Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (31,244)

Search Parameters:
Keywords = Mixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1980 KB  
Article
Effect of Zeolite Amendment on Growth and Functional Performance of Turfgrass Species
by Halina Lipińska, Kamila Adamczyk-Mucha, Malwina Michalik-Śnieżek, Ewelina Krukow, Wojciech Lipiński, Ewa Stamirowska-Krzaczek, Rafał Kornas, Maria Zarzecka, Weronika Kamińska and Piotr Karbowniczek
Agronomy 2025, 15(11), 2554; https://doi.org/10.3390/agronomy15112554 - 3 Nov 2025
Abstract
Progressive urbanization and increasing pressure on urban green areas necessitate the search for innovative, ecological, and efficient solutions for lawn management. The shallow root system of grasses, combined with a long vegetation period, makes these plants particularly sensitive to water and nutrient deficiencies. [...] Read more.
Progressive urbanization and increasing pressure on urban green areas necessitate the search for innovative, ecological, and efficient solutions for lawn management. The shallow root system of grasses, combined with a long vegetation period, makes these plants particularly sensitive to water and nutrient deficiencies. One research direction involves the use of zeolites, natural aluminosilicate minerals that, due to their porous structure and high sorption capacity, improve water retention and nutrient availability in soil. The aim of this study was to assess the effect of different zeolite doses on the initial growth and development of two turfgrass species (Lolium perenne, Festuca rubra), as well as on selected lawn performance traits, and to determine the persistence of these effects over time. This research was conducted in 2020–2023 under pot and micro-plot experiment conditions, using mixtures containing the above species. Four levels of zeolite addition to the substrate were applied: 0% (control), 1%, 5%, and 10%. The results clearly confirmed the beneficial effects of zeolite. Its addition improved the germination, growth, and biomass yield of aboveground parts and roots, as well as enhancing turf aesthetics, ground cover, and winter hardiness, while reducing the proportion of dicotyledonous species. The best effects were obtained with the 5% dose, which should be considered optimal—it significantly improved lawn utility parameters with lower material input compared to the 10% dose. Species response varied: L. perenne responded more strongly to improved water–air conditions, whereas F. rubra utilized higher zeolite doses more effectively in root system development. The highest overall effectiveness was recorded with the 10% dose. Zeolite effectiveness was greatest in the first year after application, showing a declining trend in subsequent years, although a positive effect was still observed in the third year of use. The findings support the recommendation of zeolite as an ecological soil additive that enhances lawn quality and durability, particularly in low-fertility soils and under water deficit conditions. Its application may represent an important component of modern green space management technologies in line with the principles of sustainable development. Full article
(This article belongs to the Section Grassland and Pasture Science)
15 pages, 2003 KB  
Article
Non-Line-Of-Sight Error Compensation Method for Ultra-Wideband Positioning System
by Bin Liang, Xuechuang Zhu, Tonggang Liu and Guangpeng Shan
Machines 2025, 13(11), 1018; https://doi.org/10.3390/machines13111018 - 3 Nov 2025
Abstract
Existing Ultra-Wideband (UWB) positioning methods are poorly suited for underground mobile devices and have limited positioning effectiveness in complex scenarios such as narrow tunnels, high dust levels, metallic structures, moving personnel, and machinery. To address this, we propose a UWB positioning method for [...] Read more.
Existing Ultra-Wideband (UWB) positioning methods are poorly suited for underground mobile devices and have limited positioning effectiveness in complex scenarios such as narrow tunnels, high dust levels, metallic structures, moving personnel, and machinery. To address this, we propose a UWB positioning method for non-line-of-sight (NLOS) error compensation, significantly improving the positioning accuracy of mobile equipment in coal mine tunnels. First, the characteristics of the impulse response waveform channel of the dataset are extracted, and the AdaBoost-based ensemble learning method is used to identify the mixture propagation channel. Then, combined with the UWB range noise model, the extended Kalman filter (EKF) algorithm is used to compensate for UWB NLOS errors. Finally, a mobile tag is used in conjunction with four positioning base stations to obtain positioning data, and the positioning effect in coal mine tunnels is simulated using a ranging noise model. The experimental results show that the EKF error compensation algorithm has good positioning accuracy and algorithm stability in different motion states in a noisy environment. Full article
(This article belongs to the Section Vehicle Engineering)
52 pages, 10801 KB  
Article
Silhouette-Based Evaluation of PCA, Isomap, and t-SNE on Linear and Nonlinear Data Structures
by Mostafa Zahed and Maryam Skafyan
Stats 2025, 8(4), 105; https://doi.org/10.3390/stats8040105 - 3 Nov 2025
Abstract
Dimensionality reduction is fundamental for analyzing high-dimensional data, supporting visualization, denoising, and structure discovery. We present a systematic, large-scale benchmark of three widely used methods—Principal Component Analysis (PCA), Isometric Mapping (Isomap), and t-Distributed Stochastic Neighbor Embedding (t-SNE)—evaluated by average silhouette scores to quantify [...] Read more.
Dimensionality reduction is fundamental for analyzing high-dimensional data, supporting visualization, denoising, and structure discovery. We present a systematic, large-scale benchmark of three widely used methods—Principal Component Analysis (PCA), Isometric Mapping (Isomap), and t-Distributed Stochastic Neighbor Embedding (t-SNE)—evaluated by average silhouette scores to quantify cluster preservation after embedding. Our full factorial simulation varies sample size n{100,200,300,400,500}, noise variance σ2{0.25,0.5,0.75,1,1.5,2}, and feature count p{20,50,100,200,300,400} under four generative regimes: (1) a linear Gaussian mixture, (2) a linear Student-t mixture with heavy tails, (3) a nonlinear Swiss-roll manifold, and (4) a nonlinear concentric-spheres manifold, each replicated 1000 times per condition. Beyond empirical comparisons, we provide mathematical results that explain the observed rankings: under standard separation and sampling assumptions, PCA maximizes silhouettes for linear, low-rank structure, whereas Isomap dominates on smooth curved manifolds; t-SNE prioritizes local neighborhoods, yielding strong local separation but less reliable global geometry. Empirically, PCA consistently achieves the highest silhouettes for linear structure (Isomap second, t-SNE third); on manifolds the ordering reverses (Isomap > t-SNE > PCA). Increasing σ2 and adding uninformative dimensions (larger p) degrade all methods, while larger n improves levels and stability. To our knowledge, this is the first integrated study combining a comprehensive factorial simulation across linear and nonlinear regimes with distribution-based summaries (density and violin plots) and supporting theory that predicts method orderings. The results offer clear, practice-oriented guidance: prefer PCA when structure is approximately linear; favor manifold learning—especially Isomap—when curvature is present; and use t-SNE for the exploratory visualization of local neighborhoods. Complete tables and replication materials are provided to facilitate method selection and reproducibility. Full article
17 pages, 436 KB  
Article
Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting
by Fernando V. Armas-Vega, Irene Gavilanes-Terán, Julio Idrovo-Novillo, Mateo Acosta, Bryan Sánchez-Andrango and Concepción Paredes
Agriculture 2025, 15(21), 2292; https://doi.org/10.3390/agriculture15212292 - 3 Nov 2025
Abstract
In recent decades, the urban population of Ecuador has grown, increasing the need for wastewater sanitation in cities. Wastewater treatment in this country generates sewage sludge (SS), which is mainly deposited on land near wastewater treatment plants or in sanitary landfills, generating significant [...] Read more.
In recent decades, the urban population of Ecuador has grown, increasing the need for wastewater sanitation in cities. Wastewater treatment in this country generates sewage sludge (SS), which is mainly deposited on land near wastewater treatment plants or in sanitary landfills, generating significant environmental impacts. In view of this, composting or vermicomposting of SS can be suitable treatments for this waste, and the final materials obtained can be used as organic amendments. The objective of this study was to compare the agronomic and economic aspects of composting and vermicomposting using the same SS mixtures with different plant residues. For this purpose, the evolution of various physicochemical and biological parameters of both processes, the quality of the materials obtained, and the costs of their production were evaluated. The results revealed that all the amendments presented characteristics suitable for safe agricultural use. The vermicomposts had significantly lower levels of salts and higher levels of most macro- and micronutrients than the composts, thus increasing their economic value. However, the average production cost of composts was lower than that of vermicomposts, with faster stabilization of organic matter. All of this indicates that both techniques could be suitable for treating SS, but in order to choose the most appropriate technique for the study area, further studies with other waste mixtures and agricultural validation of the composts and vermicomposts obtained, as well as control of possible contaminants, would be required. Full article
Show Figures

Figure 1

18 pages, 1939 KB  
Article
Multi-Omics Insights into the Impact of Fermented Wheat Bran-Soybean Meal-Broussonetia papyrifera Mixture Substance on the Gut Microbiota of Late Gestation Sows In Vitro
by Lele Fu, Yushi Chen, Yantao Li and Cheng Wang
Animals 2025, 15(21), 3199; https://doi.org/10.3390/ani15213199 - 3 Nov 2025
Abstract
Comprehensive maternal nutritional interventions, particularly during late gestation, enhance perinatal outcomes and support long-term maternal-offspring health by modulating the microbiota. Fermented diets are recommended for inclusion in dietary guidelines during gestation, yet the specific metabolites after fermentation and their specific regulatory effects on [...] Read more.
Comprehensive maternal nutritional interventions, particularly during late gestation, enhance perinatal outcomes and support long-term maternal-offspring health by modulating the microbiota. Fermented diets are recommended for inclusion in dietary guidelines during gestation, yet the specific metabolites after fermentation and their specific regulatory effects on gut microbiota during late gestation remain unclear. This study investigates the functional benefits of a fermented wheat bran–soybean meal–Broussonetia papyrifera mixed substrate (FMS) on the late-gestation gut microbiota using an in vitro fermentation model. The FMS was first fermented for 72 h with bacterial and enzymatic agents (2% v/v), then anaerobically incubated with fecal inocula from Jinhua pigs. Fermentation significantly enhanced nutritional profiles, increasing crude protein and amino acids while reducing fiber components (neutral detergent fiber, acid detergent fiber, and non-starch polysaccharide, p < 0.05). Metabolome analysis revealed a significant increase in the abundance of organic acids, amino acids, and short peptides in FMS, along with the enrichment of D-amino acid and sphingolipid pathways (p < 0.05). In addition, FMS significantly increased the abundance of Limosilactobacillus and Lactobacillus, as well as short-chain fatty acids production, compared to the unfermented group (p < 0.05). These findings demonstrate that fermentation pretreatment reduces fiber components, enhances flavor compounds and bioactive metabolites, thereby optimizing microbial utilization and increasing short-chain fatty acids production. Full article
(This article belongs to the Collection The Weaned Pig: Nutrition and Management)
23 pages, 14254 KB  
Article
Construction of an Automated Biochemical Potential Methane (BMP) Prototype Based on Low-Cost Embedded Systems
by Sergio Arango-Osorio, Carlos Alejandro Zuluaga-Toro, Idi Amín Isaac-Millán, Antonio Arango-Castaño and Oscar Vasco-Echeverri
Biomass 2025, 5(4), 68; https://doi.org/10.3390/biomass5040068 - 3 Nov 2025
Abstract
Anaerobic digestion is a sustainable approach for waste treatment and renewable biogas production. A key parameter for large-scale applications is the Biochemical Methane Potential (BMP), which enables methane yield estimation and facilitates process scale-up. This study introduces an automated, low-cost prototype for BMP [...] Read more.
Anaerobic digestion is a sustainable approach for waste treatment and renewable biogas production. A key parameter for large-scale applications is the Biochemical Methane Potential (BMP), which enables methane yield estimation and facilitates process scale-up. This study introduces an automated, low-cost prototype for BMP testing, comprising three 2-L reactors with provisions for future expansion. Control and data acquisition are carried out by low-cost embedded systems integrated with sensors for pressure, temperature, pH, and biogas flow. The system was evaluated using a mixture of pig manure and sludge from a local wastewater treatment plant. Real-time monitoring of temperature, pH, and biogas production was achieved. The heat exchanger, designed through transient energy balance modeling, increased the reactor temperature from 20 °C (lab temp.) to 38 °C in 400 s. Overall, the prototype demonstrated reliable performance, achieving rapid heating, stable monitoring, and precise biogas flow quantification through both displacement and pressure methods. Full article
Show Figures

Figure 1

21 pages, 2611 KB  
Article
Hydrogen-Rich Gaseous Mixture for Enhanced Combustion in a Flex-Fuel Engine: An Experimental Analysis
by Lucimar Venancio Amaral, Augusto César Teixeira Malaquias, Gabriel Heleno de Paula Faria, Marcos de Carvalho Torres Filho, Marco André Fraga, Ricardo Belchior Torres, Rita de Cássia de Oliveira Sebastião and Fabricio José Pacheco Pujatti
Hydrogen 2025, 6(4), 99; https://doi.org/10.3390/hydrogen6040099 (registering DOI) - 3 Nov 2025
Abstract
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines [...] Read more.
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines operating under urban driving cycling conditions. An SCRE, the AVL 5405 model, was employed, operating with ethanol and gasoline as primary fuels through direct injection (DI) and a volumetric compression ratio of 11.5:1. The HGM’ was added in the engine’s intake via fumigation (FS), with volumetric proportions ranging from 5% to 20%. The tests were executed at 1900 rpm and 2500 rpm engine speeds, with indicated mean effective pressures (IMEPs) of 3 and 5 bar. When HGM’s 5% v/v was applied at 2500 rpm, the mean indicated effective pressure of 3 bar was observed. A decrease of 21% and 16.5% in the ISFC was observed when using gasoline and ethanol as primary fuels, respectively. The usage of an HGM’ combined with gasoline or ethanol, proved to be a relevant and economically accessible strategy in the improvement of the conversion efficiency of combustion fuels, once this gaseous mixture could be obtained through the vapor-catalytic reforming of ethanol, giving up the use of turbochargers or lean and ultra-lean burn strategies. These results demonstrated the potential of using HGM’ as an effective alternative to increase the efficiency of flex-fuel engines. Full article
(This article belongs to the Special Issue Hydrogen for a Clean Energy Future)
Show Figures

Figure 1

20 pages, 801 KB  
Article
Suitability of Ash from Wood, Coal, and Biomass Combustion for Use as Fertilizer: A Toxicological Perspective
by Ewa Szatyłowicz and Eliza Hawrylik
Sustainability 2025, 17(21), 9777; https://doi.org/10.3390/su17219777 - 3 Nov 2025
Abstract
The novelty lies in combining chemical and ecotoxicological approaches to evaluate the safety of ashes from different fuels. Its practical relevance is in demonstrating that only mixed firewood ash shows sufficiently low toxicity for safe use in home gardens, offering guidance for sustainable [...] Read more.
The novelty lies in combining chemical and ecotoxicological approaches to evaluate the safety of ashes from different fuels. Its practical relevance is in demonstrating that only mixed firewood ash shows sufficiently low toxicity for safe use in home gardens, offering guidance for sustainable household ash management. The use of ash in agriculture as a fertilizer has become a topic which is gaining growing attention because of its high nutrient content and its capacity to enhance soil structure. Ash from the combustion of wood, coal or plant biomass, although at first glance it seems to be a useless residue, contains a large amount of components essential for the healthy development of plants. These include potassium, phosphorus, magnesium, calcium and many microelements that can significantly affect the yield and condition of crops. For this reason, it was deemed necessary to investigate the toxicity of ashes produced during the burning of solid materials. The study material consisted of samples collected under controlled conditions resulting from the burning of the following materials: lumps of hard coal larger than 60 mm, hard coal graded between 25 and 80 mm, fine hard coal ranging from 8 to 25 mm, wood pellets, and a mixture of firewood types. A leaching procedure was then carried out to obtain eluates from the individual ash types. The analyses made it possible to determine and evaluate the extent to which polycyclic aromatic hydrocarbons (PAHs) leach from ashes originating from different fuels. Furthermore, the effect of fuel type on the transfer of these substances into the water environment was established. Carcinogenic equivalents of ash solutions, as well as the acute ecotoxicity of the eluates, were also assessed using Microtox® biotests with luminescent bacteria Aliivibrio fischeri. Based on the results, it was shown that the eluate derived from the combustion of mixed firewood exhibited the lowest toxicity, both with respect to PAH-related indicators and Microtox® outcomes. In our view, only this type of ash can be regarded as suitable for agricultural application in home gardens. Full article
Show Figures

Figure 1

23 pages, 4378 KB  
Article
Novel Nanocomposites of Carbon Nanomaterials and Poly(Neutral Red) Electropolymerized from Reline for DNA Damage Detection and Beverage Antioxidant Influence Assessment
by Anastasia Malanina, Rufiia Derbisheva, Tatiana Krasnova, Rezeda Shamagsumova, Vladimir Evtugyn, Alexey Ivanov and Anna Porfireva
Biosensors 2025, 15(11), 735; https://doi.org/10.3390/bios15110735 - 3 Nov 2025
Abstract
Novel nanocomposites based on carbon black or multi-walled carbon nanotubes functionalized with carboxylic groups and Neutral red electropolymerized from reline were obtained in a one-step protocol and used for DNA biosensor development. The synthesis was carried out in potentiodynamic mode in a deep [...] Read more.
Novel nanocomposites based on carbon black or multi-walled carbon nanotubes functionalized with carboxylic groups and Neutral red electropolymerized from reline were obtained in a one-step protocol and used for DNA biosensor development. The synthesis was carried out in potentiodynamic mode in a deep eutectic solvent reline consisting of a mixture of choline chloride and urea. The nanocomposite based on carbon black and poly(Neutral red) was applied for a voltammetric DNA biosensor developed to discriminate DNA damage. The sensor developed allowed the native, thermally denatured, and chemically oxidized DNA discrimination with either current changes or peak potential shifts. The nature of the DNA used had affected the sensor’s analytical response value. The DNA biosensor suggested was tested for the assessment of antioxidant capacity in such beverages as tea, coffee, white wine, and fruit-based drink purchased from local market. Simple, fast, and inexpensive approach of sensor modifying layer assembly would be demanded in control of food products and beverages quality, as well as for medical purposes. Full article
(This article belongs to the Special Issue Nanotechnology Biosensing in Bioanalysis and Beyond)
Show Figures

Figure 1

20 pages, 3626 KB  
Article
Superwettable Carbon Fiber Membranes Functionalized with Cu-TiO2: High-Performance Oil–Water Separation and Sustainable Reusability
by Yuqiang Chen, Yang Chen, Xiaojun Li, Renzhong Li, Gege Lei, Ziyang Jia, Dongjie Liu and Zongfan Duan
Coatings 2025, 15(11), 1273; https://doi.org/10.3390/coatings15111273 - 3 Nov 2025
Abstract
Oily wastewater poses severe ecological and health threats, but conventional separation technologies have limitations like low efficiency or high energy consumption. Herein, two superwettable carbon fiber (CF)-based membranes were fabricated for efficient oil–water separation. Using CF (low cost, excellent mechanical stability) as the [...] Read more.
Oily wastewater poses severe ecological and health threats, but conventional separation technologies have limitations like low efficiency or high energy consumption. Herein, two superwettable carbon fiber (CF)-based membranes were fabricated for efficient oil–water separation. Using CF (low cost, excellent mechanical stability) as the substrate, Cu-TiO2@CF (superhydrophilic/underwater superoleophobic, renewable) was prepared via a deep ultraviolet (DUV)-assisted sol–gel method, and OTMS/Cu-TiO2@CF (superhydrophobic/superoleophilic) was obtained by modifying Cu-TiO2@CF with octadecyltrimethoxysilane (OTMS) via hydrothermal synthesis. Characterization showed Cu-TiO2 coatings uniformly covered CF, with strong substrate bonding. Both membranes exhibited outstanding performance: Cu-TiO2@CF achieved water fluxes of up to 79,839.6 L·m−2·h−1 and >97.3% separation efficiency for four oil–water mixtures; OTMS/Cu-TiO2@CF had a maximum oil flux of 86,593.4 L·m−2·h−1 and >98.1% efficiency. Cu-TiO2@CF regenerated via 10 min UV irradiation (restoring underwater oil contact angle to 153°), while OTMS/Cu-TiO2@CF achieved recovery through the process of UV irradiation followed by OTMS re-modification. Both membranes maintained stable performance over 100 cycles, demonstrating considerable potential for engineering applications. Full article
(This article belongs to the Special Issue Novel Application of Films and Coatings for Wastewater Treatment)
Show Figures

Figure 1

24 pages, 4510 KB  
Article
Response of Well-Graded Gravel–Rubber Mixtures in Triaxial Compression: Application of a Critical State-Based Generalized Plasticity Model
by Angela Fiamingo and Gabriele Chiaro
Geotechnics 2025, 5(4), 75; https://doi.org/10.3390/geotechnics5040075 - 3 Nov 2025
Abstract
The reuse of rubber inclusions obtained from End-of-Life Tires (ELTs) offers both environmental and technical benefits in civil engineering applications, reducing landfill disposal and enhancing the dynamic properties of geomaterials. The use of well-graded Gravel–Rubber Mixtures (wgGRMs), produced by blending well-graded [...] Read more.
The reuse of rubber inclusions obtained from End-of-Life Tires (ELTs) offers both environmental and technical benefits in civil engineering applications, reducing landfill disposal and enhancing the dynamic properties of geomaterials. The use of well-graded Gravel–Rubber Mixtures (wgGRMs), produced by blending well-graded gravel with granulated rubber, has been investigated for use in different geotechnical applications. The percentage of rubber inclusions included in wgGRMs significantly modifies the mechanical response of these mixtures, influencing stiffness, strength, dilatancy and dynamic properties. Due to the material heterogeneity (i.e., stiff gravel and soft rubber), the effective implementation of wgGRMs requires the development of constitutive models that can capture the non-linear stress–strain response of wgGRMs subjected to representative in situ loading conditions. In this study, a critical state-based generalized plasticity model is presented and tailored for wgGRMs. Calibration is performed using experimental data from isotropically consolidated drained triaxial tests on wgGRMs with different rubber contents. It is shown that the model accurately reproduces key features observed experimentally, including post-peak strain softening, peak strength variation, and volumetric changes across different confining pressure levels and rubber content fractions. This model represents a useful tool for predicting the behavior of wgGRMs in engineering practice, supporting the reuse of ELT-derived rubber. Full article
Show Figures

Figure 1

16 pages, 3259 KB  
Article
An Experimental and Theoretical Study of the Effective Length of Embedded Scintillator Materials in End-Constructed Optical Fiber Radiation Sensing Probes
by Yichen Li, Yong Feng, Jingjing Wang, Bo He, Ziyin Chen, Haojie Yang, Qieming Shi, Wenjing Hao, Jinqian Qian, Jiashun Luo, Jinhui Cui, Yongjun Liu, Tao Geng, Elfed Lewis and Weimin Sun
Sensors 2025, 25(21), 6704; https://doi.org/10.3390/s25216704 - 2 Nov 2025
Abstract
Optical fiber radiation sensing probes made using inorganic scintillator materials have notable advantages in achieving high spatial resolution and building sensing arrays due to their small size and excellent linearity, serving as a key tool for dose measurement in precision radiotherapy. This study [...] Read more.
Optical fiber radiation sensing probes made using inorganic scintillator materials have notable advantages in achieving high spatial resolution and building sensing arrays due to their small size and excellent linearity, serving as a key tool for dose measurement in precision radiotherapy. This study establishes a theoretical model for scintillator luminescence coupling into optical fibers, and derives a fluorescence intensity calculation formula based on the fiber’s numerical aperture and fluorescence self-absorption. The light intensity response to scintillator length for different absorption coefficients is established based on numerical simulation, providing a nonlinear fitting equation, resulting in a novel “effective length of scintillator” concept. Five probes with scintillator lengths of 0.2 mm, 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm were prepared in the laboratory using a 3:1 mass ratio mixture of UV-setting epoxy and Gd2O2S:Tb powder. Tests in a clinical radiation delivery setting showed good agreement between experimental data and theory, confirming optimum effective length of the scintillator as 0.62 mm. This study indicates that inorganic scintillators for end-constructed probes do need not need to be excessively long. Analyzing the effective length can reduce scintillator usage, simplify fabrication and processing, and enhance the probe’s spatial resolution without decreasing the signal-to-noise ratio, thus offering new insights for optimizing optical fiber radiation probes. Full article
15 pages, 2328 KB  
Article
Forensic Identification of Cannabis with Plant DNA Barcodes and Cannabinoid Synthesis Genes
by Ping Xiang, Yu Wei Phua, Afiqah Razanah Rosli, Kar Jun Loh and Christopher Kiu-Choong Syn
Genes 2025, 16(11), 1320; https://doi.org/10.3390/genes16111320 - 2 Nov 2025
Abstract
Background/Objectives: According to the World Drug Report 2025, cannabis is the most abused drug in the world, being sold in illicit markets in various physical forms ranging from herbal cannabis to cannabis resin and liquid cannabis. Currently, the methods used for cannabis identification [...] Read more.
Background/Objectives: According to the World Drug Report 2025, cannabis is the most abused drug in the world, being sold in illicit markets in various physical forms ranging from herbal cannabis to cannabis resin and liquid cannabis. Currently, the methods used for cannabis identification are largely based on the morphological features and chemical content of the product. In this respect, identification could be severely impacted if the product is highly fragmented or pulverised. As such, DNA-based molecular techniques offer a viable alternative detection approach. In this study, we have developed a robust DNA testing method for cannabis identification, with high sensitivity and specificity. Methods/Results: Two plant DNA barcode regions, rbcL and matK, were successfully amplified in a cohort of 54 cannabis plant samples. DNA sequences obtained from these samples were blast-searched against GenBank and resulted in returned matched identity of at least 99% compared to their corresponding Cannabis sativa reference sequences. In addition, the amplification of two cannabis-unique markers, the tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) genes, produced amplicons with expected sizes only in cannabis samples; these amplicons were not detected in those plants closely related to cannabis. Sequence comparison of the majority of samples yielded at least 97% matched identity against C. sativa reference sequences in GenBank. The THCAS and CBDAS markers detected only the cannabis DNA in varying levels of cannabis–hops and cannabis–tobacco DNA mixtures. Lastly, the use of the four markers could effectively differentiate between cannabis and non-cannabis in 27 blinded samples, including 18 actual casework samples. Conclusions: In conclusion, these four genetic markers can be used to discriminate cannabis from other plant species at the genus level, especially in challenging forensic samples lacking morphological features which therefore cannot be determined by traditional detection methods. As such, this method can complement existing techniques to identify a myriad of cannabis samples. Full article
(This article belongs to the Special Issue Advances in Forensic Genetics and DNA)
Show Figures

Figure 1

19 pages, 3311 KB  
Article
Sustainable Foam Concrete Materials Utilizing Mineral Fibers Recovered from Industrial Waste
by Duman Dyussembinov, Arailym Askerbekova, Rauan Lukpanov, Zhanbolat Shakhmov and Assel Jexembayeva
Appl. Sci. 2025, 15(21), 11712; https://doi.org/10.3390/app152111712 - 2 Nov 2025
Abstract
The basis of the construction industry is building materials with high-quality indicators in terms of physical, mechanical, and thermophysical characteristics, however, there are a number of issues affecting the quality of manufactured products. The development of the construction industry provides new opportunities for [...] Read more.
The basis of the construction industry is building materials with high-quality indicators in terms of physical, mechanical, and thermophysical characteristics, however, there are a number of issues affecting the quality of manufactured products. The development of the construction industry provides new opportunities for designing efficient construction facilities. To obtain enhanced design capabilities, it is very important to relieve the load on the structure, and this can be achieved by reducing the mass of materials without losing strength. This study investigates the enhancement of foam concrete through the combined incorporation of mineral fibers recycled from basalt insulation waste and complex polymer modifiers. The aim was to improve the material’s mechanical performance, durability, and pore structure stability while promoting sustainable use of industrial by-products. The experimental program included tests on density, compressive strength, water absorption, and thermal conductivity for mixtures of different densities (400–1100 kg/m3). Results demonstrated that the inclusion of mineral fibers and polymer modifiers significantly enhanced structural uniformity and pore wall integrity. Compressive strength increased by up to 35%, water absorption decreased by 25%, and thermal conductivity was reduced by 18% compared with the control mixture. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 431 KB  
Article
Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization
by Julia Morales, Alejandro Medina and Almudena Bermejo
Sci 2025, 7(4), 156; https://doi.org/10.3390/sci7040156 - 2 Nov 2025
Abstract
Citrus fruit processing, mainly for fresh juice production in the food industry, generates significant amounts of residues and by-products enriched with bioactive components. Peels are the primary waste fraction of citrus fruits, along with discarded pulp and seeds. This study aimed to identify [...] Read more.
Citrus fruit processing, mainly for fresh juice production in the food industry, generates significant amounts of residues and by-products enriched with bioactive components. Peels are the primary waste fraction of citrus fruits, along with discarded pulp and seeds. This study aimed to identify the most fast and sustainable extraction process for flavonoids on a laboratory scale by varying the solvent and extraction methodology, and comparing the yields in order to evaluate their influence on total and individual flavonoid content. A chromatographic analysis was also performed using ultrahigh-performance liquid chromatography (UHPLC) with a 10 min run time. Our focus was on selecting the most user-friendly and cost-effective methodology. Ultrasound- and microwave-assisted extraction equipment were used with green solvents (water and ethanol) and compared for their efficiency in recovering flavonoid compounds from a mixture of peel and pulp. For this study, two widely cultivated Mediterranean citrus varieties were selected: ‘Marsh’ seedless grapefruits (Citrus paradisi Macf.) and ‘Comun’ mandarins (C. deliciosa Ten.). Lab-scale extraction results showed that ultrasound-assisted extraction with a simple ultrasonic bath, using an ethanol–water mixture provided the highest total flavonoid recovery and improved the extraction of key flavanones such as hesperidin, narirutin, and naringin. All ethanol–water mixtures tested (1:1, 7:3, and 3:7) yielded higher flavonoid levels in grapefruit (approximately 2500 mg/100 g DW) and mandarin (approximately 1200 mg/100 g DW) wastes compared with water or ethanol alone. This method offers a scalable and green strategy for valorizing citrus residues. Full article
Show Figures

Figure 1

Back to TopTop