Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Media
2.2. Isolation, Identification and Purification of Phage X5
2.3. Determination of Host Range of Phage X5
2.4. Determination of Biological Characteristics of Phage X5
2.5. Adsorption Rate Determination
2.6. One–Step Growth Curve of Phage X5
2.7. Transmission Electron Microscopy (TEM) of Phage X5
2.8. Phage X5 DNA Extraction and Genome Sequence Analysis
2.9. Ability of Phage X5 to Reduce Salmonella Biofilm Formation
2.10. Inhibitory Effect of Phage X5 on Salmonella in Foods
2.11. Statistical Analysis
3. Results
3.1. Isolation and Identification of Salmonella Phage
3.2. Host Range of Phage X5
3.3. Biological Characteristics of Phage X5
3.4. Adsorption Rate
3.5. One–Step Growth Curve
3.6. Whole–Genome Sequencing and Coding Gene Prediction of Phage X5
3.7. Scavenging Effect of Phage X5 on Bacterial Biofilm
3.8. Inactivation of Salmonella in Different Food Models by Phage X5
3.8.1. Bacteriostasis of Phages in Milk
3.8.2. Bacteriostasis of Phages in Chicken Breast
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.; Young, R. Phage Lysis: Multiple Genes for Multiple Barriers. Adv. Virus Res. 2019, 103, 33–70. [Google Scholar] [CrossRef]
- Li, K.; Ye, S.; Alali, W.Q.; Wang, Y.; Wang, X.; Xia, X.; Yang, B. Antimicrobial susceptibility, virulence gene and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar Typhimurium recovered from retail raw chickens, China. Food Control 2017, 72, 36–42. [Google Scholar] [CrossRef]
- Punchihewage-Don, A.J.; Hawkins, J.; Adnan, A.M.; Hashem, F.; Parveen, S. The outbreaks and prevalence of antimicrobial resistant Salmonella in poultry in the United States: An overview. Heliyon 2022, 8, e11571. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xiong, W.; Yuan, X.; Li, S.; Zhi, L.; Pan, P.; Sun, W.; Yu, T.; He, Q.; Cheng, Z. Salmonella Pullorum lacking srfA is attenuated, immunogenic and protective in chickens. Microb. Pathog. 2021, 161 Pt A, 105230. [Google Scholar] [CrossRef]
- Ao, T.T.; Feasey, N.A.; Gordon, M.A.; Keddy, K.H.; Angulo, F.J.; Crump, J.A. Global burden of invasive nontyphoidal Salmonella disease, 20101. Emerg. Infect. Dis. 2015, 21, 941–949. [Google Scholar] [CrossRef]
- Shivaprasad, H.L. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 2000, 19, 405–424. [Google Scholar] [CrossRef]
- Duc, H.M.; Son, H.M.; Honjoh, K.-i.; Miyamoto, T. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT-Food Sci. Technol. 2018, 91, 353–360. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Ding, Y.; Huang, C.; Zhang, Y.; Wang, J.; Wang, X. Characterization of a novel Siphoviridae Salmonella bacteriophage T156 and its microencapsulation application in food matrix. Food Res. Int. 2021, 140, 110004. [Google Scholar] [CrossRef]
- Carvalho, C.; Costa, A.R.; Silva, F.; Oliveira, A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit. Rev. Microbiol. 2017, 43, 583–601. [Google Scholar] [CrossRef]
- Lasagabaster, A.; Jimenez, E.; Lehnherr, T.; Miranda-Cadena, K.; Lehnherr, H. Bacteriophage biocontrol to fight Listeria outbreaks in seafood. Food Chem. Toxicol. 2020, 145, 111682. [Google Scholar] [CrossRef] [PubMed]
- Newase, S.; Kapadnis, B.P.; Shashidhar, R. Isolation and Genome Sequence Characterization of Bacteriophage vB_SalM_PM10, a Cba120virus, Concurrently Infecting Salmonella enterica Serovars Typhimurium, Typhi, and Enteritidis. Curr. Microbiol. 2019, 76, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, P.; Shi, D.; Zhao, H.; Yuan, X.; Jin, X.; Wang, X. A Cocktail of Three Virulent Phages Controls Multidrug-Resistant Salmonella Enteritidis Infection in Poultry. Front. Microbiol. 2022, 13, 940525. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mirmiran, S.D.; Li, X.; Li, X.; Zhang, F.; Duan, X.; Gao, D.; Chen, Y.; Chen, H.; Qian, P. Temperate phage influence virulence and biofilm-forming of Salmonella Typhimurium and enhance the ability to contaminate food product. Int. J. Food Microbiol. 2023, 398, 110223. [Google Scholar] [CrossRef]
- Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Yan, T.; Willias, S.P.; Mia, M.Z.; Bei, W.; Connerton, I.F.; Fischetti, V.A.; et al. Application of a Broad Range Lytic Phage LPST94 for Biological Control of Salmonella in Foods. Microorganisms 2020, 8, 247. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Islam, M.S.; Yan, T.; Zhou, Y.; Liang, L.; Connerton, I.F.; Deng, K.; Li, J. Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Res. Int. 2021, 147, 110492. [Google Scholar] [CrossRef]
- Lee, W.J.; Billington, C.; Hudson, J.A.; Heinemann, J.A. Isolation and characterization of phages infecting Bacillus cereus. Lett. Appl. Microbiol. 2011, 52, 456–464. [Google Scholar] [CrossRef]
- Aziz, R.K.; Ackermann, H.W.; Petty, N.K.; Kropinski, A.M. Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis. Methods Mol. Biol. 2018, 1681, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Tie, K.; Yuan, Y.; Yan, S.; Yu, X.; Zhang, Q.; Xu, H.; Zhang, Y.; Gu, J.; Sun, C.; Lei, L.; et al. Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes 2018, 54, 446–456. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, Q.; Chen, H.; Wu, Q.; Chen, M.; Yang, S.; Du, M.; Zha, F.; Ye, Q.; Zhang, J. Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2. Front. Microbiol. 2021, 12, 664810. [Google Scholar] [CrossRef]
- Sui, B.; Han, L.; Ren, H.; Liu, W.; Zhang, C. A Novel Polyvalent Bacteriophage vB_EcoM_swi3 Infects Pathogenic Escherichia coli and Salmonella enteritidis. Front. Microbiol. 2021, 12, 649673. [Google Scholar] [CrossRef]
- Lopez-Cuevas, O.; Castro-Del Campo, N.; Leon-Felix, J.; Gonzalez-Robles, A.; Chaidez, C. Characterization of bacteriophages with a lytic effect on various Salmonella serotypes and Escherichia coli O157:H7. Can. J. Microbiol. 2011, 57, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Oduor, J.M.O.; Kadija, E.; Nyachieo, A.; Mureithi, M.W.; Skurnik, M. Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential. Viruses 2020, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Virk, S.M.; Shi, J.; Zhou, Y.; Willias, S.P.; Morsy, M.K.; Abdelnabby, H.E.; Liu, J.; Wang, X.; Li, J. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE) Foods. Front. Microbiol. 2018, 9, 1046. [Google Scholar] [CrossRef]
- Sun, W.J.; Liu, C.F.; Yu, L.; Cui, F.J.; Zhou, Q.; Yu, S.L.; Sun, L. A novel bacteriophage KSL-1 of 2-Keto-gluconic acid producer Pseudomonas fluorescens K1005: Isolation, characterization and its remedial action. BMC Microbiol. 2012, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.; Tamhankar, A.J.; Lundborg, C.S.; Nachimuthu, R. Therapeutic Characterization and Efficacy of Bacteriophage Cocktails Infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter Species. Front. Microbiol. 2019, 10, 574. [Google Scholar] [CrossRef]
- Hooton, S.P.; Atterbury, R.J.; Connerton, I.F. Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int. J. Food Microbiol. 2011, 151, 157–163. [Google Scholar] [CrossRef]
- Duc, H.M.; Son, H.M.; Yi, H.P.S.; Sato, J.; Ngan, P.H.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Res. Int. 2020, 131, 108977. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, F.; Wang, L.; Tan, D.; Cong, C.; Li, X.; Xu, Y. Complete genome analysis of the novel Enterococcus faecalis phage vB_EfaS_AL3. Arch. Virol. 2019, 164, 2599–2603. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef] [PubMed]
- Mount, D.W. Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc. 2007, 2007, pdb-top17. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.Y.; El-Gebali, S.; Fraser, M.I.; et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019, 47, D351–D360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Kostaki, M.; Chorianopoulos, N.; Braxou, E.; Nychas, G.J.; Giaouris, E. Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl. Environ. Microbiol. 2012, 78, 2586–2595. [Google Scholar] [CrossRef]
- de Ornellas Dutka Garcia, K.C.; de Oliveira Correa, I.M.; Pereira, L.Q.; Silva, T.M.; de Souza Ribeiro Mioni, M.; de Moraes Izidoro, A.C.; Vellano Bastos, I.H.; Marietto Goncalves, G.A.; Okamoto, A.S.; Andreatti Filho, R.L. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poult. Sci. 2017, 96, 3392–3398. [Google Scholar] [CrossRef]
- Shan, W.; Zhang, H.; Kan, J.; Yin, M.; Zhang, J.; Wan, L.; Chang, R.; Li, M. Acquired mucoid phenotype of Acinetobacter baumannii: Impact for the molecular characteristics and virulence. Microbiol. Res. 2021, 246, 126702. [Google Scholar] [CrossRef]
- Hong, Y.; Schmidt, K.; Marks, D.; Hatter, S.; Marshall, A.; Albino, L.; Ebner, P. Treatment of Salmonella-Contaminated Eggs and Pork with a Broad-Spectrum, Single Bacteriophage: Assessment of Efficacy and Resistance Development. Foodborne Pathog. Dis. 2016, 13, 679–688. [Google Scholar] [CrossRef]
- Huang, C.; Shi, J.; Ma, W.; Li, Z.; Wang, J.; Li, J.; Wang, X. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res. Int. 2018, 111, 631–641. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, G.; Gebremedhin, E.Z. Prevalence of Salmonella in raw animal products in Ethiopia: A meta-analysis. BMC Res. Notes 2015, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhu, Y.; Yin, K.; Xu, L.; Yin, C.; Li, Y.; Ren, J.; Yuan, Y.; Jiao, X. Purification of recombinant IpaJ to develop an indirect ELISA-based method for detecting Salmonella enterica serovar Pullorum infections in chickens. BMC Vet. Res. 2019, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Li, P.; Huang, J.; Lin, F.; Li, R.; Cao, D.; Hao, G.; Sun, S. Salmonella Phage CKT1 Effectively Controls the Vertical Transmission of Salmonella Pullorum in Adult Broiler Breeders. Biology 2023, 12, 312. [Google Scholar] [CrossRef]
- Huang, J.; Liang, L.; Cui, K.; Li, P.; Hao, G.; Sun, S. Salmonella phage CKT1 significantly relieves the body weight loss of chicks by normalizing the abnormal intestinal microbiome caused by hypervirulent Salmonella Pullorum. Poult. Sci. 2022, 101, 101668. [Google Scholar] [CrossRef]
- Leverentz, B.; Conway, W.S.; Alavidze, Z.; Janisiewicz, W.J.; Fuchs, Y.; Camp, M.J.; Chighladze, E.; Sulakvelidze, A. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: A model study. J. Food Prot. 2001, 64, 1116–1121. [Google Scholar] [CrossRef]
- Bielke, L.; Higgins, S.; Donoghue, A.; Donoghue, D.; Hargis, B.M. Salmonella host range of bacteriophages that infect multiple genera. Poult. Sci. 2007, 86, 2536–2540. [Google Scholar] [CrossRef]
- Choi, I.Y.; Lee, J.H.; Kim, H.J.; Park, M.K. Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection. J. Microbiol. Biotechnol. 2017, 27, 2151–2155. [Google Scholar] [CrossRef]
- Liu, R.; Han, G.; Li, Z.; Cun, S.; Hao, B.; Zhang, J.; Liu, X. Bacteriophage therapy in aquaculture: Current status and future challenges. Folia Microbiol. 2022, 67, 573–590. [Google Scholar] [CrossRef]
- El-Dougdoug, N.K.; Cucic, S.; Abdelhamid, A.G.; Brovko, L.; Kropinski, A.M.; Griffiths, M.W.; Anany, H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int. J. Food Microbiol. 2019, 293, 60–71. [Google Scholar] [CrossRef]
- Lal, T.M.; Sano, M.; Ransangan, J. Isolation and Characterization of Large Marine Bacteriophage (Myoviridae), VhKM4 Infecting Vibrio harveyi. J. Aquat. Anim. Health 2017, 29, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Yang, W.; Zhu, X.; Liu, C.; Lu, J.; Si, Z.; Pei, L.; Zhang, L.; Hu, W.; Li, Y.; et al. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet. Res. 2022, 18, 386. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, H.; Zhang, Z.; Han, F.; Li, J.; Sun, Y. Isolation and characterization of a lytic bacteriophage phiKp-lyy15 of Klebsiella pneumoniae. Virol. Sin. 2015, 30, 66–68. [Google Scholar] [CrossRef]
- Lewis, R.; Hill, C. Overcoming barriers to phage application in food and feed. Curr. Opin. Biotechnol. 2020, 61, 38–44. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Wei, F.; Yu, F.; Zhao, Z. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109. Microb. Pathog. 2021, 159, 105135. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.N.; Smith, D.L.; Young, R. Holins: The protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 2000, 54, 799–825. [Google Scholar] [CrossRef]
- Washizaki, A.; Yonesaki, T.; Otsuka, Y. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. Microbiologyopen 2016, 5, 1003–1015. [Google Scholar] [CrossRef]
- Steinbacher, S.; Baxa, U.; Miller, S.; Weintraub, A.; Seckler, R.; Huber, R. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 10584–10588. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Ali, Z.; Khan, M.; Bostan, N.; Naseem, S. The dawn of phage therapy. Rev. Med. Virol. 2019, 29, e2041. [Google Scholar] [CrossRef]
- Gao, D.; Ji, H.; Li, X.; Ke, X.; Li, X.; Chen, P.; Qian, P. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiol. Res. 2023, 273, 127412. [Google Scholar] [CrossRef]
- Song, Y.; Gu, W.; Hu, Y.; Zhang, B.; Wang, J.; Sun, Y.; Fu, W.; Li, X.; Xing, X.; Wang, S. Isolation and Characterization of Two Novel Lytic Bacteriophages against Salmonella typhimurium and Their Biocontrol Potential in Food Products. Foods 2024, 13, 3103. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Hu, X.; Du, X.; Lv, C.; Yuk, H.G. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: The case of Salmonella spp. Food Sci. Biotechnol. 2023, 32, 1703–1718. [Google Scholar] [CrossRef] [PubMed]
Strains | X5 a | Strains | X5 a | Strains | X5 a |
---|---|---|---|---|---|
S. pullorum CVCC529 | + | S. typhimurium ATCC14028 | + | S. typhimurium 3 | + |
S. pullorum CVCC530 | + | S. typhimurium CMCC50115 | + | S. typhimurium 129 | + |
S. pullorum CVCC531 | + | S. typhimurium SL1344 | + | S. typhimurium 107 | + |
S. pullorum CVCC534 | + | S. typhimurium 1 | + | S. typhimurium 6 | + |
S. pullorum CVCC535 | + | S. typhimurium 10 | + | S. typhimurium 8 | + |
S. pullorum CVCC540 | + | S. typhimurium 11 | + | S. typhimurium ST24 | − |
S. pullorum 1 | + | S. typhimurium 16 | + | S. typhimurium 27 | + |
S. pullorum 4 | − | S. typhimurium 17 | − | S. typhimurium 130 | + |
S. pullorum 5 | + | S. typhimurium 19 | + | S. typhimurium 5 | + |
S. pullorum 6 | + | S. typhimurium 20 | + | S. typhimurium 78 | − |
S. pullorum 12 | + | S. typhimurium 93 | + | S. typhimurium G7 | + |
S. pullorum 16 | + | S. typhimurium 86 | + | S. typhimurium 74 | + |
S. pullorum 59 | + | S. typhimurium 90 | + | S. typhimurium P17 | + |
S. pullorum 64 | − | S. typhimurium 77 | + | S. typhimurium 21 | + |
S. pullorum 78 | + | S. typhimurium P6 | + | S. typhimurium G20 | − |
S. pullorum 84 | + | S. typhimurium 74 | + | S. typhimurium G10 | + |
S. pullorum 85 | + | S. typhimurium 80 | + | S. typhimurium G7 | + |
S. pullorum 92 | + | S. typhimurium 85 | + | S. typhimurium G1 | + |
S. pullorum 104 | + | S. typhimurium 83 | + | S. typhimurium 24 | + |
S. pullorum ATCC9120 | − | S. typhimurium ST1 | + | S. typhimurium ST21 | + |
S. pullorum 127 | + | S. typhimurium 87 | − | S. typhimurium P11 | + |
S. pullorum 153 | + | S. typhimurium 7 | + | S. typhimurium 88 | + |
S. enteritidis CVCC3375 | + | S. typhimurium 81 | + | S. typhimurium ST22 | + |
S. enteritidis CMCC50746 | + | S. typhimurium 11 | + | S. typhimurium ST25 | − |
S. enteritidis 7 | − | S. typhimurium 82 | + | L. acidophilus ATCC832 | − |
S. enteritidis 23 | + | S. typhimurium P8 | + | C. perfringensa ATCC13124 | − |
S. enteritidis25 | + | S. typhimurium 79 | + | K. pneumoniae Y1 | − |
S. enteritidis 61 | − | S. typhimurium 180 | + | E. coli ATCC25922 |
X5 | GSP044 | Function | ||||||
---|---|---|---|---|---|---|---|---|
ORF | Strand | Start | Stop | Strand | Start | Stop | Homology | |
ORF3 | − | 1383 | 3137 | − | 49,965 | 51,720 | 92% | A1 protein |
ORF5 | − | 3393 | 3800 | − | 51,976 | 52,383 | 99% | A2 protein |
ORF34 | − | 15,682 | 16,272 | − | 65,190 | 65,778 | 96% | putative serine/threonine protein phosphatase |
ORF36 | − | 16,561 | 17,424 | − | 66,067 | 66,930 | 94% | serine/threonine protein phosphatase |
ORF41 | − | 19,005 | 19,468 | − | 68,561 | 68,974 | 98% | lysozyme |
ORF42 | − | 19,465 | 20,121 | − | 68,971 | 69,627 | 99% | holin |
ORF43 | − | 20,278 | 20,877 | − | 69,784 | 70,383 | 99% | ATP-dependent Clp protease proteolytic subunit |
ORF44 | − | 20,890 | 21,642 | − | 70,396 | 71,148 | 98% | deoxynucleotide monophosphate kinase |
ORF56 | − | 26,089 | 26,457 | − | 75,595 | 75,963 | 99% | putative acetyltransferase-like protein |
ORF91 | − | 44,339 | 44,815 | − | 93,911 | 94,385 | 97% | RNaseH |
ORF93 | − | 45,190 | 46,044 | − | 94,760 | 95,614 | 97% | thymidylate synthase |
ORF94 | − | 46,044 | 46,577 | − | 95,614 | 96,147 | 98% | putative dyhydrofolate reductase |
ORF95 | − | 46,574 | 47,719 | − | 96,144 | 97,289 | 96% | aerobic ribonucleoside diphosphate reductase, small subunit |
ORF96 | − | 47,826 | 50,156 | − | 97,396 | 99,726 | 98% | aerobic ribonucleoside diphosphate reductase large subunit |
ORF98 | − | 50,522 | 51,274 | − | 100,093 | 110,563 | 99% | phosphate starvation-inducible protein |
ORF99 | − | 51,460 | 51,951 | HNH endonuclease | ||||
ORF100 | + | 52,145 | 54,019 | + | 101,200 | 103,074 | 97% | anaerobic ribonucleoside-triphosphate reductase |
ORF109 | + | 57,833 | 60,622 | + | 106,613 | 109,402 | 97% | DNA primase C |
ORF111 | + | 60,908 | 61,612 | + | 109,688 | 110,392 | 97% | D2 protein |
ORF117 | + | 63,312 | 64,283 | + | 1606 | 2577 | 98% | DNA ligase |
ORF118 | + | 64,486 | 65,265 | + | 2780 | 3559 | 98% | DNA ligase |
ORF121 | + | 67,577 | 68,467 | + | 6401 | 7291 | 97% | putative DNA replication primase |
ORF122 | + | 68,530 | 71,097 | + | 7741 | 10,308 | 96% | DNA polymerase I |
ORF124 | + | 71,584 | 72,936 | + | 10,795 | 12,147 | 97% | putative ATP-dependent helicase |
ORF127 | + | 74,244 | 75,221 | + | 13,967 | 14,944 | 95% | calcineurin-like phosphoesterase superfamily domain protein |
ORF128 | + | 75,202 | 77,040 | + | 14,925 | 16,763 | 97% | recombination related exonuclease |
ORF129 | + | 77,044 | 77,526 | + | 16,767 | 17,249 | 98% | D14 protein |
ORF130 | + | 77,526 | 78,401 | + | 17,249 | 18,124 | 98% | flap endonuclease |
ORF131 | + | 78,398 | 78,844 | + | 18,121 | 18,567 | 95% | putative deoxyUTP pyrophosphatase |
ORF133 | − | 79,111 | 81,198 | − | 18,837 | 20,924 | 96% | chaperone of endosialidase domain-containing protein |
ORF134 | − | 81,241 | 84,591 | − | 20,967 | 24,317 | 99% | chaperone of endosialidase domain-containing protein |
ORF135 | − | 84,591 | 85,013 | − | 24,317 | 24,739 | 100% | putative tail protein |
ORF136 | − | 85,018 | 87,075 | − | 24,744 | 26,801 | 99% | tail protein |
ORF137 | − | 87,075 | 89,924 | − | 26,801 | 29,650 | 98% | tail protein Pb3 |
ORF139 | − | 90,645 | 94,352 | − | 30,371 | 32,567 | 94% | pore-forming tail tip protein |
ORF142 | − | 95,267 | 96,166 | − | 34,966 | 35,865 | 98% | tail fibers protein |
ORF143 | − | 96,171 | 97,577 | − | 35,877 | 37,279 | 93% | major tail protein |
ORF147 | − | 99,432 | 100,808 | − | 39,134 | 40,510 | 92% | major head protein precursor |
ORF148 | − | 100,826 | 101,458 | − | 40,528 | 41,160 | 99% | putative prohead protease |
ORF149 | − | 101,462 | 101,953 | − | 41,315 | 41,646 | 86% | tail protein |
ORF150 | − | 101,950 | 103,167 | − | 42,082 | 42,558 | 99% | portal protein |
ORF152 | − | 103,719 | 105,035 | − | 43,258 | 44,574 | 94% | terminase large subunit |
ORF153 | − | 105,035 | 105,517 | − | 44,574 | 45,056 | 98% | putative SciB protein |
ORF154 | − | 105,528 | 107,315 | − | 45,067 | 46,854 | 97% | receptor binding protein |
ORF155 | + | 107,401 | 107,667 | + | 46,940 | 47,206 | 100% | receptor-blocking protein |
ORF163 | − | 110,115 | 111,869 | − | 49,965 | 51,720 | 92% | A1 protein |
ORF165 | − | 112,125 | 112,532 | − | 51,976 | 52,383 | 99% | A2 protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Sun, X.; Lu, Q.; Wang, Z.; Zhang, Z.; Ling, X.; Xu, Y.; Liang, R.; Yang, J.; Li, L.; et al. Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety. Microorganisms 2024, 12, 2400. https://doi.org/10.3390/microorganisms12122400
Jin X, Sun X, Lu Q, Wang Z, Zhang Z, Ling X, Xu Y, Liang R, Yang J, Li L, et al. Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety. Microorganisms. 2024; 12(12):2400. https://doi.org/10.3390/microorganisms12122400
Chicago/Turabian StyleJin, Xinxin, Xiuxiu Sun, Qin Lu, Zui Wang, Zhenggang Zhang, Xiaochun Ling, Yunpeng Xu, Ruiqin Liang, Junjie Yang, Li Li, and et al. 2024. "Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety" Microorganisms 12, no. 12: 2400. https://doi.org/10.3390/microorganisms12122400
APA StyleJin, X., Sun, X., Lu, Q., Wang, Z., Zhang, Z., Ling, X., Xu, Y., Liang, R., Yang, J., Li, L., Zhang, T., Luo, Q., & Cheng, G. (2024). Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety. Microorganisms, 12(12), 2400. https://doi.org/10.3390/microorganisms12122400