NiTe2-Based Saturable Absorber for a Passively Q-Switched Ytterbium-Doped Fiber Laser
Abstract
1. Introduction
2. Fabrication and Characterization of NiTe2 SA
3. Experimental Setup
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zayhowski, J.J. Passively Q-switched Nd:YAG microchip lasers and applications. J. Alloys Compd. 2000, 303–304, 393–400. [Google Scholar] [CrossRef]
- Piao, Z.; Zeng, L.; Chen, Z.; Kim, C.-S. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application. Appl. Phys. Lett. 2016, 108, 143701. [Google Scholar] [CrossRef] [PubMed]
- Skorczakowski, M.; Swiderski, J.; Pichola, W.; Nyga, P.; Zajac, A.; Maciejewska, M.; Galecki, L.; Kasprzak, J.; Gross, S.; Heinrich, A.; et al. Mid-infrared Q-switched Er:YAG laser for medical applications. Laser Phys. Lett. 2010, 7, 498. [Google Scholar] [CrossRef]
- Gräf, S.; Staupendahl, G.; Krämer, A.; Müller, F.A. High precision materials processing using a novel Q-switched CO2 laser. Opt. Lasers Eng. 2015, 66, 152–157. [Google Scholar] [CrossRef]
- Fu, B.; Wang, P.; Li, Y.; Condorelli, M.; Fazio, E.; Sun, J.; Xu, L.; Scardaci, V.; Compagnini, G. Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber. Nanophotonics 2020, 9, 3873–3880. [Google Scholar] [CrossRef]
- Niu, K.; Chen, Q.; Sun, R.; Man, B.; Zhang, H. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt. Mater. Express 2017, 7, 3934–3943. [Google Scholar] [CrossRef]
- Ridha, F.F.; Al-Janabi, A. Wide tuning range q-switched ytterbium doped fiber laser based on V2AlC saturable absorber. Opt. Quant. Electron. 2023, 55, 897. [Google Scholar] [CrossRef]
- Cheng, P.K.; Tang, C.Y.; Wang, X.Y.; Ma, S.; Long, H.; Tsang, Y.H. Passively Q-switched Ytterbium-doped fiber laser based on broadband multilayer Platinum Ditelluride (PtTe2) saturable absorber. Sci. Rep. 2019, 9, 10106. [Google Scholar] [CrossRef]
- Andrés, M.; Cruz, J.; Díez, A.; Pérez-Millán, P.; Delgado-Pinar, M. Actively Q-switched all-fiber lasers. Laser Phys. Lett. 2007, 5, 93. [Google Scholar] [CrossRef]
- Garnov, S.V.; Solokhin, S.A.; Obraztsova, E.D.; Lobach, A.S.; Obraztsov, P.A.; Chernov, A.I.; Bukin, V.V.; Sirotkin, A.A.; Zagumennyi, Y.D.; Zavartsev, Y.D.; et al. Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm. Laser Phys. Lett. 2007, 4, 648. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P.H.; Rozhin, A.G.; Ferrari, A.C. Nanotube–Polymer Composites for Ultrafast Photonics. Adv. Mater. 2009, 21, 3874–3899. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, Q.; Theodosiou, A.; Cheng, X.; Zou, C.; Dai, L.; Kalli, K.; Mou, C. All-fiber passively mode-locked ultrafast laser based on a femtosecond-laser-inscribed in-fiber Brewster device. Opt. Lett. 2019, 44, 5177–5180. [Google Scholar] [CrossRef]
- Li, H.J.; Li, X.L.; Zhang, S.M.; Liu, J.M.; Yan, D.; Wang, C.R.; Li, J.Y. Vector Staircase Noise-Like Pulses in an Er/Yb-Codoped Fiber Laser. J. Light. Technol. 2022, 40, 4391–4396. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, X.; Yuan, P.; Yokokawa, S.; Zheng, Y.; Jiang, H.; Jin, L.; Anisimov, A.S.; Kauppinen, E.I.; Xiang, R.; et al. SWCNT@ BNNT with 1D van der Waals heterostructure with a high optical damage threshold for laser mode-locking. J. Light. Technol. 2021, 39, 5875–5883. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Yang, C.-Y.; Lin, S.-F.; Lin, G.-R. Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers. Opt. Mater. Express 2015, 5, 236–253. [Google Scholar] [CrossRef]
- Xing, X.W.; Liu, Y.X.; Han, J.F.; Liu, W.J.; Wei, Z.Y. Preparation of high damage threshold device based on Bi2Se3 film and its application in fiber lasers. ACS Photonics 2023, 10, 2264–2271. [Google Scholar] [CrossRef]
- Li, W.L.; Lin, R.P.; Chen, G.W.; Geng, G.L.; Xu, P.; Yang, Y.N.; Wang, X.L.; Xu, J. Observation of three kinds of bound solitons in a black phosphorus-based erbium fiber laser. Opt. Fiber Technol. 2024, 82, 103617. [Google Scholar] [CrossRef]
- Fadhel, M.M.; Ali, N.; Rashid, H.; Sapiee, N.M.; Hamzah, A.E.; Zan, M.S.D.; Aziz, N.A.; Arsad, N. A review on rhenium disulfide: Synthesis approaches, optical properties, and applications in pulsed lasers. Nanomaterials 2021, 11, 2367. [Google Scholar] [CrossRef]
- Ko, S.; Lee, J.; Lee, J.H. Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles. Chin. Opt. Lett. 2018, 16, 020017. [Google Scholar] [CrossRef]
- Ahmad, H.; Ramli, R.; Ismail, N.N.; Aidit, S.N.; Yusoff, N.; Samion, M.Z. Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb2C coated microfiber. Sci. Rep. 2021, 11, 11652. [Google Scholar] [CrossRef] [PubMed]
- Tuo, M.; Xu, C.; Mu, H.; Bao, X.; Wang, Y.; Xiao, S.; Ma, W.; Li, L.; Tang, D.; Zhang, H.; et al. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics 2018, 5, 1808–1816. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Li, Y.; Zhong, M.; Huang, Y.; Wan, X.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited]. Photonics Res. 2015, 3, A79–A86. [Google Scholar] [CrossRef]
- Mao, D.; Cui, X.Q.; Gan, X.T.; Li, M.K.; Zhang, W.D.; Lu, H.; Zhao, J.L. Passively Q-Switched and Mode-Locked Fiber Laser Based on an ReS2 Saturable Absorber. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1100406. [Google Scholar] [CrossRef]
- Liu, M.; Ouyang, Y.; Hou, H.; Liu, W.; Wei, Z. Q-switched fiber laser operating at 1.5 μm based on WTe2. Chin. Opt. Lett. 2019, 17, 020006. [Google Scholar] [CrossRef]
- Du, W.; Li, H.; Lan, C.; Li, C.; Li, J.; Wang, Z.; Liu, Y. Graphene/WS2 heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers. Opt. Express 2020, 28, 11514–11523. [Google Scholar] [CrossRef]
- Chen, H.; Yin, J.; Yang, J.; Zhang, X.; Liu, M.; Jiang, Z.; Wang, J.; Sun, Z.; Guo, T.; Liu, W.; et al. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett. 2017, 42, 4279–4282. [Google Scholar] [CrossRef]
- Zheng, F.; Li, X.B.; Tan, P.; Lin, Y.; Xiong, L.; Chen, X.; Feng, J. Emergent superconductivity in two-dimensional NiTe2 crystals. Phys. Rev. B 2020, 101, 100505. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhao, Y.; Liu, K.; Liu, Y.; Lu, Z.Y. First-principles study of the crystal structure, electronic structure, and transport properties of NiTe2 under pressure. Phys. Rev. B 2021, 104, 035111. [Google Scholar] [CrossRef]
- Tang, H.; Xia, K.; Lu, J.; Fu, J.; Zhu, Z.; Tian, Y.; Wang, Y.; Liu, M.; Chen, J.; Xu, Z.; et al. NiTe2-based electrochemical capacitors with high-capacitance AC line filtering for regulating TENGs to steadily drive LEDs. Nano Energy 2021, 84, 105931. [Google Scholar] [CrossRef]
- Zhai, X.; Zhai, X.; Xu, X.; Peng, J.; Peng, J.; Jing, F.; Zhang, Q.; Liu, H.; Liu, H.; Liu, H.; et al. Enhanced optoelectronic performance of CVD-grown metal-semiconductor NiTe2/MoS2 heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 24093–24101. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lu, H.; Tao, L.; Zhao, Y.; Zheng, Z.; Zhou, B. Novel two-dimensional semi-metallic NiTe2 based saturable absorber for ultrafast mode-locked fiber laser. Infrared Phys. Technol. 2022, 123, 104195. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Li, J.; Yi, Q.; Yi, J.; Huang, B.; Miao, L.; Wu, M.; Zhao, C. Broadband optical response of layered nickel ditelluride towards the mid-infrared regime. Opt. Mater. Express 2020, 10, 1335–1343. [Google Scholar] [CrossRef]
- Goswami, S.; de Oliveira, C.C.; Ipaves, B.; Mahapatra, P.L.; Pal, V.; Sarkar, S.; Autreto, P.A.S.; Ray, S.K.; Tiwary, C.S. Exceptionally High Nonlinear Optical Response in Two-dimensional Type II Dirac Semimetal Nickel Di-Telluride (NiTe2). Laser Photonics Rev. 2025, 19, 2400999. [Google Scholar] [CrossRef]
- Li, J.; Luo, H.; Wang, L.; Zhao, C.; Zhang, H.; Li, H.; Liu, Y. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett. 2015, 40, 3659–3662. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuo, Z.; Wei, R.; Wang, Y.; Chen, X.; Xu, X. Wavelength tunable passively Q-switched Yb-doped double-clad fiber laser with graphene grown on SiC. Chin. Opt. Lett. 2014, 12, 021405. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Y.; Weng, J.; Cheng, H.; Lin, Z.; Xu, B.; Cai, Z.; Xu, H. 1.06μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt. Express 2013, 21, 29516–29522. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Y.; Zhong, M.; Li, Y.; Wu, J.; Xu, B.; Xu, H.; Cai, Z.; Peng, J.; Weng, J. 1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber. J. Light. Technol. 2014, 32, 4679–4686. [Google Scholar] [CrossRef]
- Woodward, R.I.; Howe, R.C.T.; Runcorn, T.H.; Hu, G.; Torrisi, F.; Kelleher, E.J.R.; Hasan, T. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 2015, 23, 20051–20061. [Google Scholar] [CrossRef]
- Li, N.; Jia, H.; Guo, M.; Zhang, J.; Zhang, W.Y.; Guo, Z.X.; Li, M.X.; Jia, Z.X.; Qin, G.S. Broadband Fe3O4 nanoparticles saturable absorber for Q-switched fiber lasers. Opt. Fiber Technol. 2021, 61, 102421. [Google Scholar] [CrossRef]







| SAs | ∆T [%] | Isat [MW/cm2] | Central Wavelength [nm] | Maximum Repetition Frequency [kHz] | Minimum Pulse width [μs] | Pulse Energy [nJ] | SNR [dB] | Ref. |
|---|---|---|---|---|---|---|---|---|
| Graphene | - | - | 1038.54–1056.22 | 53.04 | 1.6 | 0.65 | - | [36] |
| Bi2Te3 | 3.8 | 53 | 1067.66 | 29.1 | 1.95 | 17.9 | 48 | [37] |
| MoS2 | 1.6 | 13 | 1066.5 | 28.9 | 10.7 | 32.6 | 44.6 | [38] |
| MoSe2 | 4.7 | 3.4 | 1060 | 74.9 | 2.8 | 116 | - | [39] |
| WTe2 | 2.18 | 1.2 | 1044 | 79 | 1 | 28.3 | - | [19] |
| Fe3O4 | 16.42 | 0.11 | 1039 | 47.33 | 3.78 | 21.29 | ≈41 | [40] |
| NiTe2 | 6.82 | 2.12 | 1031 | 30.1 | 2.3 | 3.0522 | 58.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, K.; Fang, J.; Wang, D. NiTe2-Based Saturable Absorber for a Passively Q-Switched Ytterbium-Doped Fiber Laser. Materials 2026, 19, 500. https://doi.org/10.3390/ma19030500
Wang K, Fang J, Wang D. NiTe2-Based Saturable Absorber for a Passively Q-Switched Ytterbium-Doped Fiber Laser. Materials. 2026; 19(3):500. https://doi.org/10.3390/ma19030500
Chicago/Turabian StyleWang, Kunpeng, Jie Fang, and Dang Wang. 2026. "NiTe2-Based Saturable Absorber for a Passively Q-Switched Ytterbium-Doped Fiber Laser" Materials 19, no. 3: 500. https://doi.org/10.3390/ma19030500
APA StyleWang, K., Fang, J., & Wang, D. (2026). NiTe2-Based Saturable Absorber for a Passively Q-Switched Ytterbium-Doped Fiber Laser. Materials, 19(3), 500. https://doi.org/10.3390/ma19030500

