate vibrations and metal–oxygen interactions with alumina. HRTEM revealed MoS2 slab lengths between 1.85 and 2.51 nm, stacking numbers from 2.08 to 3.17, and Mo edge-to-corner ratios (fe/fc) between 1.39 and 2.43, corresponding to dispersions of 0.45–0.57. Guaiacol conversion remained high (≥95%) for all catalysts, while HDO selectivity strongly depended on K2O content. At 5 wt% K2O, cyclohexane selectivity reached 81.3% with an HDO degree of 65%, compared to 52.0% and 31% for the undoped catalyst. Pseudo-first-order kinetic analysis revealed that potassium promotes demethylation and demethoxylation steps while suppressing rearrangement pathways, steering the reaction network toward direct deoxygenation. These results demonstrate that K2O acts as an efficient structural and electronic promoter, enabling precise control of HDO selectivity without compromising catalytic activity. Full article
(This article belongs to the Special Issue Transition Metal Catalysts: Design, Synthesis and Applications)
Show Figures

Figure 1

20 pages, 3801 KB  
Article
Synthesis of MgO Doped with CoO/MgAl2O4, NiO/MgAl2O4, and CuO/MgAl2O4 in a Single Pot for Efficient Dye Adsorption
by Salah H. Elhory, Tarig G. Ibrahim, Mohamed R. Elamin, Faisal K. Algethami, Mohamed S. Eltoum, Babiker Y. Abdulkhair and Mutaz Salih
Inorganics 2026, 14(2), 44; https://doi.org/10.3390/inorganics14020044 - 30 Jan 2026
Viewed by 62
Abstract
A simple method employing dextrose as a capping agent was adopted for making MgAl2O4@MgO (AM), 5%NiO-MgAl2O4@MgO (AMNi), 5%CoO-MgAl2O4@MgO (AMCo), and 5%CuO-MgAl2O4@MgO (AMCu) nanocomposites. The average particle sizes, [...] Read more.
A simple method employing dextrose as a capping agent was adopted for making MgAl2O4@MgO (AM), 5%NiO-MgAl2O4@MgO (AMNi), 5%CoO-MgAl2O4@MgO (AMCo), and 5%CuO-MgAl2O4@MgO (AMCu) nanocomposites. The average particle sizes, determined via SEM, were in the range of 21.6–51.4 nm, 9.8–13.8 nm, 19.1–32.2 nm, and 9.2–31.2 nm for AM, AMCu, AMNi, and AMCo, respectively. The nanosorbents exhibited type IV isotherm curves and type H3 hysteresis loops, signifying mesoporous properties. The AM, AMCu, AMNi, and AMCo exhibited surface areas of 69.47, 95.87, 86.23, and 75.87 m2/g, respectively. The pseudo second order described the indigo carmine (IDC) sorptions onto AM, AMCu, AMNi, and AMCo. The liquid film diffusion regulated IDC sorption on AMNi and AMCo, whereas the intraparticle diffusion was the dominant model on AM and AMCu. The AMCu’s showed a qt value of 127 mg g−1 from a 50 mg L−1 IDC solution at 20 °C, and 286.2 mg g−1 from a 200 mg L−1 IDC solution at 50 °C, establishing its capability for treating contaminated water. The IDC sorption onto AMCu aligns with the Freundlich model, which may elucidate the elevated qt value of AMCu. Elevating the temperature induced the IDC sorption on AMCu, indicating its endothermic nature, and the negative ΔG° implied that the IDC sorption by AMCu was spontaneous. A 5.0 and 10.0 mg L−1 IDC concentration in natural water samples was treated by the AMCu, which showed 100.0% efficacy for both groundwater samples; however, its efficacy toward the 5 and 10 mg L−1 IDC in seawater was 99.23% and 89.78%, respectively. The MACu’s efficiency throughout four reuse cycles decreased by only 7.21%, demonstrating excellent stability and reusability performance. Full article
14 pages, 2500 KB  
Article
Mesoporous Structure and N-Doped Carbon Coating Skeleton Boosting High-Performance Nickel Phosphide Nanosheet-Based Electrocatalysts for Highly Efficient Electrocatalytic Hydrogen Evolution
by Yixuan Tang, Xiaowei Niu, Zhengjun Guan, Chengxin Wang, Xinyu Ma, Haonan Wang and Hongyuan Pan
Crystals 2026, 16(2), 100; https://doi.org/10.3390/cryst16020100 - 30 Jan 2026
Viewed by 74
Abstract
Earth-abundant nickel phosphide electrocatalysts show great potential for the hydrogen evolution reaction (HER), yet their efficiency requires further enhancement for practical applications. Herein, a novel in situ strategy is developed to synthesize a high-performance electrocatalyst on nickel foam (NF), composed of N-doped carbon-coated [...] Read more.
Earth-abundant nickel phosphide electrocatalysts show great potential for the hydrogen evolution reaction (HER), yet their efficiency requires further enhancement for practical applications. Herein, a novel in situ strategy is developed to synthesize a high-performance electrocatalyst on nickel foam (NF), composed of N-doped carbon-coated Ni5P4–Ni3P heterostructures. This is achieved through the phosphidation and subsequent carbon coating of hydrothermally grown Ni(OH)2 nanosheets. The resulting catalyst exhibits excellent HER activity in acidic media, requiring a low overpotential of only 63 mV to achieve a current density of 10 mA cm−2. The superior performance stems from the synergistic effects of multiple factors: the porous nanosheet architecture and multi-phase interfaces provide abundant active sites, while the conductive N-doped carbon network significantly enhances charge-transfer kinetics and catalyst stability. This work presents an effective approach for designing efficient non-precious metal HER electrocatalysts. Full article
(This article belongs to the Special Issue Polymeric Materials for Sustainable Catalysis and Energy Applications)
Show Figures

Figure 1

20 pages, 3808 KB  
Article
Monometallic and Bimetallic Ni–Cu Catalysts Supported on Gd-Doped CeO2 for Hydrogen-Rich Syngas Production via Methane Partial Oxidation
by Pannipa Nachai
J. Compos. Sci. 2026, 10(2), 65; https://doi.org/10.3390/jcs10020065 - 28 Jan 2026
Viewed by 231
Abstract
Partial oxidation of methane is a highly attractive route for hydrogen-rich syngas production, provided that high H2 yields and H2/CO ratios above 3 can be achieved. Herein, we demonstrate that precise compositional tuning of Ni–Cu bimetallic catalysts supported on Gd-doped [...] Read more.
Partial oxidation of methane is a highly attractive route for hydrogen-rich syngas production, provided that high H2 yields and H2/CO ratios above 3 can be achieved. Herein, we demonstrate that precise compositional tuning of Ni–Cu bimetallic catalysts supported on Gd-doped CeO2 enables direct control over defect chemistry and reaction pathways in partial oxidation of methane. A systematic investigation of Ni/Cu ratios was conducted to elucidate composition–structure–activity relationships using X-ray diffraction, Raman spectroscopy, temperature-programmed reduction/oxidation/desorption, and thermogravimetric analysis. While monometallic 5%Ni/GDC and promoted 1%Re4%Ni/GDC exhibited high methane conversion, they failed to deliver optimal hydrogen selectivity. In contrast, introducing Cu within a narrow compositional window fundamentally altered the reaction mechanism. The 2.5%Ni2.5%Cu/GDC catalyst showed limited oxygen vacancy formation and pronounced carbon deposition, leading to inferior catalytic performance. Remarkably, the 3.5%Ni1.5%Cu/GDC catalyst maximized both oxygen vacancy density and surface basicity, thereby selectively activating CO2- and H2O-assisted oxidation routes and enforcing the exclusive dominance of indirect POM pathways. This defect-mediated pathway control effectively decoupled methane activation from hydrogen-consuming side reactions while simultaneously promoting hydrogen-forming, CO-consuming reactions, most notably the water–gas shift reaction. As a result, the optimized 3.5%Ni1.5%Cu/GDC catalyst achieved an H2 yield of 84% with an H2/CO ratio of 3.11 and maintained stable operation for 40 h on stream at 600 °C. These findings establish Ni–Cu compositional tuning as a powerful strategy for defect engineering and reaction pathway regulation, providing new design principles for efficient and durable partial oxidation of methane catalysts targeting hydrogen-rich syngas production. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

11 pages, 3393 KB  
Communication
NiTe2-Based Saturable Absorber for a Passively Q-Switched Ytterbium-Doped Fiber Laser
by Kunpeng Wang, Jie Fang and Dang Wang
Materials 2026, 19(3), 500; https://doi.org/10.3390/ma19030500 - 27 Jan 2026
Viewed by 138
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) are key materials in ultrafast photonics. However, the performance of conventional TMDs is limited by their bandwidth and carrier recovery time. The novel Dirac semimetal nickel ditelluride (NiTe2), with its broad-band response and excellent nonlinear properties, [...] Read more.
Two-dimensional transition metal dichalcogenides (TMDs) are key materials in ultrafast photonics. However, the performance of conventional TMDs is limited by their bandwidth and carrier recovery time. The novel Dirac semimetal nickel ditelluride (NiTe2), with its broad-band response and excellent nonlinear properties, emerges as an ideal candidate for saturable absorber (SA) materials. In this work, we report, for the first time, the application of NiTe2 in the ytterbium-doped fiber laser, demonstrating stable passive Q-switching operation. The nonlinear transmission curve reveals a modulation depth of 6.82% at 1 µm and a saturation intensity of 2.12 MW/cm2. Using an all-fiber ring cavity structure, stable Q-switched pulses with a central wavelength of 1031 nm were achieved at a pump threshold of 94 mW, with a maximum pulse repetition frequency of 30.1 kHz. The minimum pulse width reached 2.3 μs, and the single-pulse energy increased to 3.05 nJ, with an impressive radio frequency (RF) spectral signal-to-noise ratio (SNR) of 58.9 dB. This study demonstrates the potential of NiTe2 as a high-performance SA in the near-infrared region, providing a solid foundation for its future application in ultrafast laser technologies. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

22 pages, 4846 KB  
Article
Carbon-NiTiO2 Nanosorbent as Suitable Adsorbents for the Detoxification of Zn2+ Ions via Combined Metal–Oxide Interfaces
by Azizah A. Algreiby, Abrar S. Alnafisah, Muneera Alrasheedi, Tahani M. Alresheedi, Ajayb Alresheedi, Abuzar Albadri and Abueliz Modwi
Inorganics 2026, 14(2), 36; https://doi.org/10.3390/inorganics14020036 - 26 Jan 2026
Viewed by 140
Abstract
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. [...] Read more.
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. The dominance of the TiO2 anatase phase with a ≈ 61 nm crystallite size was verified by XRD and Raman investigation. Morphology investigations exposed polygonal nanoparticles consisting of Ti, C, Ni, and O. The nanostructure exhibited a surface area of 17 m2·g−1, a pore diameter of ≈1.5 nm, and a pore volume of 0.0315 cm3·g−1. The nanostructure was evaluated for the elimination of Zn (II) ions from an aqueous solution. The metal ion adsorption onto the hybrid nanomaterial was described and comprehended using adsorption kinetics and equilibrium models. The adsorption data matched well with the pseudo-second-order kinetics and Langmuir adsorption models, indicating a monolayer chemisorption mechanism and achieving a maximum Zn (II) ion elimination of 369 mg·g−1. Mechanistic investigation indicated film diffusion-controlled adsorption through inner-sphere complexation. The nanosorbent could be regenerated and reused for four rounds without appreciable activity loss, thus demonstrating its potential for water cleanup applications. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

20 pages, 4393 KB  
Article
Biosynthesis, Characterisation, and Antimicrobial Activities of Nickel-Doped Silver Nanoparticles Using Caralluma umbellata Plant Root Extract
by Gundeti Bhagyalaxmi, Kothamasu Suresh Babu, Kannan Ramamurthy, Raju Vidap and Srinivas Ravella
Surfaces 2026, 9(1), 12; https://doi.org/10.3390/surfaces9010012 - 23 Jan 2026
Viewed by 258
Abstract
Greenly synthesised Ni-doped Ag nanoparticles utilising Caralluma umbellata root extracts, and an investigation into their optical properties, biological properties, and characterisation, is the focus of the study. Characterisation was performed using FTIR analysis, UV-Vis, X-ray diffraction, and field emission scanning electron microscopy. The [...] Read more.
Greenly synthesised Ni-doped Ag nanoparticles utilising Caralluma umbellata root extracts, and an investigation into their optical properties, biological properties, and characterisation, is the focus of the study. Characterisation was performed using FTIR analysis, UV-Vis, X-ray diffraction, and field emission scanning electron microscopy. The synthesis of Ni-doped Ag nanoparticles was confirmed through UV-Vis spectroscopy, revealing a peak at 396 nm and a band gap energy of 3.24 eV. XRD analysis revealed a face-centred cubic structure with a crystallite size of 55.22 nm (as-prepared) and 18.56 nm (annealed at 200 °C). Reduction and capping were demonstrated by FTIR, as evidenced by the presence of phytochemicals. The Ag NPs demonstrated potent antibacterial activity against both Gram-positive and Gram-negative bacteria, with a minimal inhibitory concentration of 1.25 μg/mL observed against Streptococcus mutans. Their vigorous anti-oxidant activity, as well as in vitro anti-diabetic potential through alpha-amylase and alpha-glucosidase inhibition, also proves suitable for biomedical applications. Full article
Show Figures

Figure 1

20 pages, 4761 KB  
Article
High-Performance CoxNiy@NC/SiO2 Catalysts Derived from ZIF-67 for Enhanced Hydrogenation of 1-Nitronaphthalene
by Xuedong Lan, Ming Zhong, Weidi Dai and Pingle Liu
Catalysts 2026, 16(1), 93; https://doi.org/10.3390/catal16010093 - 16 Jan 2026
Viewed by 336
Abstract
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni [...] Read more.
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni alloys and modulates the electronic structure of the catalysts. The catalytic performance was found to be highly sensitive to the Co/Ni ratio, with Co2Ni1@NC/SiO2 exhibiting the most outstanding activity. Under optimized reaction conditions (90 °C, 0.6 MPa H2, 5.5 h), both the conversion of 1-nitronaphthalene and the selectivity toward 1-naphthylamine reached approximately 99%. The catalyst also demonstrated excellent stability and recyclability, attributed to the protective nitrogen-doped carbon shell and the synergistic interaction between the Co–Ni alloy and M–Nx active sites. This work provides a new strategy for designing efficient and robust non-noble-metal catalysts for hydrogenation reactions. Full article
(This article belongs to the Special Issue Catalysis and Sustainable Green Chemistry)
Show Figures

Graphical abstract

13 pages, 3784 KB  
Article
Catalytic Performance of B-Site-Doped LaMnO3 Perovskite in Toluene Oxidation
by Xin Cui, Yizhan Wang, Xiaoliang Shi, Jia Lian, Yajie Pang, Zhenxiang Sun, Fengyu Zhou and Zhiyu Zhou
Catalysts 2026, 16(1), 87; https://doi.org/10.3390/catal16010087 - 13 Jan 2026
Viewed by 304
Abstract
The catalytic removal of toluene, a representative aromatic volatile organic compound (VOC), requires efficient and stable catalysts. This study systematically investigated the effect of B-site doping with transition metals (Fe, Cu, and Ni) on the catalytic performance of LaMnO3 perovskite for toluene [...] Read more.
The catalytic removal of toluene, a representative aromatic volatile organic compound (VOC), requires efficient and stable catalysts. This study systematically investigated the effect of B-site doping with transition metals (Fe, Cu, and Ni) on the catalytic performance of LaMnO3 perovskite for toluene oxidation. The LaMn0.5X0.5O3 catalysts were synthesized via a sol–gel method and evaluated. The LaMn0.5Ni0.5O3 catalysts exhibited the optimal catalytic performance, achieving toluene conversion temperatures of 243 °C at 50% conversion (T50) and 296 °C at 90% conversion (T90). Comprehensive characterization revealed that Ni doping effectively refined the catalyst’s microstructure (grain size decreased to 19.21 nm), increased the concentration of surface-active oxygen species (142.7%), elevated the Mn4+/Mn3+ ratio to 0.65, and enhanced lattice oxygen mobility. These modifications collectively contributed to its outstanding catalytic activity. The findings demonstrate that targeted B-site doping, particularly with Ni, is a promising strategy for engineering efficient perovskite catalysts for VOC abatement. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Graphical abstract

12 pages, 2717 KB  
Article
Photoconductive Gain Behavior of Ni/β-Ga2O3 Schottky Barrier Diode-Based UV Detectors
by Viktor V. Kopyev, Nikita N. Yakovlev, Alexander V. Tsymbalov, Dmitry A. Almaev and Pavel V. Kosmachev
Micromachines 2026, 17(1), 100; https://doi.org/10.3390/mi17010100 - 12 Jan 2026
Viewed by 522
Abstract
A vertical Ni/β-Ga2O3 Schottky barrier diode was fabricated on an unintentionally doped bulk (−201)-oriented β-Ga2O3 single crystal and investigated with a focus on the underlying photoresponse mechanisms. The device exhibits well-defined rectifying behavior, characterized by a Schottky [...] Read more.
A vertical Ni/β-Ga2O3 Schottky barrier diode was fabricated on an unintentionally doped bulk (−201)-oriented β-Ga2O3 single crystal and investigated with a focus on the underlying photoresponse mechanisms. The device exhibits well-defined rectifying behavior, characterized by a Schottky barrier height of 1.63 eV, an ideality factor of 1.39, and a high rectification ratio of ~9.7 × 106 arb. un. at an applied bias of ±2 V. The structures demonstrate pronounced sensitivity to deep-ultraviolet radiation (λ ≤ 280 nm), with maximum responsivity observed at 255 nm, consistent with the wide bandgap of β-Ga2O3. Under 254 nm illumination at a power density of 620 μW/cm2, the device operates in a self-powered mode, generating an open-circuit voltage of 50 mV and a short-circuit current of 47 pA, confirming efficient separation of photogenerated carriers by the built-in electric field of the Schottky junction. The responsivity and detectivity of the structures increase from 0.18 to 3.87 A/W and from 9.8 × 108 to 4.3 × 1011 Hz0.5cmW−1, respectively, as the reverse bias rises from 0 to −45 V. The detectors exhibit high-speed performance, with rise and decay times not exceeding 29 ms and 59 ms, respectively, at an applied voltage of 10 V. The studied structures demonstrate internal gain, with the external quantum efficiency reaching 1.8 × 103%. Full article
Show Figures

Figure 1

23 pages, 3143 KB  
Article
Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Anatolijs Šarakovskis, Enrico Gnecco and Liutauras Marcinauskas
Crystals 2026, 16(1), 52; https://doi.org/10.3390/cryst16010052 - 12 Jan 2026
Viewed by 172
Abstract
This study aimed to examine the influence of sputtering temperature on the bonding structure and properties of non-hydrogenated chromium/nickel co-doped diamond-like carbon (DLC) films synthesized via direct current magnetron sputtering. The Cr/Ni doping levels in the coatings were regulated by varying the shield [...] Read more.
This study aimed to examine the influence of sputtering temperature on the bonding structure and properties of non-hydrogenated chromium/nickel co-doped diamond-like carbon (DLC) films synthesized via direct current magnetron sputtering. The Cr/Ni doping levels in the coatings were regulated by varying the shield opening above a chromium-nickel (20/80 at.%) target, resulting in a total metal co-doping concentration ranging from 6.1 to 8.9 at.%. The thickness of the Cr/Ni-DLC films ranged from 160 to 180 nm. Meanwhile, the deposition temperatures of 185 °C and 235 °C were achieved by adjusting the substrate-to-target distance. The XPS and Raman spectroscopy results indicated enhanced graphitization of the Cr/Ni-DLC films with a decrease in the synthesis temperature. XPS results indicated the formation of carbon-oxide and metal-oxide bonds, with no evidence of metal carbide formation in the doped DLC films. Furthermore, both the nanohardness and Young’s modulus demonstrated significant improvement, while the friction coefficient was reduced more than twice as the deposition temperature increased. These findings provide valuable insights into the influence of deposition temperature on Cr/Ni co-doped DLC films, highlighting their potential as advanced functional coatings. Full article
(This article belongs to the Special Issue Functional Thin Films: Growth, Characterization, and Applications)
Show Figures

Figure 1

14 pages, 1098 KB  
Article
The Effect of Ni Doping on the Mechanical and Thermal Properties of Spinel-Type LiMn2O4: A Theoretical Study
by Xiaoran Li, Lu Ren, Changxin Li, Lili Zhang, Jincheng Ji, Mao Peng and Pengyu Xu
Ceramics 2026, 9(1), 5; https://doi.org/10.3390/ceramics9010005 - 10 Jan 2026
Viewed by 190
Abstract
The development of lithium-ion batteries necessitates cathode materials that possess excellent mechanical and thermal properties in addition to electrochemical performance. As a prominent functional ceramic, the properties of spinel LiMn2O4 are governed by its atomic-level structure. This study systematically investigates [...] Read more.
The development of lithium-ion batteries necessitates cathode materials that possess excellent mechanical and thermal properties in addition to electrochemical performance. As a prominent functional ceramic, the properties of spinel LiMn2O4 are governed by its atomic-level structure. This study systematically investigates the impact of Ni doping concentration on the mechanical and thermal properties of spinel LiNixMn2−xO4 via first-principles calculations combined with the bond valence model. The results suggest that when x = 0.25, the LiNixMn2−xO4 shows excellent mechanical properties, including a high bulk modulus and hardness, due to the favorable ratio of bond valence to bonds length in octahedra. Furthermore, this optimized composition shows a lower thermal expansion coefficient. Additionally, Ni doping concentration has a very minimal influence on the maximum tolerable temperature of the cathode material during rapid heating. Therefore, from the perspective of mechanical and thermal properties, this composition could be beneficial for improving the cycling life of the battery, since comparatively inferior mechanical properties and a higher thermal expansion coefficient make it prone to microcrack formation during charge–discharge cycles. Full article
Show Figures

Figure 1

21 pages, 5522 KB  
Article
Performance and Mechanism of Monolithic Co-Doped Nickel–Iron Foam Catalyst for Highly Efficient Activation of PMS in Degrading Chlortetracycline in Water
by Yiqiong Yang, Xuyang Gao, Juan Han, Mingkun Cao, Li Qing, Liren Yu and Xiaodong Zhang
Catalysts 2026, 16(1), 39; https://doi.org/10.3390/catal16010039 - 1 Jan 2026
Viewed by 312
Abstract
Metal–organic framework (MOF) materials were extensively studied in the removal of pollutants in wastewater. However, catalysts in the powder form usually suffered from the strong tendency to agglomerate and the intricate operation for recycling, which significantly limited their practical application. In comparison, monolithic [...] Read more.
Metal–organic framework (MOF) materials were extensively studied in the removal of pollutants in wastewater. However, catalysts in the powder form usually suffered from the strong tendency to agglomerate and the intricate operation for recycling, which significantly limited their practical application. In comparison, monolithic catalysts with their high macroscopic operability and recoverability as well as impressive specific surface area have attracted tremendous attention in recent years. To address these issues, a monolithic Fe-based catalyst was prepared via in situ synthesis, using nickel–iron foam (NFF) as the substrate with cobalt (Co) incorporation. XPS analysis showed that Co doping enhanced the synergistic interaction among Fe, Ni, and Co, accelerating the redox cycle among species, thus improving electron transfer and laying a kinetic foundation for efficient peroxymonosulfate (PMS) activation. Quenching experiments and EPR indicated singlet oxygen (1O2) as the main reactive species; Co doping shifted the degradation pathway from radicals to non-radicals. Under optimized conditions (PMS: 0.08 mmol/L; catalyst: 1 cm2; initial Chlortetracycline (CTC): 50 mg/L), 95.7% CTC degradation was achieved within 60 min, and efficiency only dropped to 90.5% after 5 cycles. This catalyst provided theoretical and technical support for the application of monolithic MOF-derived catalysts and highly efficient PMS activators. Full article
(This article belongs to the Special Issue Porous Catalytic Materials for Environmental Purification)
Show Figures

Graphical abstract

16 pages, 3388 KB  
Article
Study on the Catalytic Reduction Performance of Mg-Doped NiFe2O4 Ferrite for CO2 by Adopting the Co-Precipitation Method
by Leyang Guo and Junwu Guo
Catalysts 2026, 16(1), 32; https://doi.org/10.3390/catal16010032 - 31 Dec 2025
Viewed by 266
Abstract
Spinel ferrites offer a versatile platform for high-temperature CO2 conversion, yet simultaneously achieving strong adsorption/activation and long-cycle thermal stability remains challenging. Here, we tailor the defect chemistry and microstructure of NiFe2O4 through low-level A/B-site modification by partially substituting Ni [...] Read more.
Spinel ferrites offer a versatile platform for high-temperature CO2 conversion, yet simultaneously achieving strong adsorption/activation and long-cycle thermal stability remains challenging. Here, we tailor the defect chemistry and microstructure of NiFe2O4 through low-level A/B-site modification by partially substituting Ni with Mg (Ni0.96Mg0.04Fe2O4). The catalyst was synthesized by Mg doping and characterized comprehensively by ICP, XRD, SEM and CO2-TPD, followed by evaluation of CO2 adsorption and thermal decomposition activity under cyclic operation. Mg incorporation suppresses grain coarsening, refines crystallites, increases accessible surface area and reduces particle size, thereby improving resistance to thermal aging. The enriched oxygen-vacancy population enhances oxygen storage and strengthens CO2 adsorption, which translates into higher catalytic utilization of active sites. Under repeated CO2 decomposition cycles, the Mg-modified ferrite shows markedly improved stability and service life, achieving a carbon deposition of 19.62%. The combined evidence indicates that Mg substitution stabilizes the spinel lattice against sintering while promoting vacancy-assisted CO2 activation, providing a simple and cost-effective compositional lever to balance activity and durability for high-temperature CO2-to-carbon conversion. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 12824 KB  
Article
A Theoretical Study of the Reactive Mechanisms of Alkali Metal Doped Ni-Based Oxygen Carrier During Chemical Looping Combustion
by Minjun Wang, Xingyao Nie and Ming Xia
Catalysts 2026, 16(1), 14; https://doi.org/10.3390/catal16010014 - 24 Dec 2025
Viewed by 567
Abstract
Chemical looping combustion (CLC) is a promising technology for CO2 capture, with the performance of the system largely dependent on the oxygen carrier. Although Ni-based carriers have been extensively investigated, their practical application is still constrained by inadequate reactivity. This study investigated [...] Read more.
Chemical looping combustion (CLC) is a promising technology for CO2 capture, with the performance of the system largely dependent on the oxygen carrier. Although Ni-based carriers have been extensively investigated, their practical application is still constrained by inadequate reactivity. This study investigated the doping of alkali metals (Li, Na, K) into NiO to improve its performance in CLC. Through density functional theory calculations, the structural, electronic, and reactivity of doped NiO surfaces were systematically analyzed. Results reveal that doping induces lattice expansion and enhances CO adsorption, with adsorption energies strengthening to −0.53 eV for Li, −0.46 eV for Na, and −0.36 eV for K. Furthermore, alkali metal doping significantly reduces the energy barrier for CO2 formation from 2.12 eV on pure NiO to 0.73 eV, 0.80 eV, and 0.99 eV on Li-, Na-, and K-doped surfaces, respectively. Oxygen vacancy formation energy also decreases from 3.60 eV to as low as 2.90 eV for K-doping, indicating markedly improved oxygen activity. Electronic structure analysis confirms that doping facilitates electron transfer and stabilizes key reaction intermediates. In conclusion, alkali metal doping substantially enhances the redox activity of NiO, providing an effective strategy for developing high-performance oxygen carriers in CLC. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
Show Figures

Graphical abstract

Back to TopTop