Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = NH3 gas sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3453 KB  
Review
Diamond Sensor Technologies: From Multi Stimulus to Quantum
by Pak San Yip, Tiqing Zhao, Kefan Guo, Wenjun Liang, Ruihan Xu, Yi Zhang and Yang Lu
Micromachines 2026, 17(1), 118; https://doi.org/10.3390/mi17010118 - 16 Jan 2026
Viewed by 208
Abstract
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and [...] Read more.
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and other applications. In vibration sensing, nano/poly/single-crystal diamond resonators operate from MHz to GHz frequencies, with high quality factor via CVD growth, diamond-on-insulator techniques, and ICP etching. Pressure sensing uses boron-doped piezoresistive, as well as capacitive and Fabry–Pérot readouts. Thermal sensing merges NV nanothermometry, single-crystal resonant thermometers, and resistive/diode sensors. Magnetic detection offers FeGa/Ti/diamond heterostructures, complementing NV. Optoelectronic applications utilize DUV photodiodes and color centers. Radiation detectors benefit from diamond’s neutron conversion capability. Biosensing leverages boron-doped diamond and hydrogen-terminated SGFETs, as well as gas targets such as NO2/NH3/H2 via surface transfer doping and Pd Schottky/MIS. Imaging uses AFM/NV probes and boron-doped diamond tips. Persistent challenges, such as grain boundary losses in nanocrystalline diamond, limited diamond-on-insulator bonding yield, high temperature interface degradation, humidity-dependent gas transduction, stabilization of hydrogen termination, near-surface nitrogen-vacancy noise, and the cost of high-quality single-crystal diamond, are being addressed through interface and surface chemistry control, catalytic/dielectric stack engineering, photonic integration, and scalable chemical vapor deposition routes. These advances are enabling integrated, high-reliability diamond sensors for extreme and quantum-enhanced applications. Full article
Show Figures

Figure 1

21 pages, 7862 KB  
Article
Laser Deposition of Metal Oxide Structures for Gas Sensor Applications
by Nikolay Nedyalkov, Anna Dikovska, Tina Dilova, Genoveva Atanasova, Reni Andreeva and Georgi Avdeev
Materials 2026, 19(1), 176; https://doi.org/10.3390/ma19010176 - 3 Jan 2026
Viewed by 376
Abstract
This work presents results on laser-induced fabrication of metal and oxide structures on glass substrates. The Laser-Induced Reverse Transfer (LIRT) technique is applied using Zn and Sn, sintered ZnO and SnO2, and oxide composite targets. The processing is performed by nanosecond [...] Read more.
This work presents results on laser-induced fabrication of metal and oxide structures on glass substrates. The Laser-Induced Reverse Transfer (LIRT) technique is applied using Zn and Sn, sintered ZnO and SnO2, and oxide composite targets. The processing is performed by nanosecond pulses of a Nd:YAG laser system operated at wavelength of 1064 nm. Detailed analyses of the deposited material morphology, composition and structure are presented, as the role of the processing conditions is revealed. It is found that at the applied conditions of using up to five laser pulses, the deposited material is composed of a nanostructured film covered in microsized nanoparticle clusters or droplets. The use of metal targets leads to formation of structures composed of metal and oxide phases. The adhesion test shows that part of the deposited material is stably adhered to the substrate surface. It is demonstrated that the deposited materials can be used as resistive gas sensors with sensitivity to NH3, CO, ethanol, acetone and N2O, at concentrations of 30 ppm. The ability of the method to deposit composite structures that consist of a mixture of both investigated oxides is also demonstrated. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Third Edition))
Show Figures

Figure 1

22 pages, 4240 KB  
Article
ZnO/rGO/ZnO Composites with Synergic Enhanced Gas Sensing Performance for O3 Detection with No Ozonolysis Process
by Rayssa Silva Correia, Amanda Akemy Komorizono, Julia Coelho Tagliaferro, Natalia Candiani Simões Pessoa and Valmor Roberto Mastelaro
Chemosensors 2026, 14(1), 10; https://doi.org/10.3390/chemosensors14010010 - 1 Jan 2026
Viewed by 444
Abstract
rGO/ZnO composites have been widely studied for use as toxic gas sensors due to the synergistic effect between the materials and the reduction in sensor operating temperature promoted by rGO. However, few studies have employed rGO/ZnO sensors for ozone detection, as graphene materials [...] Read more.
rGO/ZnO composites have been widely studied for use as toxic gas sensors due to the synergistic effect between the materials and the reduction in sensor operating temperature promoted by rGO. However, few studies have employed rGO/ZnO sensors for ozone detection, as graphene materials are oxidized and/or degraded when exposed to ozone. This paper reports on a study of ZnO/rGO/ZnO-based sensors with different ZnO NP morphologies for ozone sensing. ZnO nanoparticles with needle-like and donut-like morphologies were synthesized by the precipitation method, and bare ZnO and ZnO/rGO/ZnO composite sensors were fabricated by layer-deposition of ZnO and/or rGO via drop-casting, forming a “sandwiched” structure that protects the rGO sheets. Bare ZnO and ZnO/rGO/ZnO composites were analyzed by varying the temperature from 200 to 300 °C. The ZnO/rGO/ZnO sensor provided a high 13.3 response (Rgas/Rair) and recovery times of 442 s and 253 s, respectively, for 50 ppb of O3, as well as high selectivity to ozone gas compared to CO, NH3, and NO2 gases. No oxidation or degradation of the sensor was observed during ozone detection measurements, indicating that the adopted manufacturing methodology was successful. Full article
Show Figures

Graphical abstract

22 pages, 3049 KB  
Article
Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide
by Tatiana Kamdina, Darya Klyamer, Aleksandr Sukhikh, Pavel Popovetskiy, Pavel Krasnov and Tamara Basova
Sensors 2026, 26(1), 8; https://doi.org/10.3390/s26010008 - 19 Dec 2025
Viewed by 421
Abstract
Octachlorinated metal phthalocyanines (MPcCl8, M = Co, Zn, VO) represent an underexplored class of functional materials with promising potential for chemiresistive sensing applications. This work is the first to determine the structure of single crystals of CoPcCl8, revealing a [...] Read more.
Octachlorinated metal phthalocyanines (MPcCl8, M = Co, Zn, VO) represent an underexplored class of functional materials with promising potential for chemiresistive sensing applications. This work is the first to determine the structure of single crystals of CoPcCl8, revealing a triclinic (P-1) packing motif with cofacial molecular stacks and an interplanar distance of 3.381 Å. Powder XRD, vibrational spectroscopy, and elemental analysis confirm phase purity and isostructurality between CoPcCl8 and ZnPcCl8, while VOPcCl8 adopts a tetragonal arrangement similar to its tetrachlorinated analogue. Thin films were fabricated via physical vapor deposition (PVD) and spin-coating (SC), with SC yielding highly crystalline films and PVD resulting in poorly crystalline or amorphous layers. Electrical measurements demonstrate that SC films exhibit n-type semiconducting behavior with conductivities 2–3 orders of magnitude higher than PVD films. Density functional theory (DFT) calculations corroborate the experimental findings, predicting band gaps of 1.19 eV (Co), 1.11 eV (Zn), and 0.78 eV (VO), with Fermi levels positioned near the conduction band, which is consistent with n-type character. Chemiresistive sensing tests reveal that SC-deposited MPcCl8 films respond reversibly and selectively to ammonia (NH3) and hydrogen sulfide (H2S) at room temperature. ZnPcCl8 shows the highest NH3 response (45.3% to 10 ppm), while CoPcCl8 exhibits superior sensitivity to H2S (LOD = 0.3 ppm). These results suggest that the films of octachlorinated phthalocyanines produced by the SC method are highly sensitive materials for gas sensors designed to detect toxic and corrosive gases. Full article
Show Figures

Figure 1

15 pages, 7014 KB  
Article
Gas Sensing Properties of Pt- and Rh-Decorated InS Monolayer Towards Toxic Industrial Gases: A First-Principles Study
by Jinyan Li, Junxian Lin, Shuying Huang, Dejian Hou, Shaomin Lin and Jianhong Dong
Molecules 2025, 30(23), 4510; https://doi.org/10.3390/molecules30234510 - 22 Nov 2025
Viewed by 305
Abstract
The development of highly sensitive gas sensors for toxic industrial gases (TIGs) is paramount for environmental monitoring and public safety. Here, the first-principles calculations were employed to systematically investigate the potential of Pt- and Rh-decorated InS (Pt-InS and Rh-InS) monolayers as advanced gas [...] Read more.
The development of highly sensitive gas sensors for toxic industrial gases (TIGs) is paramount for environmental monitoring and public safety. Here, the first-principles calculations were employed to systematically investigate the potential of Pt- and Rh-decorated InS (Pt-InS and Rh-InS) monolayers as advanced gas sensing materials for the five TIGs (SO2, NH3, NO, CO, and NO2). The results reveal that Pt and Rh atoms can be stably anchored at the InS monolayer, inducing significant modulation of its electronic properties. The Pt-InS system exhibits strong chemisorption of NH3 and CO, while the other TIGs interact via physisorption. In contrast, the Rh-InS monolayer demonstrates strong chemisorption and distinct electronic responses to all five gases, driven by robust hybridization between the Rh-d and TIG-p orbitals. Based on comprehensive analyses of sensitivity and recovery time, Rh-InS is identified as a theoretically promising candidate for a reusable SO2 sensor at room temperature, boasting a calculated rapid theoretical recovery time of 2.20 s. The Pt-InS system, conversely, shows potential for high-temperature NH3 sensing. Our findings highlight the exceptional and tunable gas sensing capabilities of Pt- and Rh-decorated InS monolayers, offering a theoretical foundation for designing InS-based sensing devices. Full article
Show Figures

Figure 1

18 pages, 2478 KB  
Article
IoT Monitoring of Indoor Air Quality in Dairy Goat Barns: The Role of Building Characteristics and Litter Management
by Stefania Celozzi, Roberto Ambrosini, Luca Rapetti, Silvana Mattiello and Alberto Finzi
Animals 2025, 15(22), 3332; https://doi.org/10.3390/ani15223332 - 19 Nov 2025
Viewed by 645
Abstract
Air quality in livestock housings impacts animal welfare; however, information on air quality in dairy goat barns is still limited. The air quality and environmental conditions of two farms in northern Italy were monitored for seven days after litter renewal in both summer [...] Read more.
Air quality in livestock housings impacts animal welfare; however, information on air quality in dairy goat barns is still limited. The air quality and environmental conditions of two farms in northern Italy were monitored for seven days after litter renewal in both summer and winter. The farms had different barn designs and litter replacement frequencies. Internet of Things (IoT) sensors were used to measure CO2, NH3, PM2.5, temperature and humidity. Results suggest that building structure, particularly the management of openings, along with litter replacement frequency, and season, significantly affect gas concentrations, while PM2.5 seems to be more related to the external conditions. The recommended thresholds for goat health and welfare were all met (537 vs. 778 ppm for CO2, 1.78 vs. 3.29 ppm for NH3 and 3.4 vs. 12.7 µg m−3 for PM2.5 in Farms A and B, respectively). The low average temperature humidity index values recorded in winter at Farm A (45.9) suggest potential cold stress, which could be mitigated through improved barn opening management. Our research introduces a novel use of IoT sensors in the frame of precision livestock farming to monitor air quality in goat barns, allowing data-driven interventions to improve animal welfare. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

18 pages, 4061 KB  
Article
Aerosol Spraying of Carbon Nanofiber-Based Films for NO2 Detection: The Role of the Spraying Technique
by Artyom Shishin, Valeriy Golovakhin, Eugene Maksimovskiy, Ekaterina Vostretsova, Vladimir Timofeev and Alexander Bannov
Appl. Sci. 2025, 15(22), 12110; https://doi.org/10.3390/app152212110 - 14 Nov 2025
Viewed by 370
Abstract
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link [...] Read more.
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link the spraying parameters directly to sensor performance metrics (response, signal-to-noise ratio, response times, etc.). Chemiresistive gas sensors were created based on CNFs and tested at room temperature (25 ± 1 °C). It has been shown that the increase in the concentration of the CNF/ethanol mixture used for spraying from 3 to 30 mg/mL led to a growth in sensor response from 1.2% to 12.0% at 2 ppm NO2. The increase in the thickness of the CNF film of the sensor induced a growth in ΔR/R0 to NO2 that is attributed to the formation of a porous film. With increased film thickness, the response improves (from 7.0% to 10.6% at 2 ppm NO2) as does the signal-to-noise ratio (from 735:1 to 1892:1). The creation of hybrid all-carbon composites based on CNFs and multi-walled carbon nanotubes (MWCNTs) resulted in a decrease in both sensor response and signal-to-noise ratio; however, the response time and recovery degree improved. Two types of hybrid materials based on CNFs and MWCNTs were created using aerosol spraying to enhance the sensor behavior of CNFs. The obtained data confirm the dominant role of the thickness of CNF-based films and their density (in terms of distance between nearest carbon inclusions within the film) in sensor characteristics. The machine learning data used to describe the sensing behavior of two gases with opposite resistance changes when in contact with CNFs, namely NO2 and NH3, showed final accuracies of 92.13% on training data and 91.98% on validation data. Full article
Show Figures

Figure 1

2099 KB  
Proceeding Paper
Printable Chemoresistive Sensor Based on PrFeTiO5 Solid Solution for Acetone Detection
by Danial Ahmed, Elena Spagnoli, Adil Chakir, Maura Mancinelli, Matteo Ferroni, Boubker Mehdaoui, Abdeslam El Bouari and Barbara Fabbri
Eng. Proc. 2025, 118(1), 48; https://doi.org/10.3390/ECSA-12-26592 - 7 Nov 2025
Viewed by 154
Abstract
Acetone necessitates reliable detection for the sake of both industrial and environmental safety. Metal oxides are widely used as functional materials for the development of gas sensors because techniques like nanostructure modification, doping, and solid solution formation can enhance their sensitivity and selectivity [...] Read more.
Acetone necessitates reliable detection for the sake of both industrial and environmental safety. Metal oxides are widely used as functional materials for the development of gas sensors because techniques like nanostructure modification, doping, and solid solution formation can enhance their sensitivity and selectivity by tuning structural and electronic properties. This study developed PrFeTiO5 nanostructures, synthesized via the solid-state reaction for acetone sensing. The sensor demonstrated a high response to acetone at an operating temperature of 400 °C, with a low influence of humidity, displaying outstanding selectivity towards acetaldehyde, NH3, H2, CO, and CO2, making it suitable across various applications. Full article
Show Figures

Figure 1

13 pages, 2501 KB  
Article
Molecular Design of Benzothiadiazole-Fused Tetrathiafulvalene Derivatives for OFET Gas Sensors: A Computational Study
by Xiuru Xu and Changfa Huang
Sensors 2025, 25(19), 6190; https://doi.org/10.3390/s25196190 - 6 Oct 2025
Viewed by 647
Abstract
Due to their unique advantages—such as small size, easy integration, flexible wearability, low power consumption, high sensitivity, and material designability—organic field-effect transistor (OFET) gas sensors have significant application potential in fields such as environmental detection, smart healthcare, robotics, and artificial intelligence. Benzothiadiazole fused [...] Read more.
Due to their unique advantages—such as small size, easy integration, flexible wearability, low power consumption, high sensitivity, and material designability—organic field-effect transistor (OFET) gas sensors have significant application potential in fields such as environmental detection, smart healthcare, robotics, and artificial intelligence. Benzothiadiazole fused tetrathiafulvalenes (TTF) are promising organic semiconductor candidates due to their abundant S atoms and planar π-π conjugation skeletons. We designed a series of derivatives by side-chain modification, and conducted systematic computations on TTF derivatives, including reported and newly designed materials, to analyze how geometric factors affect the charge transport properties of materials at the PBE0/6-311G(d,p) level. The frontier molecular orbitals (FMOs) and reorganization energy indicate that the designed derivatives are promising candidates for organic semiconductor sensing materials. Furthermore, theoretical calculations reveal that the designed TTF derivatives are sensitive to gases like NH3, H2S, and SO2, indicating organic field-effect transistors (OFETs) with gas-sensing functions. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

13 pages, 4976 KB  
Article
Nanostructured CeO2-C Derived from Ce-BDC Precursors for Room-Temperature Ammonia Sensing
by Liang Wang, Manyi Liu, Shan Ren, Xiankang Zhong, Bofeng Bai, Shouning Chai, Chi He and Xinzhe Li
Chemosensors 2025, 13(10), 362; https://doi.org/10.3390/chemosensors13100362 - 3 Oct 2025
Viewed by 998
Abstract
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and [...] Read more.
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and inadequate selectivity. Metal–organic frameworks (MOFs) and their derivatives offer a promising approach to address these limitations. In this work, Ce-BDC precursors with tunable particle sizes and crystallinity were synthesized by adjusting the raw material concentration. Controlled pyrolysis yielded a series of CeO2-C-X (X = 0.5, 1, 1.5, 2) materials with nanosized particles. Among them, the CeO2-C-1 sensor delivered a high response of 82% toward NH3 under 40% relative humidity at RT. Moreover, it possessed excellent selectivity, repeatability, and rapid response-recovery behavior compared with the other samples. CeO2-C-1 also remained stable under varying oxygen and humidity conditions, demonstrating high applicability. The superior sensing properties may be attributed to its high specific surface area and optimized mesoporous structure, which facilitated efficient gas adsorption and reaction. These findings demonstrated that precise control of MOF precursors and the structure in CeO2 nanomaterials was critical for achieving high-performance gas sensing and established Ce-MOF-derived CeO2 as a promising sensing material for NH3 detection at RT. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Figure 1

23 pages, 5990 KB  
Article
Monitoring of Ammonia in Biomass Combustion Flue Gas Using a Zeolite-Based Capacitive Sensor
by Thomas Wöhrl, Mario König, Ralf Moos and Gunter Hagen
Sensors 2025, 25(17), 5519; https://doi.org/10.3390/s25175519 - 4 Sep 2025
Cited by 2 | Viewed by 1504
Abstract
The emissions from biomass combustion systems have recently been the subject of increased attention. In addition to elevated concentrations of particulate matter and hydrocarbons (HCs) in the flue gas, significant levels of NOx emissions occur depending on the used fuel, such as [...] Read more.
The emissions from biomass combustion systems have recently been the subject of increased attention. In addition to elevated concentrations of particulate matter and hydrocarbons (HCs) in the flue gas, significant levels of NOx emissions occur depending on the used fuel, such as biogenic residues. In response to legal requirements, owners of medium-sized plants (≈100 kW) are now also forced to minimize these emissions by means of selective catalytic reduction systems (SCR). The implementation of a selective sensor is essential for the efficient dosing of the reducing agent, which is converted to ammonia (NH3) in the flue gas. Preliminary laboratory investigations on a capacitive NH3 sensor based on a zeolite functional film have demonstrated a high sensitivity to ammonia with minimal cross-influences from H2O and NOx. Further investigations concern the application of this sensor in the real flue gas of an ordinary wood-burning stove and of combustion plants for biogenic residues with an ammonia dosage. The findings demonstrate a high degree of agreement between the NH3 concentration measured by the sensor and an FTIR spectrometer. Furthermore, the investigation of the long-term stability of the sensor and the poisoning effects of SO2 and HCl are of particular relevance to the laboratory measurements in this study, which show promising results. Full article
(This article belongs to the Special Issue Chemical Sensors for Toxic Chemical Detection: 2nd Edition)
Show Figures

Figure 1

17 pages, 7479 KB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Viewed by 828
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Graphical abstract

26 pages, 5856 KB  
Review
MXene-Based Gas Sensors for NH3 Detection: Recent Developments and Applications
by Yiyang Xu, Yinglin Wang, Zhaohui Lei, Chen Wang, Xiangli Meng and Pengfei Cheng
Micromachines 2025, 16(7), 820; https://doi.org/10.3390/mi16070820 - 17 Jul 2025
Viewed by 1864
Abstract
Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas [...] Read more.
Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas due to their unique hierarchical structure, adjustable surface chemical properties, and excellent electrical conductivity. This study reviews the latest progress in the use of MXene and its composites for the low-temperature detection of ammonia gas. The strategies for designing MXene composites, including heterojunction engineering, surface functionalization, and active sites, are introduced, and their roles in improving sensing performance are clarified. These methods have significantly improved the ability to detect ammonia, offering high selectivity, rapid responses, and ultra-low detection limits within the low-temperature range. Successful applications in fields such as industrial safety, food quality monitoring, medical diagnosis, and agricultural management have demonstrated the multi-functionality of this technology in complex scenarios. The challenges related to the material’s oxidation resistance, humidity interference, and cross-sensitivity are also discussed. This study aims to briefly describe the reasonable design based on MXene sensors, aiming to achieve real-time and energy-saving environmental and health monitoring networks in the future. Full article
Show Figures

Figure 1

10 pages, 3162 KB  
Article
High-Sensitivity, Low Detection Limit, and Fast Ammonia Detection of Ag-NiFe2O4 Nanocomposite and DFT Study
by Xianfeng Hao, Yuehang Sun, Zongwei Liu, Gongao Jiao and Dongzhi Zhang
Nanomaterials 2025, 15(14), 1088; https://doi.org/10.3390/nano15141088 - 14 Jul 2025
Cited by 1 | Viewed by 672
Abstract
Ammonia (NH3) is one of the characteristic gases used to detect food spoilage. In this study, the 10 wt% Ag-NiFe2O4 nanocomposite was synthesized via the hydrothermal method. Characterization results from SEM, XRD, and XPS analyzed the microstructure, elemental [...] Read more.
Ammonia (NH3) is one of the characteristic gases used to detect food spoilage. In this study, the 10 wt% Ag-NiFe2O4 nanocomposite was synthesized via the hydrothermal method. Characterization results from SEM, XRD, and XPS analyzed the microstructure, elemental composition, and crystal lattice features of the composite, confirming its successful fabrication. Under the optimal working temperature of 280 °C, the composite exhibited excellent gas-sensing properties towards NH3. The 10 wt% Ag-NiFe2O4 sensor demonstrates rapid response and recovery, as well as high sensitivity, towards 30 ppm NH3, with response and recovery times of merely 3 s and 9 s, respectively, and a response value of 4.59. The detection limit is as low as 0.1 ppm, meeting the standards for food safety detection. Additionally, the sensor exhibits good short-term repeatability and long-term stability. Additionally, density functional theory (DFT) simulations were conducted to investigate the gas-sensing advantages of the Ag-NiFe2O4 composite by analyzing the electron density and density of states, thereby providing theoretical guidance for experimental testing. This study facilitates the rapid detection of food spoilage and promotes the development of portable food safety detection devices. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Gas and Humidity Sensors: Second Edition)
Show Figures

Figure 1

19 pages, 3806 KB  
Article
Electroactive Poly(amic acid) Films Grafted with Pendant Aniline Tetramer for Hydrogen Sulfide Gas Sensing Applications
by Kun-Hao Luo, Yun-Ting Chen, Hsuan-Yu Wu, Zong-Kai Ni and Jui-Ming Yeh
Polymers 2025, 17(14), 1915; https://doi.org/10.3390/polym17141915 - 11 Jul 2025
Viewed by 998
Abstract
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of [...] Read more.
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of grafting various loadings of pendant aniline tetramer pendants (PEDA) onto electroactive poly(amic acid) (EPAA) films and evaluates their performance as H2S gas sensors. Comprehensive characterization including ion trap mass spectrometry (Ion trap MS), Fourier-transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and four-probe conductivity measurements, confirmed successful PEDA incorporation and revealed enhanced electrical conductivity with increasing PEDA content. Gas sensing tests revealed that EPAA3 (3 wt% PEDA) achieved the best overall performance toward 10 ppm H2S, producing a 591% response with a rapid 108 s response time. Selectivity studies showed that the response of EPAA3 to H2S exceeded those for SO2, NO2, NH3, and CO by factors of five to twelve, underscoring its excellent discrimination against common interferents. Repeatability tests over five successive cycles gave a relative standard deviation of just 7.4% for EPAA3, and long-term stability measurements over 16 days in ambient air demonstrated that EPAA3 retained over 80%. These findings establish that PEDA-grafted PAA films combine the processability of poly(amic acid) with the sharp, reversible redox behavior of pendant aniline tetramers, delivering reproducible, selective, and stable H2S sensing. EPAA3, in particular, represents a balanced composition that maximizes sensitivity and durability, offering a promising platform for practical environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

Back to TopTop