Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films
Abstract
1. Introduction
2. Experimental Section
2.1. Films Formation
2.2. Characterization Techniques
3. Results and Discussion
3.1. Elemental Composition and Bonding Structure
3.2. Surface Morphology
3.3. Tribological and Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barba, E.; Claver, A.; Montalà, F.; Palacio, J.F.; Luis-Pérez, C.J.; Sala, N.; Colominas, C.; García, J.A. Study of the Industrial Application of Diamond-Like Carbon Coatings Deposited on Advanced Tool Steels. Coatings 2024, 14, 159. [Google Scholar] [CrossRef]
- Kolawole, F.O.; Kolade, O.S.; Bello, S.A.; Kolawole, S.K.; Ayeni, A.T.; Elijah, T.F.; Borisade, S.G.; Tschiptschin, A.P. The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: An updated review study. Int. J. Adv. Manuf. Technol. 2023, 126, 2295–2322. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, J.; Wang, Z.; Xiao, Y.; Qiu, X. Diamond-like Carbon Coatings in the Biomedical Field: Properties, Applications and Future Development. Coatings 2022, 12, 1088. [Google Scholar] [CrossRef]
- Shah, R.; Pai, N.; Khandekar, R.; Aslam, R.; Wang, Q.; Yan, Z.; Rosenkranz, A. DLC coatings in biomedical applications—Review on current advantages, existing challenges, and future directions. Surf. Coat. Technol. 2024, 487, 131006. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Xu, T.; Liu, W.; Zhang, J. Comparing internal stress in diamond-like carbon films with different structure. Thin Solid Film. 2007, 515, 6899–6903. [Google Scholar] [CrossRef]
- Ban, M.; Hasegawa, T.; Fujii, S.; Fujioka, J. Stress and structural properties of diamond-like carbon films deposited by electron beam excited plasma CVD. Diam. Relat. Mater. 2003, 12, 47–56. [Google Scholar] [CrossRef]
- Vetter, J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [Google Scholar] [CrossRef]
- Kalin, M.; Roman, E.; Ožbolt, L.; Vižintin, J. Metal-doped (Ti, WC) diamond-like-carbon coatings: Reactions with extreme-pressure oil additives under tribological and static conditions. Thin Solid Film. 2010, 518, 4336–4344. [Google Scholar] [CrossRef]
- Zhairabany, H.; Khaksar, H.; Vanags, E.; Marcinauskas, L. Effect of Molybdenum Concentration and Deposition Temperature on the Structure and Tribological Properties of the Diamond-like Carbon Films. Crystals 2024, 14, 962. [Google Scholar] [CrossRef]
- Weicheng, K.; Zhou, Y.; Jun, H. Effect of carburizing treatment on microstructural, mechanical and tribological performances of Cr doped DLC coating deposited on Ti6Al4V alloy. Ceram. Int. 2021, 47, 34425–34436. [Google Scholar] [CrossRef]
- Mi, B.; Wang, H.; Wang, Q.; Cai, J.; Qin, Z.; Chen, Z. Corrosion resistance and contact resistance properties of Cr-doped amorphous carbon films deposited under different carbon target current on the 316L stainless steel bipolar plate for PEMFC. Vacuum 2022, 203, 111263. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Yu, S.; Liu, Y.; Shi, B.; Hu, E.; Hei, H. Investigation of hydrophobic and anti-corrosive behavior of Cr-DLC film on stainless steel bipolar plate. Diam. Relat. Mater. 2022, 129, 109352. [Google Scholar] [CrossRef]
- Zou, C.W.; Wang, H.J.; Feng, L.; Xue, S.W. Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings. Appl. Surf. Sci. 2013, 286, 137–141. [Google Scholar] [CrossRef]
- Gayathri, S.; Kumar, N.; Krishnan, R.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.; Sridharan, M. Influence of Cr content on the micro-structural and tribological properties of PLD grown nanocomposite DLC-Cr thin films. Mater. Chem. Phys. 2015, 167, 194–200. [Google Scholar] [CrossRef]
- Dovydaitis, V.; Marcinauskas, L.; Ayala, P.; Gnecco, E.; Chimborazo, J.; Zhairabany, H.; Zabels, R. The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films. Vacuum 2021, 191, 110351. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.; Kang, J.; Tang, L.; Ma, G.; Han, C.; Shi, J.; Wang, H. Different Cr Contents on the Microstructure and Tribomechanical Properties of Multi-Layered Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering. J. Mater. Eng. Perform. 2020, 29, 7131–7140. [Google Scholar] [CrossRef]
- Khun, N.W.; Liu, E.; Yang, G.C. Structure, scratch resistance and corrosion performance of nickel doped diamond-like carbon thin films. Surf. Coat. Technol. 2010, 204, 3125–3130. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Hu, X.; Tian, Y.; Wang, H.; Fu, H.; Li, H. Molecular dynamics simulation of hybrid structure and mechanical properties of DLC/Ni-DLC thin films. Sci. Rep. 2024, 14, 18885. [Google Scholar] [CrossRef]
- Solovyev, A.A.; Oskomov, K.V.; Grenadyorov, A.S.; Maloney, P.D. Preparation of nickel-containing conductive amorphous carbon films by magnetron sputtering with negative high-voltage pulsed substrate bias. Thin Solid Film. 2018, 650, 37–43. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, W.; Liu, E.; Zhou, M.; Zhang, B.; Cai, H.; Zhang, J. Effect of CNTs concentration on the microstructure and properties of B, Ni, CNTs co-doped diamond like carbon films. Diam. Relat. Mater. 2024, 149, 111526. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.S.; Tsao, C.C.; Hu, C.C.; Chen, C.; Hsu, C.Y. Characteristics of DLC films doped with multi-element alloy. Int. J. Adv. Manuf. Technol. 2022, 121, 2631–2646. [Google Scholar] [CrossRef]
- Mi, B.; Wang, Q.; Xu, Y.; Qin, Z.; Chen, Z.; Wang, H. Improvement in Corrosion Resistance and Interfacial Contact Resistance Properties of 316L Stainless Steel by Coating with Cr, Ti Co-Doped Amorphous Carbon Films in the Environment of the PEMFCs. Molecules 2023, 28, 2821. [Google Scholar] [CrossRef]
- Sun, L.; Zuo, X.; Guo, P.; Li, X.; Ke, P.; Wang, A. Role of deposition temperature on the mechanical and tribological properties of Cu and Cr co-doped diamond-like carbon films. Thin Solid Film. 2019, 678, 16–25. [Google Scholar] [CrossRef]
- Sun, L.; Guo, P.; Ke, P.; Li, X.; Wang, A. Synergistic effect of Cu/Cr co-doping on the wettability and mechanical properties of diamond-like carbon films. Diam. Relat. Mater. 2016, 68, 1–9. [Google Scholar] [CrossRef]
- Zhang, D.; Yi, P.; Peng, L.; Lai, X.; Pu, J. Amorphous carbon films doped with silver and chromium to achieve ultra-low interfacial electrical resistance and long-term durability in the application of proton exchange membrane fuel cells. Carbon 2019, 145, 333–344. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Li, K.; Shi, B.; Liu, Y.; Gong, Y.; Yu, S. Comparation on the tribological properties of textured design between Si/Ni-DLC and Si/Ta-DLC composite films. Vacuum 2025, 233, 114017. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, W.; Zhang, Y.; Jia, Y.; Liu, J.; Zhang, C. Electrodeposition, microstructure and tribological performance of Ni/(N) incorporated diamond-like carbon films. Surf. Coat. Technol. 2022, 447, 128876. [Google Scholar] [CrossRef]
- Platnieks, O.; Zhairabany, H.; Khaksar, H.; Gnecco, E.; Gaidukovs, S.; Vanags, E.; Sarakovskis, A.; Marcinauskas, L. Deposition of silver and titanium co-doped diamond-like carbon films by magnetron sputtering. Diam. Relat. Mater. 2025, 154, 112200. [Google Scholar] [CrossRef]
- Zhang, R.; Lee, W.Y.; Umehara, N.; Tokoroyama, T.; Murashima, M.; Takimoto, Y. The development of B/Cr co-doped DLC coating by FCVA deposition system and its tribological properties at 300 °C. Surf. Coat. Technol. 2024, 487, 130968. [Google Scholar] [CrossRef]
- Zarei, A.; Momeni, M. Optical and structural properties of nitrogen incorporated Ni doped diamond-like carbon thin films. Opt. Quantum Electron. 2023, 55, 415. [Google Scholar] [CrossRef]
- Dai, W.; Wu, L.; Wang, Q. Structure and Property of Diamond-like Carbon Coating with Si and O Co-Doping Deposited by Reactive Magnetron Sputtering. J. Compos. Sci. 2023, 7, 180. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Dong, Y.; Ma, M.; Liu, Y.; Tian, S.; Xiao, Y.; Jia, Y. Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon (Ni/B-DLC) films. Surf. Coat. Technol. 2021, 405, 126713. [Google Scholar] [CrossRef]
- Zhou, C.; Ru, L.; Xiao, J.; Zhang, X.; Mo, X.; Jiang, A. Cr content regulates the friction and corrosion resistance of Cr/F-DLC thin films. Diam. Relat. Mater. 2025, 157, 112482. [Google Scholar] [CrossRef]
- Zhou, B.; Piliptsou, D.G.; Jiang, X.; Rogachev, A.V.; Rudenkov, A.S.; Kulesh, E.A. Structure and mechanical properties of Ni and Cr binary doped amorphous carbon coatings deposited by magnetron sputtering and pulse cathodic arc. Thin Solid Film. 2020, 701, 137942. [Google Scholar] [CrossRef]
- Zeng, Q.; Ning, Z. High-temperature tribological properties of diamond-like carbon films: A review. Rev. Adv. Mater. Sci. 2021, 60, 276–292. [Google Scholar] [CrossRef]
- Zeng, Q. Thermally Induced Superlow Friction of DLC Films in Ambient Air. High. Temp. Mater. Process 2018, 37, 725–731. [Google Scholar] [CrossRef]
- Qiang, L.; Gao, K.; Zhang, L.; Wang, J.; Zhang, B.; Zhang, J. Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating. Appl. Surf. Sci. 2015, 353, 522–529. [Google Scholar] [CrossRef]
- Zhou, H.; Hou, Q.; Xiao, T.; Wang, Y.; Liao, B.; Zhang, X. The composition, microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition. Diam. Relat. Mater. 2017, 75, 96–104. [Google Scholar] [CrossRef]
- Yetim, A.F.; Kovacı, H.; Kasapoğlu, A.E.; Bozkurt, Y.B.; Çelik, A. Influences of Ti, Al and V metal doping on the structural, mechanical and tribological properties of DLC films. Diam. Relat. Mater. 2021, 120, 108639. [Google Scholar] [CrossRef]
- Písařík, P.; Jelínek, M.; Remsa, J.; Mikšovský, J.; Zemek, J.; Jurek, K.; Kubinová, Š.; Lukeš, J.; Šepitka, J. Antibacterial, mechanical and surface properties of Ag-DLC films prepared by dual PLD for medical applications. Mater. Sci. Eng. C 2017, 77, 955–962. [Google Scholar] [CrossRef]
- Marcinauskas, L.; Grigonis, A.; Valatkevicius, P.; Medvid, A. Irradiation of the graphite-like carbon films by ns-laser pulse. Appl. Surf. Sci. 2012, 261, 488–492. [Google Scholar] [CrossRef]
- Nakamura, M.; Takagawa, Y.; Miura, K.; Kobata, J.; Zhu, W.; Nishiike, N.; Arao, K.; Marin, E.; Pezzotti, G. Structural alteration induced by substrate bias voltage variation in diamond-like carbon films fabricated by unbalanced magnetron sputtering. Diam. Relat. Mater. 2018, 90, 214–220. [Google Scholar] [CrossRef]
- Khamnualthong, N.; Siangchaew, K.; Limsuwan, P. Thermal stability evaluation of diamond-like carbon for magnetic recording head application using raman spectroscopy. Procedia Eng. 2012, 32, 888–894. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, Y.; Wu, Z.; Qin, Z.; Ji, H.; Liu, X.; Li, B.; Hu, W. Microstructure, magnetic properties and corrosion resistance of Co-DLC nanocomposite film controlled by substrate temperature. Diam. Relat. Mater. 2023, 133, 109673. [Google Scholar] [CrossRef]
- Zarei Moghadam, R.; Ehsani, M.H.; Rezagholipour Dizaji, H.; Kameli, P.; Jannesari, M. Oxygen doping effect on wettability of diamond-like carbon films. Mater. Res. Express 2021, 8, 035601. [Google Scholar] [CrossRef]
- Safaie, P.; Eshaghi, A.; Bakhshi, S.R. Structure and mechanical properties of oxygen doped diamond-like carbon thin films. Diam. Relat. Mater. 2016, 70, 91–97. [Google Scholar] [CrossRef]
- Huang, B.; Liu, L.; Han, S.; Du, H.; Zhou, Q.; Zhang, E. Effect of deposition temperature on the microstructure and tribological properties of Si-DLC coatings prepared by PECVD. Diam. Relat. Mater. 2022, 129, 109345. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Li, H.; Ji, L.; Ye, Y.; Zhou, H. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Appl. Surf. Sci. 2013, 284, 165–170. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Wang, C.; Lu, Y.; Hao, J. High temperature tribology behavior of silicon and nitrogen doped hydrogenated diamond-like carbon (DLC) coatings. Tribol. Int. 2022, 175, 107845. [Google Scholar] [CrossRef]
- Chen, Y.; Su, F.; Li, Q.; Sun, J.; Lin, S.; Ma, G. Extremely enhanced friction and wear performance of hydrogen-free DLC film at elevated temperatures via Si doping. Tribol. Int. 2024, 199, 109981. [Google Scholar] [CrossRef]
- Amanov, A.; Watabe, T.; Tsuboi, R.; Sasaki, S. Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures. Surf. Coat. Technol. 2013, 232, 549–560. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Z.; Fan, D.; Bai, L. Friction behaviors of DLC films in an oxygen environment: An atomistic understanding from ReaxFF simulations. Tribol. Int. 2022, 168, 107448. [Google Scholar] [CrossRef]
- Karslioglu, R.; Meletis, E.I. Synthesis, Characterization, and Wear Behavior of W-DLC Films Deposited on Si Substrates. J. Nano Res. 2023, 81, 105–120. [Google Scholar] [CrossRef]
- Bîrleanu, C.; Pustan, M.; Șerdean, F.; Merie, V. AFM Nanotribomechanical Characterization of Thin Films for MEMS Applications. Micromachines 2022, 13, 23. [Google Scholar] [CrossRef]
- Li, L.; Song, W.; Liu, J.; Liu, Q.; Wang, S.; Zhang, G. Nanomechanical and nanotribological behavior of ultra-thin silicon-doped diamond-like carbon films. Tribol. Int. 2016, 94, 616–623. [Google Scholar] [CrossRef]
- Bai, L.; Srikanth, N.; Korznikova, E.A.; Baimova, J.A.; Dmitriev, S.V.; Zhou, K. Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear 2017, 372, 12–20. [Google Scholar] [CrossRef]
- Zhang, H.S.; Endrino, J.L.; Anders, A. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver. Appl. Surf. Sci. 2008, 255, 2551–2556. [Google Scholar] [CrossRef]
- Kolodziejczyk, L.; Szymanski, W.; Batory, D.; Jedrzejczak, A. Nanotribology of silver and silicon doped carbon coatings. Diam. Relat. Mater. 2016, 67, 8–15. [Google Scholar] [CrossRef]
- Liu, S.; Zhuang, W.; Ding, J.; Liu, Y.; Yu, W.; Yuan, J.; Zheng, J. Fabrication and Tribological Properties of Diamond-like Carbon Film with Cr Doping by High-Power Impulse Magnetron Sputtering. Coatings 2024, 14, 916. [Google Scholar] [CrossRef]
- Yu, B.; Qian, L. Friction-Induced Nanofabrication: A Review. Chin. J. Mech. Eng. 2021, 34, 32. [Google Scholar] [CrossRef]
- Vieira, L.; Lucas, F.L.C.; Fisssmer, S.F.; dos Santos, L.C.D.; Massi, M.; Leite, P.M.S.C.M.; Costa, C.A.R.; Lanzoni, E.M.; Pessoa, R.S.; Maciel, H.S. Scratch testing for micro- and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques. Surf. Coat. Technol. 2014, 260, 205–213. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, G.; Zhou, J.; Wang, S.; Tseng, A.A.; Du, Z. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe. Nanoscale Res. Lett. 2011, 6, 1–7. [Google Scholar] [CrossRef]
- Miyake, S.; Yamazaki, S. Nanoscratch properties of extremely thin diamond-like carbon films. Wear 2013, 305, 69–77. [Google Scholar] [CrossRef]
- Tseng, A.A. A comparison study of scratch and wear properties using atomic force microscopy. Appl. Surf. Sci. 2010, 256, 4246–4252. [Google Scholar] [CrossRef]







| Samples * | Reached Temperature During Deposition (°C) | C (at.%) | O (at.%) | Ni (at.%) | Cr (at.%) |
|---|---|---|---|---|---|
| Cr/Ni-DLC81 | 185 | 85.1 ± 2.3 | 6.0 ± 1.1 | 5.7 ± 0.3 | 3.2 ± 0.1 |
| Cr/Ni-DLC82 | 185 | 83.6 ± 2.1 | 8.6 ± 1.3 | 5.1 ± 0.2 | 2.7 ± 0.2 |
| Cr/Ni-DLC41 | 235 | 87.8 ± 2.4 | 6.1 ± 1.2 | 4.0 ± 0.1 | 2.1 ± 0.1 |
| Cr/Ni-DLC42 | 235 | 81.2 ± 1.9 | 12.2 ± 1.4 | 4.5 ± 0.2 | 2.1 ± 0.1 |
| Samples | Reached Temperature During Deposition (°C) | C (at.%) | O (at.%) | Ni (at.%) | Cr (at.%) |
|---|---|---|---|---|---|
| Cr/Ni-DLC81 | 185 | 79.0 | 17.2 | 3.1 | 0.7 |
| Cr/Ni-DLC82 | 185 | 75.8 | 19.7 | 3.7 | 0.8 |
| Cr/Ni-DLC41 | 235 | 84.6 | 13.9 | 1.2 | 0.3 |
| Cr/Ni-DLC42 | 235 | 73.6 | 18.9 | 6.1 | 1.4 |
| Samples | C=C sp2 | C-C sp3 | C-O and C=O | Ratio sp2/sp3 | |||
|---|---|---|---|---|---|---|---|
| Position, eV | Area, % | Position, eV | Area, % | Position, eV | Area, % | ||
| Cr/Ni-DLC81 | 283.8 | 47.45 | 284.7 | 39.46 | 286.9 | 13.09 | 1.20 |
| Cr/Ni-DLC82 | 283.8 | 50.89 | 284.9 | 41.42 | 287.4 | 7.69 | 1.23 |
| Cr/Ni-DLC41 | 283.9 | 43.52 | 284.8 | 43.30 | 287.0 | 13.18 | 1.01 |
| Cr/Ni-DLC42 | 283.7 | 50.59 | 284.6 | 43.03 | 287.2 | 6.47 | 1.18 |
| Samples | Ni (Ni0) | NiO (Ni2+) | Ni Oxides (Ni2+/Ni3+) | Ni/Ni2+ Satellite | ||||
|---|---|---|---|---|---|---|---|---|
| Position, eV | Area, % | Position, eV | Area, % | Position, eV | Area, % | Position, eV | Area, % | |
| Cr/Ni-DLC81 | 852.35 | 29.0 | 854.49 | 51.1 | 858.91 | 12.4 | 861.76 | 7.5 |
| Cr/Ni-DLC82 | 852.20 | 27.4 | 854.50 | 50.1 | 859.40 | 16.1 | 862.30 | 6.4 |
| Cr/Ni-DLC41 | 852.96 | 39.6 | 854.80 | 28.5 | 856.90 | 15.1 | 860.80 | 16.8 |
| Cr/Ni-DLC42 | 852.00 | 30.5 | 854.30 | 46.8 | 858.20 | 10.6 | 861.10 | 12.1 |
| Samples | D Peak Position (cm−1) | FWHMD (cm−1) | G Peak Position (cm−1) | FWHMG (cm−1) | ID/IG | AD/AG | D’ Peak Position (cm−1) | O Peak Position (cm−1) |
|---|---|---|---|---|---|---|---|---|
| Cr/Ni-DLC81 | 1392.3 | 152.1 | 1552.6 | 115.1 | 0.49 | 0.66 | 1611.9 | 1695.3 |
| Cr/Ni-DLC82 | 1393.2 | 166.2 | 1546.2 | 118.7 | 0.52 | 0.73 | 1612.2 | 1687.8 |
| Cr/Ni-DLC41 | 1406.6 | 295.2 | 1559.9 | 139.2 | 0.62 | 1.31 | --- | --- |
| Cr/Ni-DLC42 | 1409.1 | 281.3 | 1556.9 | 136.9 | 0.59 | 1.26 | --- | --- |
| Samples | Hardness (H) [GPa] | Young’s Modulus (E) [GPa] | H/E | H3/E2 [GPa] |
|---|---|---|---|---|
| Cr/Ni-DLC81 | 3.47 ± 0.44 | 55.37 ± 1.29 | 0.063 ± 0.006 | 0.014 ± 0.005 |
| Cr/Ni-DLC82 | 2.81 ± 0.06 | 46.58 ± 2.20 | 0.060 ± 0.002 | 0.010 ± 0.001 |
| Cr/Ni-DLC41 | 5.69 ± 0.15 | 63.42 ± 0.41 | 0.090 ± 0.002 | 0.046 ± 0.004 |
| Cr/Ni-DLC42 | 5.04 ± 0.09 | 58.98 ± 0.52 | 0.086 ± 0.001 | 0.037 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhairabany, H.; Khaksar, H.; Vanags, E.; Šarakovskis, A.; Gnecco, E.; Marcinauskas, L. Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films. Crystals 2026, 16, 52. https://doi.org/10.3390/cryst16010052
Zhairabany H, Khaksar H, Vanags E, Šarakovskis A, Gnecco E, Marcinauskas L. Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films. Crystals. 2026; 16(1):52. https://doi.org/10.3390/cryst16010052
Chicago/Turabian StyleZhairabany, Hassan, Hesam Khaksar, Edgars Vanags, Anatolijs Šarakovskis, Enrico Gnecco, and Liutauras Marcinauskas. 2026. "Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films" Crystals 16, no. 1: 52. https://doi.org/10.3390/cryst16010052
APA StyleZhairabany, H., Khaksar, H., Vanags, E., Šarakovskis, A., Gnecco, E., & Marcinauskas, L. (2026). Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films. Crystals, 16(1), 52. https://doi.org/10.3390/cryst16010052

