Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = Myoviridae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2146 KiB  
Article
Isolation and Characterization of a Cold-Adapted Bacteriophage for Biocontrol of Vibrio parahaemolyticus in Seafood
by Zhixiang Nie, Xiangyu Cheng, Shengshi Jiang, Zhibin Zhang, Diwei Zhang, Hanfang Chen, Na Ling and Yingwang Ye
Foods 2025, 14(15), 2660; https://doi.org/10.3390/foods14152660 - 29 Jul 2025
Viewed by 274
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was [...] Read more.
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was isolated and biologically characterized to establish an effective control against V. parahaemolyticus. XY75 exhibited remarkable specificity toward V. parahaemolyticus, effectively lysing 46.2% of the target strains while showing no lytic activity against non-target bacterial species. Morphological characterization confirmed its taxonomic assignment to the Myoviridae family, featuring an icosahedral head (40 ± 2 nm) and contractile tail (60 ± 2 nm). XY75 demonstrated strong environmental tolerance, remaining stable at pH 4–11 and temperatures as high as 50 °C. At an optimal multiplicity of infection (MOI = 0.01), XY75 achieved a peak titer of 8.1 × 1010 PFU/mL, a 5 min latent period, and burst size of 118 PFU/cell. Critically, XY75 reduced V. parahaemolyticus in salmon by more than 5.98 log CFU/g (99.9%) within 6 h at 4 °C, demonstrating exceptional cold tolerance and lytic activity. Genomic analysis confirmed that no virulence or antibiotic resistance genes were present. These results establish XY75 as a safe and efficacious biocontrol candidate for seafood preservation, with particular utility under refrigerated storage conditions. Full article
Show Figures

Figure 1

11 pages, 6131 KiB  
Article
Metagenomics and Metagenome-Assembled Genomes: Analysis of Cupei from Sichuan Baoning Vinegar, One of the Four Traditional Renowned Vinegars in China
by Jie Wu, Ning Zhao, Qin Li, Kui Zhao, Meiling Tu, Jianlong Li, Kaidi Hu, Shujuan Chen, Shuliang Liu and Aiping Liu
Foods 2025, 14(3), 398; https://doi.org/10.3390/foods14030398 - 26 Jan 2025
Cited by 2 | Viewed by 995
Abstract
The microbial community in vinegar has primarily been investigated by analyzing short reads to determine operational taxonomic units, but it is also crucial to identify metagenome-assembled genomes (MAGs). In this study, the microbial diversity and functionality in Sichuan Baoning vinegar were examined through [...] Read more.
The microbial community in vinegar has primarily been investigated by analyzing short reads to determine operational taxonomic units, but it is also crucial to identify metagenome-assembled genomes (MAGs). In this study, the microbial diversity and functionality in Sichuan Baoning vinegar were examined through deep metagenomic sequencing and metagenomic binning. Results revealed that the most prevalent phylum was Firmicutes, followed by Proteobacteria and unclassified Bacteria. The most abundant bacterial species was Acetilactobacillus jinshanensis, while Saccharomyces cerevisiae was the most prevalent fungal species. The predominant viral species were Hopescreekvirus LfeInf, Myoviridae sp., and Siphoviridae sp. A total of 1395 MAGs were reconstructed, with 660 of them annotated. The majority of MAGs resolved at the species level were attributed to Firmicutes (n = 308), with Acetilactobacillus jinshanensis being the most abundant. According to the average nucleotide identity values, 223 out of the 660 MAGs might represent novel species. The recovered MAGs exhibited biomarker genes indicative of the genetic potential to encode several important secondary metabolites. This study helps to uncover the microbial composition and functional potential of microbial genomes in Sichuan Baoning vinegar. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

17 pages, 3363 KiB  
Article
Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models
by Yangjing Xiong, Lu Xia, Yumin Zhang, Guoqing Zhao, Shidan Zhang, Jingjiao Ma, Yuqiang Cheng, Hengan Wang, Jianhe Sun, Yaxian Yan and Zhaofei Wang
Microorganisms 2024, 12(12), 2532; https://doi.org/10.3390/microorganisms12122532 - 8 Dec 2024
Viewed by 2099
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure. The genome of JE01 was a dsDNA molecule, measuring 168.9 kb, and a transmission electron microscope revealed its characteristic T4-like Myoviridae morphology. JE01 effectively lysed multi-drug-resistant ETEC isolates. Stability assays demonstrated that JE01 retained its activity across a temperature range of 20 °C to 50 °C and a pH range of 3–11, showing resilience to ultraviolet radiation and chloroform exposure. Furthermore, JE01 effectively suppressed ETEC adhesion to porcine intestinal epithelial cells (IPEC-J2), mitigating the inflammatory response triggered by ETEC. To investigate the in vivo antibacterial efficacy of phage JE01 preparations, a diarrhea model was established using germ-free mice infected with a drug-resistant ETEC strain. The findings indicated that 12 h post-ETEC inoculation, intragastric administration of phage JE01 significantly reduced mortality, alleviated gastrointestinal lesions, decreased ETEC colonization in the jejunum, and suppressed the expression of the cytokines IL-6 and IL-8. These results demonstrate a therapeutic benefit of JE01 in treating ETEC-induced diarrhea in mice. Additionally, a fluorescent phage incorporating red fluorescent protein (RFP) was engineered, and the pharmacokinetics of phage therapy were preliminarily assessed through intestinal fluorescence imaging in mice. The results showed that the phage localized to ETEC in the jejunum rapidly, within 45 min. Moreover, the pharmacokinetics of the phage were markedly slowed in the presence of its bacterial target in the gut, suggesting sustained bacteriolytic activity in the ETEC-infected intestine. In conclusion, this study establishes a foundation for the development of phage-based therapies against ETEC. Full article
(This article belongs to the Special Issue Advances in Microbial Synthetic Biology)
Show Figures

Figure 1

17 pages, 3411 KiB  
Article
Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety
by Xinxin Jin, Xiuxiu Sun, Qin Lu, Zui Wang, Zhenggang Zhang, Xiaochun Ling, Yunpeng Xu, Ruiqin Liang, Junjie Yang, Li Li, Tengfei Zhang, Qingping Luo and Guofu Cheng
Microorganisms 2024, 12(12), 2400; https://doi.org/10.3390/microorganisms12122400 - 22 Nov 2024
Cited by 1 | Viewed by 1523
Abstract
Salmonella, a prevalent foodborne pathogen, poses a significant social and economic strain on both food safety and public health. The application of phages in the control of foodborne pathogens represents an emerging research area. In this study, Salmonella pullorum phage vB_SpuM_X5 (phage [...] Read more.
Salmonella, a prevalent foodborne pathogen, poses a significant social and economic strain on both food safety and public health. The application of phages in the control of foodborne pathogens represents an emerging research area. In this study, Salmonella pullorum phage vB_SpuM_X5 (phage X5) was isolated from chicken farm sewage samples. The results revealed that phage X5 is a novel Myoviridae phage. Phage X5 has adequate temperature tolerance (28 °C–60 °C), pH stability (4–12), and a broad host range of Salmonella bacteria (87.50% of tested strains). The addition of phage X5 (MOI of 100 and 1000) to milk inoculated with Salmonella reduced the number of Salmonella by 0.72 to 0.93 log10 CFU/mL and 0.66 to 1.06 log10 CFU/mL at 4 °C and 25 °C, respectively. The addition of phage X5 (MOI of 100 and 1000) to chicken breast inoculated with Salmonella reduced bacterial numbers by 1.13 to 2.42 log10 CFU/mL and 0.81 to 1.25 log10 CFU/mL at 4 °C and 25 °C, respectively. Phage X5 has bactericidal activity against Salmonella and can be used as a potential biological bacteriostatic agent to remove mature biofilms of Salmonella or for the prevention and control of Salmonella. Full article
(This article belongs to the Special Issue Phage–Bacteria Interplay: Phage Biology and Phage Therapy)
Show Figures

Figure 1

12 pages, 467 KiB  
Article
Molecular Typing of Somatic Coliphage Groups and Their Occurrence and Survival in Sewage
by Heesuk Lee, Jeremy Chemla, Thomas A. Randall, Emily S. Bailey and Mark D. Sobsey
Appl. Microbiol. 2024, 4(4), 1464-1475; https://doi.org/10.3390/applmicrobiol4040101 - 19 Oct 2024
Cited by 1 | Viewed by 1178
Abstract
A conventional, group-specific PCR method was developed to identify each of the four previously defined major taxa (Myoviridae, Siphoviridae, Podoviridae and Microviridae) of somatic coliphages and used to classify isolates from sewage. Somatic coliphage infectivity detection, occurrence and survival [...] Read more.
A conventional, group-specific PCR method was developed to identify each of the four previously defined major taxa (Myoviridae, Siphoviridae, Podoviridae and Microviridae) of somatic coliphages and used to classify isolates from sewage. Somatic coliphage infectivity detection, occurrence and survival in primary human sewage effluent was observed over time to further understand the presence and behavior of the groups of somatic coliphages at two environmental temperatures (4 and 25 °C). Over time, the taxonomic composition of the somatic coliphage population in sewage changed, with the Microviridae family becoming the most prevalent family in the sewage population after several weeks. Based on their persistence and prevalence in environmental waters, phages belonging to the Microviridae family provide supporting information on sewage contamination and possibly of human enteric viruses in sewage-contaminated water. Full article
Show Figures

Figure 1

17 pages, 5780 KiB  
Article
Genomic and Phenotypic Analysis of Salmonella enterica Bacteriophages Identifies Two Novel Phage Species
by Sudhakar Bhandare, Opeyemi U. Lawal, Anna Colavecchio, Brigitte Cadieux, Yella Zahirovich-Jovich, Zeyan Zhong, Elizabeth Tompkins, Margot Amitrano, Irena Kukavica-Ibrulj, Brian Boyle, Siyun Wang, Roger C. Levesque, Pascal Delaquis, Michelle Danyluk and Lawrence Goodridge
Microorganisms 2024, 12(4), 695; https://doi.org/10.3390/microorganisms12040695 - 29 Mar 2024
Cited by 4 | Viewed by 4477
Abstract
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella [...] Read more.
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I–VI toxin–antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods. Full article
(This article belongs to the Special Issue Bacteria Control by Phages)
Show Figures

Figure 1

12 pages, 3518 KiB  
Article
Isolation and Characterization of a Novel Virulent Phage ASG01 of Aeromonas salmonicida and Its Cell Wall Hydrolase Activity
by Chen Li, Qiting Fang, Yangjun Zhang, Kunyan Li, Yaoguang Li, Rong Wang, Yuyuan Peng, Guofan Zhang, Liqiu Xia and Shengbiao Hu
Microorganisms 2024, 12(3), 629; https://doi.org/10.3390/microorganisms12030629 - 21 Mar 2024
Cited by 1 | Viewed by 2042
Abstract
Aeromonas salmonicida is an important pathogen that causes furunculosis in trout and salmon with high morbidity and mortality, resulting in significant economic losses in aquaculture. Overuse of antibiotics has led to the continuous emergence of drug-resistant strains. Hence, there is an urgent need [...] Read more.
Aeromonas salmonicida is an important pathogen that causes furunculosis in trout and salmon with high morbidity and mortality, resulting in significant economic losses in aquaculture. Overuse of antibiotics has led to the continuous emergence of drug-resistant strains. Hence, there is an urgent need to find an alternative environmentally friendly antimicrobial agent. In this study, we isolated a virulent phage of A. salmonicida, named ASG01, which belongs to the Myoviridae family and maintains lytic activity at a pH value range from 4 to 12 and in the temperature range from 30 °C to 60 °C. The whole genomic sequence of ASG01 showed 82% similarity to Aeromonas phage pAh6-C. The cell wall hydrolase (Cwh)-encoding gene from the genome of ASG01 was predicted and heterologously expressed. Notably, in the absence of additional phage genes, endogenous expression of Cwh could lyse E. coli cells and greatly inhibit the growth of tested fish pathogenic bacteria. The lytic activity of Cwh was eliminated when the predicted active site was mutated. These results indicate that Cwh of ASG01 possessed excellent lytic activity and a wide antibacterial spectrum, suggesting its potential as an effective enzybiotic. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

11 pages, 4740 KiB  
Article
A Novel and Effective Therapeutic Method for Treating Aeromonas schubertii Infection in Channa maculata
by Xia Luo, Guoli Liao, Xiaozhe Fu, Hongru Liang, Yinjie Niu, Qiang Lin, Lihui Liu, Baofu Ma and Ningqiu Li
Animals 2024, 14(6), 957; https://doi.org/10.3390/ani14060957 - 19 Mar 2024
Cited by 3 | Viewed by 1653
Abstract
Aeromonas schubertii is a pathogen that severely affects aquatic animals, including the snakehead, Channa maculata. Lytic bacteriophages have been recognized as effective alternatives to antibiotics for controlling bacterial infections. However, there have been no reports of A. schubertii phages as far as [...] Read more.
Aeromonas schubertii is a pathogen that severely affects aquatic animals, including the snakehead, Channa maculata. Lytic bacteriophages have been recognized as effective alternatives to antibiotics for controlling bacterial infections. However, there have been no reports of A. schubertii phages as far as we know. In this study, a lytic bacteriophage SD04, which could effectively infect A. schubertii, was isolated from pond water cultured with diseased snakehead. The SD04 phage formed small, round plaques on Petri dishes. Electron microscopy revealed a hexagonal head and a contractile tail. Based on its morphology, it may belong to the Myoviridae family. Two major protein bands with molecular weights of 50 and 38 kilodaltons were observed after the phage was subjected to SDS-PAGE. The phage showed a large average burst size, high specificity, and a broad host range. When stored at 4 °C, phage SD04 had high stability over 12 months and showed almost no variation within the first six months. All fish were healthy after both intraperitoneal injection and immersion administration of SD04, indicating the safety of the phage. After treatment with SD04, Channa maculata in both phage therapy groups and prevention groups showed high survival rates (i.e., 83.3 ± 3.3% and 100 ± 1.3%, respectively). Phage therapy inhibits bacterial growth in the liver, the target organ of the infected Channa maculat. The experimental results indicate the potential use of phage SD04 for preventing A. schubertii infection in Channa maculata. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 4569 KiB  
Article
Fully Characterized Effective Bacteriophages Specific against Antibiotic-Resistant Enterococcus faecalis, the Causative Agent of Dental Abscess
by Asmaa Ramadan, Mohamed O. Abdel-Monem, Noha K. El-Dougdoug, Alsayed E. Mekky, Shymaa A. Elaskary, Abdulaziz A. Al-Askar, Shimaa A Metwally, Ahmed F. El-Sayed, Gehad AbdElgayed, Ebrahim Saied and Mohamed Khedr
Medicina 2024, 60(3), 501; https://doi.org/10.3390/medicina60030501 - 19 Mar 2024
Cited by 5 | Viewed by 3455
Abstract
Background and Objectives: Enterococcus faecalis (E. faecalis) is a primary pathogen responsible for dental abscesses, which cause inflammation and pain when trapped between the crown and soft tissues of an erupted tooth. Therefore, this study aims to use specific phages as an [...] Read more.
Background and Objectives: Enterococcus faecalis (E. faecalis) is a primary pathogen responsible for dental abscesses, which cause inflammation and pain when trapped between the crown and soft tissues of an erupted tooth. Therefore, this study aims to use specific phages as an alternative method instead of classical treatments based on antibiotics to destroy multidrug-resistant E. faecalis bacteria for treating dental issues. Materials and Methods: In the current study, twenty-five bacterial isolates were obtained from infected dental specimens; only five had the ability to grow on bile esculin agar, and among these five, only two were described to be extensive multidrug-resistant isolates. Results: Two bacterial isolates, Enterococcus faecalis A.R.A.01 [ON797462.1] and Enterococcus faecalis A.R.A.02, were identified biochemically and through 16S rDNA, which were used as hosts for isolating specific phages. Two isolated phages were characterized through TEM imaging, which indicated that E. faecalis_phage-01 had a long and flexible tail, belonging to the family Siphoviridae, while E. faecalis_phage-02 had a contractile tail, belonging to the family Myoviridae. Genetically, two phages were identified through the PCR amplification and sequencing of the RNA ligase of Enterococcus phage vB_EfaS_HEf13, through which our phages shared 97.2% similarity with Enterococcus phage vB-EfaS-HEf13 based on BLAST analysis. Furthermore, through in silico analysis and annotations of the two phages’ genomes, it was determined that a total of 69 open reading frames (ORFs) were found to be involved in various functions related to integration excision, replication recombination, repair, stability, and defense. In phage optimization, the two isolated phages exhibited a high specific host range with Enterococcus faecalis among six different bacterial hosts, where E. faecalis_phage-01 had a latent period of 30 min with 115.76 PFU/mL, while E. faecalis_phage-02 had a latent period of 25 min with 80.6 PFU/mL. They were also characterized with stability at wide ranges of pH (4–11) and temperature (10–60 °C), with a low cytotoxic effect on the oral epithelial cell line at different concentrations (1000–31.25 PFU/mL). Conclusions: The findings highlight the promise of phage therapy in dental medicine, offering a novel approach to combating antibiotic resistance and enhancing patient outcomes. Further research and clinical trials will be essential to fully understand the therapeutic potential and safety profile of these bacteriophages in human populations. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

25 pages, 6188 KiB  
Article
First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol
by Elena G. Biosca, Ricardo Delgado Santander, Félix Morán, Àngela Figàs-Segura, Rosa Vázquez, José Francisco Català-Senent and Belén Álvarez
Biology 2024, 13(3), 176; https://doi.org/10.3390/biology13030176 - 8 Mar 2024
Cited by 8 | Viewed by 3942
Abstract
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and [...] Read more.
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and human health risks. Bacteriophages (phages) constitute an ecological, safe, and sustainable fire blight control alternative. The goal of this study was to search for specific E. amylovora phages from plant material, soil, and water samples in Mediterranean environments. A collection of phages able to specifically infect and lyse E. amylovora strains was generated from former fire blight-affected orchards in Eastern Spain. Following in vitro characterization, assays in immature fruit revealed that preventively applying some of the phages or their combinations delayed the onset of fire blight symptoms and reduced the disease’s severity, suggesting their biocontrol potential in Spain and other countries. The morphological and molecular characterization of the selected E. amylovora phages classified them as members of the class Caudoviricetes (former Myoviridae family) and genus Kolesnikvirus. This study reveals Mediterranean settings as plausible sources of E. amylovora-specific bacteriophages and provides the first effective European phage cocktails in plant material for the development of sustainable fire blight management measures. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

16 pages, 2198 KiB  
Article
Bacteriophages for Controlling Staphylococcus spp. Pathogens on Dairy Cattle Farms: In Vitro Assessment
by Ewelina Pyzik, Renata Urban-Chmiel, Łukasz Kurek, Klaudia Herman, Rafał Stachura and Agnieszka Marek
Animals 2024, 14(5), 683; https://doi.org/10.3390/ani14050683 - 22 Feb 2024
Cited by 2 | Viewed by 2332
Abstract
Pathogenic Staphylococcus spp. strains are significant agents involved in mastitis and in skin and limb infections in dairy cattle. The aim of this study was to assess the antibacterial effectiveness of bacteriophages isolated from dairy cattle housing as potential tools for maintaining environmental [...] Read more.
Pathogenic Staphylococcus spp. strains are significant agents involved in mastitis and in skin and limb infections in dairy cattle. The aim of this study was to assess the antibacterial effectiveness of bacteriophages isolated from dairy cattle housing as potential tools for maintaining environmental homeostasis. The research will contribute to the use of phages as alternatives to antibiotics. The material was 56 samples obtained from dairy cows with signs of limb and hoof injuries. Staphylococcus species were identified by phenotypic, MALDI-TOF MS and PCR methods. Antibiotic resistance was determined by the disc diffusion method. Phages were isolated from cattle housing systems. Phage activity (plaque forming units, PFU/mL) was determined on double-layer agar plates. Morphology was examined using TEM microscopy, and molecular characteristics were determined with PCR. Among 52 strains of Staphylococcus spp., 16 were used as hosts for bacteriophages. Nearly all isolates (94%, 15/16) showed resistance to neomycin, and 87% were resistant to spectinomycin. Cefuroxime and vancomycin were the most effective antibiotics. On the basis of their morphology, bacteriophages were identified as class Caudoviricetes, formerly Caudovirales, families Myoviridae-like (6), and Siphoviridae-like (9). Three bacteriophages of the family Myoviridae-like, with the broadest spectrum of activity, were used for further analysis. This study showed a wide spectrum of activity against the Staphylococcus spp. strains tested. The positive results indicate that bacteriophages can be used to improve the welfare of cattle. Full article
(This article belongs to the Special Issue Foot and Claw Health in Dairy Cow)
Show Figures

Figure 1

14 pages, 3424 KiB  
Article
Ecological Interaction between Bacteriophages and Bacteria in Sub-Arctic Kongsfjorden Bay, Svalbard, Norway
by Kang Eun Kim, Hyoung Min Joo, Yu Jin Kim, Donhyug Kang, Taek-Kyun Lee, Seung Won Jung and Sun-Yong Ha
Microorganisms 2024, 12(2), 276; https://doi.org/10.3390/microorganisms12020276 - 28 Jan 2024
Cited by 2 | Viewed by 1966
Abstract
Marine virus diversity and their relationships with their hosts in the marine environment remain unclear. This study investigated the co-occurrence of marine DNA bacteriophages (phages) and bacteria in the sub-Arctic area of Kongsfjorden Bay in Svalbard (Norway) in April and June 2018 using [...] Read more.
Marine virus diversity and their relationships with their hosts in the marine environment remain unclear. This study investigated the co-occurrence of marine DNA bacteriophages (phages) and bacteria in the sub-Arctic area of Kongsfjorden Bay in Svalbard (Norway) in April and June 2018 using metagenomics tools. Of the marine viruses identified, 48–81% were bacteriophages of the families Myoviridae, Siphoviridae, and Podoviridae. Puniceispirillum phage HMO-2011 was dominant (7.61%) in April, and Puniceispirillum phage HMO-2011 (3.32%) and Pelagibacter phage HTVC008M (3.28%) were dominant in June. Gammaproteobacteria (58%), including Eionea flava (14.3%) and Pseudomonas sabulinigri (12.2%), were dominant in April, whereas Alphaproteobacteria (87%), including Sulfitobacter profundi (51.5%) and Loktanella acticola (32.4%), were dominant in June. The alpha diversity of the bacteriophages and bacterial communities exhibited opposite patterns. The diversity of the bacterial community was higher in April and lower in June. Changes in water temperature and light can influence the relationship between bacteria and bacteriophages. Full article
(This article belongs to the Topic Marine Viruses)
Show Figures

Figure 1

13 pages, 2557 KiB  
Article
Evaluation of the Effectiveness of Staphylococcus Phages in a Skincare Serum against Staphylococcus spp.
by Wattana Pelyuntha, Mingkwan Yingkajorn, Thamonwan Narkpao, Supanida Saeaui, Khemapsorn Promkuljan and Kitiya Vongkamjan
Cosmetics 2023, 10(6), 156; https://doi.org/10.3390/cosmetics10060156 - 14 Nov 2023
Cited by 2 | Viewed by 3710
Abstract
The emergence of multidrug-resistant (MDR) Staphylococcus spp. has resulted in the reduced use of antibiotics in many skincare cosmetic products. Alternative treatments using natural bioactive compounds and chemical agents can be replaced. However, these compounds have induced negative side effects among users and [...] Read more.
The emergence of multidrug-resistant (MDR) Staphylococcus spp. has resulted in the reduced use of antibiotics in many skincare cosmetic products. Alternative treatments using natural bioactive compounds and chemical agents can be replaced. However, these compounds have induced negative side effects among users and are not environmentally friendly. Phage therapy is an alternative to antibiotics for the treatment of specific pathogenic bacteria including Staphylococcus spp., without harmful effects on human skin cells and microflora. Phages can be potentially used in cosmetic products. The direct application of phage-based cosmetic products on skin can reduce the chance of skin infection caused by pathogenic Staphylococcus spp. In the present work, we isolated 17 Staphylococcus phages from sewage and soil samples. Phage A1 showed the highest lytic ability at 50% (B1 profile), covering 13 tested Staphylococcus isolates including Staphylococcus aureus (SA), methicillin-resistant S. aureus (MRSA), S. capitis (SC), and S. epidermidis (SE). Phage A1 reduced the representative S. aureus ATCC 25923 and S. capitis SC1 by 2.0 ± 0.1 and 4.1 ± 0.3 log units at a multiplicity of infection (MOI) of 104 and by 4.2 ± 0.2 and 4.4 ± 0.5 log units at a MOI of 105 after 6 h of post-phage treatment. The transmission electron microscope revealed that phage A1 was classified in the order Caudovirales of the family Myoviridae based on its appearance. Phage A1 showed optimal survival in the presence of a 0.125% (v/v) solidant DMH suspension after 3 h of post-treatment. Under a phage skincare serum formulation, the titers of phage A1 were reduced by 0.46 and 0.85 log units after storage at 4 and 25 °C, whereas a reduction of 2.96 log units was also observed after storage at 37° for 90 days. This study provides strong evidence for the effectiveness of phage application in cosmetic skincare serum for the treatment of skin diseases caused by MDR and pathogenic Staphylococcus spp. The concept of this study could be advantageous for cosmetic and/or cosmeceutical industries searching for new bioactive ingredients for cosmetic/cosmeceutical products. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

17 pages, 5214 KiB  
Article
The Development of Oral Solid Dosage Forms Using the Direct-Compression Tableting of Spray-Dried Bacteriophages Suitable for Targeted Delivery and Controlled Release
by Zahra Rezaie Yazdi, Mark C. Leaper and Danish J. Malik
Processes 2023, 11(11), 3146; https://doi.org/10.3390/pr11113146 - 3 Nov 2023
Cited by 1 | Viewed by 3380
Abstract
This study addresses the challenge of developing a cheap, patient-friendly alternative to antibiotics using bacteriophages for gastrointestinal applications. It explores the feasibility of manufacturing an enteric solid dosage form containing a salmonella-specific Myoviridae phage, Felix O1, encapsulated in spray-dried trehalose/Eudragit microparticles. The [...] Read more.
This study addresses the challenge of developing a cheap, patient-friendly alternative to antibiotics using bacteriophages for gastrointestinal applications. It explores the feasibility of manufacturing an enteric solid dosage form containing a salmonella-specific Myoviridae phage, Felix O1, encapsulated in spray-dried trehalose/Eudragit microparticles. The spray-dried powder was further formulated by combining the spray-dried microparticles with magnesium stearate to facilitate the fabrication of tablets using direct compression. The paper presents a comprehensive evaluation of the tablets with measurements of phage viability during tablet fabrication using a range of compression settings and, after tablet disintegration, dissolution and friability. Phage viability measurements were performed using storage stability testing of spray-dried powders and tablets in sealed vials at 4 °C, 20 °C and 30 °C and under different humidity conditions of 0%, 50% and 65% RH. The recommended compression force range was found to be 10–15 kN for a standard 10 mm diameter tablet. The storage of tablets at 4 °C/0% RH was found to be the most favourable condition resulting in a ~1 log loss in titre over a six-month storage period. Storage at higher temperatures and samples exposed to high levels of humidity resulted in a significant loss in phage viability. The paper highlights challenges in developing phage formulations suitable for direct-compression tableting, which afford the phages protection when exposed to temperatures and humidity levels that do not require a cold supply chain. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

20 pages, 12369 KiB  
Article
Structure of Vibrio Phage XM1, a Simple Contractile DNA Injection Machine
by Zhiqing Wang, Andrei Fokine, Xinwu Guo, Wen Jiang, Michael G. Rossmann, Richard J. Kuhn, Zhu-Hua Luo and Thomas Klose
Viruses 2023, 15(8), 1673; https://doi.org/10.3390/v15081673 - 31 Jul 2023
Cited by 13 | Viewed by 2796
Abstract
Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a [...] Read more.
Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here, we report cryo-EM reconstructions of all components of the XM1 virion and describe the atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared to other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection and post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection. Full article
(This article belongs to the Special Issue Phage Structural Biology)
Show Figures

Figure 1

Back to TopTop