Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = Newtonian liquids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5231 KiB  
Article
Exploring Ibuprofen–Menthol Eutectic Systems: Physicochemical Properties and Cytotoxicity for Pharmaceutical Applications
by Álvaro Werner, Estefanía Zuriaga, Marina Sanz, Fernando Bergua, Beatriz Giner, Carlos Lafuente and Laura Lomba
Pharmaceutics 2025, 17(8), 979; https://doi.org/10.3390/pharmaceutics17080979 - 29 Jul 2025
Viewed by 277
Abstract
Backgroun/Objectives: Recent pharmaceutical research has increasingly focused on eutectic systems to improve the formulation and delivery of active pharmaceutical ingredients (APIs). This study presents the preparation and characterization of three therapeutic eutectic systems (THEESs) based on ibuprofen and menthol at various molar ratios. [...] Read more.
Backgroun/Objectives: Recent pharmaceutical research has increasingly focused on eutectic systems to improve the formulation and delivery of active pharmaceutical ingredients (APIs). This study presents the preparation and characterization of three therapeutic eutectic systems (THEESs) based on ibuprofen and menthol at various molar ratios. Methods: The THEESs were prepared and analyzed by assessing their physicochemical properties and rheological properties were evaluated to determine flow behavior. Cytotoxicity assays were conducted on HaCaT and HepG2 cell lines to assess biocompatibility. Results: All systems formed monophasic, homogeneous, clear and viscous liquids. Key physicochemical properties, including density, refractive index, surface tension, speed of sound and isobaric heat capacity, showed a temperature-dependent, inverse proportional trend. Viscosity followed the Vogel–Fulcher–Tammann equation, and rheological analysis revealed non-Newtonian behavior, which is important for pharmaceutical processing. Notably, cytotoxicity assays revealed that Ibu-M3 and Ibu-M4 showed lower toxicity than pure compounds in HaCaT cells, while Ibu-M5 was more toxic; in HepG2 cells, only Ibu-M3 was less toxic, whereas Ibu-M4 and Ibu-M5 were more cytotoxic than the pure compounds. Conclusions: These findings highlight the potential of ibuprofen–menthol eutectic systems for safer and more effective pharmaceutical formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

17 pages, 1773 KiB  
Article
Electroosmotic Slip Flow of Powell–Eyring Fluid in a Parallel-Plate Microchannel
by Yuting Jiang
Symmetry 2025, 17(7), 1071; https://doi.org/10.3390/sym17071071 - 5 Jul 2025
Viewed by 265
Abstract
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s [...] Read more.
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s approximate solution is derived via the homotopy perturbation technique (HPM). Optimized initial guesses enable accurate second-order approximations, dramatically lowering computational complexity. The numerical solution is acquired via the modified spectral local linearization method (SLLM), exhibiting both high accuracy and computational efficiency. Visualizations reveal how the pressure gradient/electric field, the electric double layer (EDL) width, and slip length affect velocity. The ratio of pressure gradient to electric field exhibits a nonlinear modulating effect on the velocity. The EDL is a nanoscale charge layer at solid–liquid interfaces. A thinner EDL thickness diminishes the slip flow phenomenon. The shear-thinning characteristics of the Powell–Eyring fluid are particularly pronounced in the central region under high pressure gradients and in the boundary layer region when wall slip is present. These findings establish a theoretical base for the development of microfluidic devices and the improvement of pharmaceutical carrier strategies. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 701 KiB  
Article
The Influence of Ectoine on the Skin Parameters Damaged by a CO2 Laser
by Izabela Załęska, Urszula Goik, Tomasz Goik and Kinga Wilkus
Molecules 2025, 30(11), 2470; https://doi.org/10.3390/molecules30112470 - 5 Jun 2025
Viewed by 1260
Abstract
Ectoine is a substance produced by extremophiles and is naturally used by them as protection against adverse environmental conditions in which they live. Scientific contributions discuss its excellent effect through cosmotropic properties, prevention of secondary messenger release in cells, and transcription factors. The [...] Read more.
Ectoine is a substance produced by extremophiles and is naturally used by them as protection against adverse environmental conditions in which they live. Scientific contributions discuss its excellent effect through cosmotropic properties, prevention of secondary messenger release in cells, and transcription factors. The influence on the lipid layer of the cell membrane and its preventive effect as a UV filter were also demonstrated. What is more, its anti-oxidative effect was established. Ectoine works as an immunostimulant and also has anti-inflammatory and anti-cancer properties. These attributes are dominating factors in the use of ectoine’s properties in skin fractionation treatment with a CO2 laser. In the following work, the influence of ectoine on skin parameters was described, focusing on redness, moisturization, and TEWL after the use of a CO2 laser (Załęska 2019). The rheological properties of preparations with ectoine addition were also tested. The yield point was determined, the viscosity changes of cosmetic preparations were measured with increasing shear rates, and oscillation tests were performed. With increasing percentages of ectoine and frequency of application, the occurrence of redness after CO2 therapy decreased. The highest moisture level values from 54.4 × 0.02 mg/cm2 to 72.5 × 0.02 mg/cm2 were obtained for preparation A applied twice a day; for the same preparation, a reduction in TEWL from 6.2 to 5.3 g/(m2·h) was obtained. The results of the tests of cosmetic emulsions allowed us to conclude that the preparations in the analyzed shear rate range at all tested temperatures are non-Newtonian liquids that are shear-thinning and have a flow limit. The obtained results of the conducted research prove the positive effect of dermocosmetics with ectoine content in the process of skin healing. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Figure 1

26 pages, 1597 KiB  
Article
Physicochemical and Rheological Characteristics of Monofloral Honeys—Kinetics of Creaming–Crystallization
by Kerasia Polatidou, Chrysanthi Nouska, Chrysoula Tananaki, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(10), 1835; https://doi.org/10.3390/foods14101835 - 21 May 2025
Cited by 1 | Viewed by 763
Abstract
The quality and stability of honeys are strongly influenced by their chemical composition and physicochemical properties, which vary with botanical origin. This study examined the physicochemical and compositional properties of cotton, heather, orange, thyme, Christ’s thorn, and chestnut monofloral honey samples, as well [...] Read more.
The quality and stability of honeys are strongly influenced by their chemical composition and physicochemical properties, which vary with botanical origin. This study examined the physicochemical and compositional properties of cotton, heather, orange, thyme, Christ’s thorn, and chestnut monofloral honey samples, as well as the kinetics of the creaming–crystallization process by monitoring rheological and color parameters. All samples had moisture content lower than the legislation limit (<20%) and aw ≤ 0.60. Chestnut and heather honeys exhibited the highest electrical conductivity and darkest color. Fructose was the predominant sugar in all samples, with thyme having the highest content. Viscosity decreased exponentially with increasing moisture, with thyme honey being the most viscous. Principal component analysis showed distinct clustering of samples based on their compositional–physicochemical characteristics. Calorimetry revealed the water’s plasticization effect on honey solids, lowering their glass transition temperature, with the data fitting well to the Gordon–Taylor model. Rheometry indicated a Newtonian-like behavior for liquid honeys, evolving towards a pseudoplastic response upon creaming–crystallization. Cotton honey crystallized rapidly, thyme honey showed moderate crystallization propensity, while samples of heather honey gave a diverse response depending on composition. Overall, high glucose content and/or low fructose/glucose ratio promoted honey crystallization, leading to the formation of highly viscous-creamed honey preparations. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

17 pages, 4085 KiB  
Article
Comprehensive Evaluation of the Rheological, Tribological, and Thermal Behavior of Cutting Oil and Water-Based Metalworking Fluids
by Florian Pape, Belal G. Nassef, Stefan Schmölzer, Dorothea Stobitzer, Rebekka Taubmann, Florian Rummel, Jan Stegmann, Moritz Gerke, Max Marian, Gerhard Poll and Stephan Kabelac
Lubricants 2025, 13(5), 219; https://doi.org/10.3390/lubricants13050219 - 15 May 2025
Cited by 1 | Viewed by 830
Abstract
Metalworking fluids (MWFs) are crucial in the manufacturing industry, playing a key role in facilitating various production processes. As each machining operation comes with distinct requirements, the properties of the MWFs have to be tailored to meet these specific demands. Understanding the properties [...] Read more.
Metalworking fluids (MWFs) are crucial in the manufacturing industry, playing a key role in facilitating various production processes. As each machining operation comes with distinct requirements, the properties of the MWFs have to be tailored to meet these specific demands. Understanding the properties of different MWFs is fundamental for optimizing processes and improving performance. This study centered on characterizing the thermal behavior of various cutting oils and water-based cutting fluids over a wide temperature range and sheds light on the specific tribological behavior. The results indicate that water-based fluids exhibit significant shear-thinning behavior, whereas cutting oils maintain nearly Newtonian properties. In terms of frictional performance, cutting oils generally provide better lubrication at higher temperatures, particularly in mixed and full-fluid film regimes, while water-based fluids demonstrate greater friction stability across a wider range of conditions. Among the tested fluids, water-based formulations showed a phase transition from solid to liquid near 0 °C due to their high water content, whereas only a few cutting oils exhibited a similar behavior. Additionally, the thermal conductivity and heat capacity of water-based fluids were substantially higher than those of the cutting oils, contributing to more efficient heat dissipation during machining. These findings, along with the reported data, intend to guide future researchers and industry in selecting the most appropriate cutting fluids for their specific applications and provide valuable input for computational models simulating the influence of MWFs in the primary and secondary shear zones between cutting tools and the workpiece/chiplet. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

20 pages, 3854 KiB  
Article
EHD Instability Modes of Power-Law Fluid Jet Issuing in Gaseous Streaming via Permeable Media
by Mohamed F. El-Sayed, Mohamed F. E. Amer and Doaa M. Mostafa
Fluids 2025, 10(5), 110; https://doi.org/10.3390/fluids10050110 - 25 Apr 2025
Viewed by 451
Abstract
The instability of a non-Newtonian dielectric fluid jet of power-law (P-L) type injected when streaming dielectric gas through porous media is examined using electrohydrodynamic (EHD) linear analysis. The interfacial boundary conditions (BCs) are used to derive the dispersion relation for both shear-thinning (s-thin) [...] Read more.
The instability of a non-Newtonian dielectric fluid jet of power-law (P-L) type injected when streaming dielectric gas through porous media is examined using electrohydrodynamic (EHD) linear analysis. The interfacial boundary conditions (BCs) are used to derive the dispersion relation for both shear-thinning (s-thin) and shear-thickening (s-thick) fluids. A detailed discussion is outlined on the impact of dimensionless flow parameters. The findings show that jet breakup can be categorized into two instability modes: Rayleigh (RM) and Taylor (TM), respectively. For both fluids, the system in TM is found to be more unstable than that found in RM, and, for s-thick fluids, it is more unstable. For all P-L index values, the system is more unstable if a porous material exists than when it does not. It is demonstrated that the generalized Reynolds number (Ren), Reynolds number (Re), P-L index, dielectric constants, gas-to-liquid density, and viscosity ratios have destabilizing influences; moreover, the Weber number (We), electric field (EF), porosity, and permeability of the porous medium have a stabilizing impact. Depending on whether its value is less or more than one, the velocity ratio plays two different roles in stability, and the breakup length and size of P-L fluids are connected to the maximal growth level and the instability range in both modes. Full article
Show Figures

Figure 1

17 pages, 5109 KiB  
Article
Numerical Mixing Index: Definition and Application on Concrete Mixer
by Cristian Ferrari, Nicolò Beccati and Luca Magri
Fluids 2025, 10(3), 72; https://doi.org/10.3390/fluids10030072 - 20 Mar 2025
Cited by 1 | Viewed by 828
Abstract
In this work, a statistical method is applied to a multiphase CFD simulation of concrete mixing performed in a truck mixer. The numerical model is based on an Eulerian–Eulerian approach in a transient regime. The aggregate materials are simulated as dispersed solid particles [...] Read more.
In this work, a statistical method is applied to a multiphase CFD simulation of concrete mixing performed in a truck mixer. The numerical model is based on an Eulerian–Eulerian approach in a transient regime. The aggregate materials are simulated as dispersed solid particles of various diameters, while the cement paste is simulated as a non-Newtonian continuous fluid. The first ten drum revolutions are analyzed from the condition of the completely segregated materials. The cell mixing index, defined by a statistical method in terms of mean, variance, and density probability function, is applied to the analysis of the simulation results. The statistical variables are implemented using the fluid dynamics code in the post-processing result analyses. The method predicts the distribution efficiency of the materials within a truck mixer as a function of its internal geometry, rotation speed, and mixture composition. As the number of revolutions increases, the distribution qualitatively improves, as shown by the motion fields, velocities, and vortices of the various materials, quantified through the calculation of the mixing index. The illustrated method can be used to predictively calculate the distribution effectiveness of new truck mixer designs before prototyping them and can be applied to other types of mixers. Furthermore, this study can be applied to liquid–solid mixing processes analyzed via the Eulerian multiphase numerical approach. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 2nd Edition)
Show Figures

Figure 1

46 pages, 56644 KiB  
Article
A 1.8 m Class Pathfinder Raman LIDAR for the Northern Site of the Cherenkov Telescope Array Observatory—Technical Design
by Otger Ballester, Oscar Blanch, Joan Boix, Paolo G. Calisse, Anna Campoy-Ordaz, Sidika Merve Çolak, Vania Da Deppo, Michele Doro, Lluís Font, Eudald Font-Pladevall, Rafael Garcia, Markus Gaug, Roger Grau, Darko Kolar, Alicia López-Oramas, Camilla Maggio, Manel Martinez, Òscar Martínez, Victor Riu-Molinero, David Roman, Samo Stanič, Júlia Tartera-Barberà, Santiago Ubach, Marko Zavrtanik and Miha Živecadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(6), 1074; https://doi.org/10.3390/rs17061074 - 18 Mar 2025
Cited by 1 | Viewed by 995
Abstract
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for [...] Read more.
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for correcting high-energy gamma-ray observations captured by Imaging Atmospheric Cherenkov Telescopes (IACTs). The LIDAR consists of a steerable telescope with a 1.8 m parabolic mirror and a pulsed Nd:YAG laser with frequency doubling and tripling. It emits at wavelengths of 355 nm and 532 nm to measure aerosol scattering and extinction through two elastic and Raman channels. Built upon a former Cherenkov Light Ultraviolet Experiment (CLUE) telescope, the pBRL’s design includes a Newtonian mirror configuration, a coaxial laser beam, a near-range system, a liquid light guide and a custom-made polychromator. During a one-year test at the ORM, the stability of the LIDAR and semi-remote-controlled operations were tested. This pathfinder leads the way to designing a final version of a CTAO Raman LIDAR which will provide real-time atmospheric monitoring and, as such, ensure the necessary accuracy of scientific data collected by the CTAO-N telescope array. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

12 pages, 1178 KiB  
Article
Negative-Viscosity Materials: Exploiting the Effect of Negative Mass
by Edward Bormashenko and Shraga Shoval
Materials 2025, 18(6), 1199; https://doi.org/10.3390/ma18061199 - 7 Mar 2025
Viewed by 839
Abstract
The research is motivated by the search for materials with negative viscosity to exploit the effect of negative mass. We introduce media (gaseous and liquid) that demonstrate negative viscosity. Consider the vibrated plate, which is vertically pulled through the ideal gas and built [...] Read more.
The research is motivated by the search for materials with negative viscosity to exploit the effect of negative mass. We introduce media (gaseous and liquid) that demonstrate negative viscosity. Consider the vibrated plate, which is vertically pulled through the ideal gas and built from the core–shell “meta-molecules”. Vibrating the vertical plate supplies an excess vertical momentum to the core–shell meta-molecules. If the frequency of vibrations is larger than the resonant frequency, the excess moment is oriented against the direction of the vertical motion; thus, the effect of negative viscosity becomes possible. The effective viscosity becomes negative when the frequency of the plate vibrations approaches the resonant frequency from above. Thus, a novel physical mechanism resulting in negative viscosity is introduced. No violation of energy conservation is observed; the energy is supplied to the system by the external source vibrating the plate. The effect of the negative viscosity is also possible in liquids. Frequency dependence of the viscosity is addressed. Asymptotic expressions are derived for the frequency-dependent viscosity. Introduced meta-materials may be exploited for the development of media with prescribed rheological properties. Possible realizations of the negative-viscosity media are discussed. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

13 pages, 5889 KiB  
Article
Non-Newtonian Interfacial Modeling of Protein Drops Sheared in Microgravity
by Joe A. Adam, Frank P. Riley, Juan M. Lopez, Patrick T. Underhill and Amir H. Hirsa
Fluids 2025, 10(3), 58; https://doi.org/10.3390/fluids10030058 - 26 Feb 2025
Viewed by 766
Abstract
Complex fluid interfaces are commonplace in natural and engineered systems and a major topic in the fields of rheology and soft matter physics, providing boundary conditions for a system’s hydrodynamics. The relationship between structure and function dictates how constituents within complex fluids govern [...] Read more.
Complex fluid interfaces are commonplace in natural and engineered systems and a major topic in the fields of rheology and soft matter physics, providing boundary conditions for a system’s hydrodynamics. The relationship between structure and function dictates how constituents within complex fluids govern flow behavior via constituents changing conformation in response to the local microenvironment to minimize free energy. Both hydrodynamics, such as shear flow, and the presence of air–liquid interfaces are principal aspects of a complex fluid’s environment. The study of fluid interfaces coupled to bulk flows can be uniquely advanced through experimentation in microgravity, where surface tension containment can be achieved at relatively large length scales. This computational investigation assesses flow in the ring-sheared drop (RSD), a containerless biochemical reactor operating aboard the International Space Station for the study of complex fluids and soft matter physics. Specifically, the hydrodynamic effects of a generalized Boussinesq–Scriven interface with a shear-thinning surface shear viscosity are examined in flow regimes where the air–liquid interface remains coupled to the Newtonian bulk fluid. The results verify this interfacial model’s ability to affect system-wide hydrodynamics under specific parameter regimes, enabling future model validation with high-precision rheological measurements. Full article
(This article belongs to the Special Issue Non-Newtonian Flow: Interfacial and Bulk Phenomena)
Show Figures

Figure 1

21 pages, 1753 KiB  
Article
Nusselt Number Dependence on Friction Factor in the Boundary Slip Flow of a Newtonian Liquid Between Parallel Plates
by Krishna Kota, Sarada Kuravi and Prasanna Jayaramu
Thermo 2025, 5(1), 7; https://doi.org/10.3390/thermo5010007 - 17 Feb 2025
Viewed by 1012
Abstract
This study explored the relationship between the Nusselt number and the friction factor in the laminar boundary slip flow of a Newtonian liquid between parallel plates. In addition, simplified equations were developed to estimate two key parameters—slip velocity and temperature jump—both of which [...] Read more.
This study explored the relationship between the Nusselt number and the friction factor in the laminar boundary slip flow of a Newtonian liquid between parallel plates. In addition, simplified equations were developed to estimate two key parameters—slip velocity and temperature jump—both of which are typically difficult to measure in experimental settings. The primary objectives of investigating the relationship between the Nusselt number and the friction factor were twofold: (1) to uncover the previously unknown mathematical connection (or analogy) between momentum transfer and heat transfer in the presence of boundary slip and (2) to enable predictions of either the pressure drop or the heat transfer coefficient by measuring just one of these quantities, thus simplifying experimental procedures. Considering the difficulty of conducting experiments of this type of flow (as described in the published literature), a finite element-based numerical model built in COMSOL Multiphysics software was used to validate the theoretically developed relationship over a wide range of Reynolds numbers and boundary slip values. While surface modifications like dimples, bumps, and ribs typically modify both the Nusselt number and pressure drop, leading to their increase for a given fluid and constant inlet Reynolds number, their behavior changes when boundary slip is present, particularly in cases where there is a low temperature jump at the wall. The analysis identified a specific threshold for the dimensionless temperature jump below which the Nusselt number with boundary slip will exceed 8.235. Furthermore, the analysis showed that for the Nusselt number to rise above 8.235, the non-dimensional velocity slip must be at least 3.19 times larger than the non-dimensional temperature jump. This means that the velocity slip has to be significantly larger than the temperature jump to achieve enhanced heat transfer in boundary slip flows. Full article
Show Figures

Figure 1

12 pages, 1283 KiB  
Article
Effects of Supplementation of Different Proteins on the Rheological Properties of Liquid Whole Eggs
by Majd Elayan, Csaba Németh, Munkhnasan Enkhbold, László Friedrich, István Dalmadi and Adrienn Varga-Tóth
Appl. Sci. 2025, 15(3), 1660; https://doi.org/10.3390/app15031660 - 6 Feb 2025
Viewed by 1365
Abstract
This study aimed to evaluate the impact of increasing total protein content on the rheological properties of liquid whole eggs. The study fills the gap between fundamental science and industrial application by exploring the potential for developing high-protein, functional egg products for health-conscious [...] Read more.
This study aimed to evaluate the impact of increasing total protein content on the rheological properties of liquid whole eggs. The study fills the gap between fundamental science and industrial application by exploring the potential for developing high-protein, functional egg products for health-conscious consumers and the food industry. Liquid whole egg samples were enriched with different percentages of egg white and whey proteins. Proteins were added either before or after heat treatment, followed by homogenization, to analyze the effects on rheological behavior. Results indicated that whey protein samples exhibit near-Newtonian behavior due to their high solubility and minimal protein interactions, while egg white protein samples, especially at higher concentrations, induce shear thinning behavior and increased viscosity due to their water-binding capacity and partial heat-induced denaturation. Flow behavior index (n) decreased by 62.7 ± 5.7% and 25.2 ± 1.8% for heat treated with 10% added egg white and whey protein samples, respectively; meanwhile, it decreased by 2.64 ± 0.06% for 10% of added egg white protein and increased by 12.0 ± 1.0% for 10% of whey protein when heat treatment was induced prior to protein additions. The findings from this study offer valuable insights for developing functional food enriched with whey and egg white proteins. Full article
Show Figures

Figure 1

23 pages, 6814 KiB  
Article
Heat Enhancement of Ethylene Glycol/Water Mixture in the Presence of Gyroid TPMS Structure: Experimental and Numerical Comparison
by Mohamad Ziad Saghir, Mohamad Yahya, Pedro D. Ortiz, Stefania Impellizzeri and Oraib Al-Ketan
Processes 2025, 13(1), 228; https://doi.org/10.3390/pr13010228 - 15 Jan 2025
Cited by 2 | Viewed by 1424
Abstract
Cooling small components is becoming an attractive topic for researchers. In this paper, an attempt is made to use an ethylene glycol/water mixture as a cooling liquid. This liquid is a helpful application for when the fluid is in a harsh environment and [...] Read more.
Cooling small components is becoming an attractive topic for researchers. In this paper, an attempt is made to use an ethylene glycol/water mixture as a cooling liquid. This liquid is a helpful application for when the fluid is in a harsh environment and should not freeze. The experiment uses an ethylene glycol/water mixture circulating through a triply periodic minimal surface structure (TPMS) made of aluminum and silver. A constant heat flux equal to 38,000 W/m2 is applied, and three different flow rates, 11.8 cm3/s, 15.5 cm3/s, and 19.6 cm3/s, are studied. The experimental setup is complemented with numerical modelling by solving the Navier–Stokes equation and the energy equation using the finite element technique. The flow is Newtonian, and a laminar regime is implemented. Results reveal that the performance of the ethylene glycol/water mixture did not enhance heat removal when compared to water. The average Nusselt number is similar regardless of the concentration of ethylene glycol in the mixture. This average Nusselt number, Nuaverage, in the presence of aluminum TPMS ranges between 60 and 80 (60 < Nuaverage < 80) and between 65 and 85 (65 < Nuaverage < 85) using silver TPMS. The increase in the mixture’s viscosity due to ethylene glycol increased the pressure drop. The performance evaluation criteria reach the maximum value of 90 when the mixture is composed of 5%vol ethylene glycol in water with aluminum TPMS. In the presence of silver TPMS, the maximum performance evaluation criterion is around 95 with a 5% ethylene glycol/water mixture. Finally, it is proven experimentally and confirmed numerically that the TPMS structure secures uniform heat extraction from the hot surface. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 2844 KiB  
Article
Rheology and Stability of Hydrocarbon-Based Gelled Fuels for Airbreathing Applications
by Simone Dell’Acqua, Francesco Morando, Stefania Carlotti and Filippo Maggi
Aerospace 2025, 12(1), 49; https://doi.org/10.3390/aerospace12010049 - 13 Jan 2025
Viewed by 1195
Abstract
Gelled fuels are rheologically complex, non-Newtonian fluids. They combine the benefits of both liquid and solid states, reducing risks of leakage, spilling, and sloshing during storage while maintaining the ability to be sprayed inside a combustion chamber. Additionally, suspending energetic particles, such as [...] Read more.
Gelled fuels are rheologically complex, non-Newtonian fluids. They combine the benefits of both liquid and solid states, reducing risks of leakage, spilling, and sloshing during storage while maintaining the ability to be sprayed inside a combustion chamber. Additionally, suspending energetic particles, such as metal powders of aluminum and boron, can significantly enhance their energy density compared to conventional liquid fuels. In this study, several kerosene-based and ethanol-based formulations were experimentally investigated, using both organic and inorganic gelling agents. The compositions were optimized in terms of the gellant amount and manufacturing process. Some of the most promising gellants for kerosene include fatty acids, such as Thixcin® R or THIXATROL® ST, and metallic soaps, such as aluminum stearate and zinc stearate. The effects of various co-solvents were assessed, including ketones (methyl isoamyl ketone, methyl ethyl ketone, and acetone) and alcohols (ethanol and octadecanol). Sugar polymers like hydroxypropyl cellulose were tested as gelling agents for ethanol. A preliminary rheological analysis was conducted to characterize their behavior at rest and under shear stress. Finally, a novel approach was introduced to study the stability of the gels under vibration, which was derived from a realistic mission profile of a ramjet. Finally, the ideal gravimetric specific impulse was evaluated through ideal thermochemical computations. The results showed that promising formulations can be found in both kerosene-based and ethanol-based gels. Such compositions are of interest in practical airbreathing applications as they have demonstrated excellent stability under vibration, ideal combustion properties, and pronounced shear-thinning behavior. Full article
Show Figures

Figure 1

17 pages, 7506 KiB  
Article
Study of Gas–Liquid Two-Phase Flow Characteristics at the Pore Scale Based on the VOF Model
by Shan Yuan, Lianjin Zhang, Tao Li, Tao Qi and Dong Hui
Energies 2025, 18(2), 316; https://doi.org/10.3390/en18020316 - 13 Jan 2025
Viewed by 987
Abstract
To study the effects of liquid properties and interface parameters on gas–liquid two-phase flow in porous media. The volume flow model of gas–liquid two-phase flow in porous media was established, and the interface of the two-phase flow was reconstructed by tracing the phase [...] Read more.
To study the effects of liquid properties and interface parameters on gas–liquid two-phase flow in porous media. The volume flow model of gas–liquid two-phase flow in porous media was established, and the interface of the two-phase flow was reconstructed by tracing the phase fraction. The microscopic imbibition flow model was established, and the accuracy of the model was verified by comparing the simulation results with the classical capillary imbibition model. The flow characteristics in the fracturing process and backflow process were analyzed. The influence of flow parameters and interface parameters on gas flow was studied using the single-factor variable method. The results show that more than 90% of the flowing channels are invaded by fracturing fluid, and only about 50% of the fluid is displaced in the flowback process. Changes in flow velocity and wetting angle significantly affect Newtonian flow behavior, while variations in surface tension have a pronounced effect on non-Newtonian fluid flow. The relative position of gas breakthrough in porous media is an inherent property of porous media, which does not change with fluid properties and flow parameters. Full article
Show Figures

Figure 1

Back to TopTop