Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedure of the Composting and Vermicomposting Processes
- -
- Mixture 1: 35% SS + 65% GW
- -
- Mixture 2: 45% SS + 55% BR
2.2. Compost and Vermicompost Production Costs and Economic Value of the Nutrients Contained in These Final Materials
2.3. Analytical and Statistical Methods
3. Results and Discussion
3.1. Temperature During Composting
3.2. Evolution of the Principal Physicochemical and Chemical Parameters of the Mixtures During Composting and Vermicomposting
3.3. Evolution of Earthworm Population and Biomass
3.4. Agronomic Value of the Final Materials
3.5. Economic Value of the Final Materials and Compost and Vermicompost Production Costs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. Urban Development Indicators. Available online: https://data.worldbank.org/topic/urban-development?view=chart (accessed on 20 March 2025).
- INEC. Boletín Técnico Estadística de Información Ambiental Económica en Gobiernos Autónomos Descentralizados Municipales. Gestión de Agua Potable y Saneamiento. 2023. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Municipios/2023/Agua_potable_alcantarillado/Boletin_Tecnico_APA_2023_VF.pdf (accessed on 20 March 2025).
- Wingfield, S.; Martínez-Moscoso, A.; Quiroga, D.; Ochoa-Herrera, V. Challenges to water management in Ecuador: Legal authorization, quality parameters, and socio-political responses. Water 2021, 13, 1017. [Google Scholar] [CrossRef]
- Borja-Serrano, P.; Ochoa-Herrera, V.; Maurice, L.; Morales, G.; Quilumbaqui, C.; Tejera, E.; Machado, A. Determination of the microbial and chemical loads in rivers from the Quito capital province of Ecuador (Pichincha)-A preliminary analysis of microbial and chemical quality of the main rivers. Int. J. Environ. Res. Public Health 2020, 17, 5048. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Vela, P. Estudio de Factibilidad Para el Aprovechamiento de los Lodos Provenientes de la Planta de Tratamiento de Aguas Residuales, de la Parroquia Nono, Cantón Quito, Provincia de Pichincha, Para su Posterior Uso en Cultivos del Sector. Bachelor’s Thesis, Universidad Central del Ecuador, Quito, Ecuador, 2019. Available online: http://www.dspace.uce.edu.ec/handle/25000/18898 (accessed on 21 March 2025).
- Temireyeva, A.; Zhunussova, K.; Aidabulov, M.; Venetis, C.; Sarbassov, Y.; Shah, D. Greenhouse gas emissions-based development and characterization of optimal scenarios for municipal solid and sewage sludge waste management in Astana city. Sustainability 2022, 14, 15850. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, T. Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environ. Sci. Technol. 2011, 45, 7173–7179. [Google Scholar] [CrossRef]
- Roig, N.; Sierra, J.; Nadal, M.; Martí, E.; Navalón-Madrigal, P.; Schuhmacher, M.; Domingo, J.L. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Sci. Total. Environ. 2012, 425, 99–109. [Google Scholar] [CrossRef]
- Yu, R.; Li, P.; Shen, R. Collaborative removal of microplastics, bacteria, antibiotic resistance genes, and heavy metals in a full-scale wastewater treatment plant. Water Sci. Technol. 2025, 91, 438–452. [Google Scholar] [CrossRef]
- Repinc, S.K.; Bizjan, B.; Budhiraja, V.; Dular, M.; Gostiša, J.; Brajer Humar, B.; Kaurin, A.; Kržan, A.; Levstek, M.; Arteaga, J.F.M.; et al. Integral analysis of hydrodynamic cavitation effects on waste activated sludge characteristics, potentially toxic metals, microorganisms and identification of microplastics. Sci. Total Environ. 2022, 806, 151414. [Google Scholar] [CrossRef]
- Balkrishna, A.; Ghosh, S.; Kaushik, I.; Arya, V.; Joshi, D.; Semwal, D.; Saxena, A.; Singh, S. Sequential distribution, potential sources, and health risk assessment of persistent toxic substances in sewage sludge used as organic fertilizer in Indo-Gangetic region. Environ. Sci. Pollut. Res. 2025, 32, 2324–2358. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Hrčka, M.; Hřebečková, T.; Hanč, A.; Grasserová, A.; Cajthaml, T. Changes in the content of emerging pollutants and potentially hazardous substances during vermi/composting of a mixture of sewage sludge and moulded pulp. Environ. Pollut. 2024, 348, 123736. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Wu, Y.; Chen, J.; Cui, G.; Li, F.; Chen, Y.; Wu, N. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. 2018, 259, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, S.; Zhao, K.; Song, G.; Zhao, S.; Liu, R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sci. Total Environ. 2023, 877, 162772. [Google Scholar] [CrossRef]
- Yasmin, N.; Jamuda, M.; Panda, A.K.; Samal, K.; Nayak, J.K. Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Energy Nexus 2022, 7, 100092. [Google Scholar] [CrossRef]
- Ali, U.; Sajid, N.; Khalid, A.; Riaz, L.; Rabbani, M.M.; Syed, J.H.; Malik, R.N. A review on vermicomposting of organic wastes. Environ. Prog. Sustain. Energy 2015, 34, 1050–1062. [Google Scholar] [CrossRef]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C., Jr. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron. 2017, 144, 143–233. [Google Scholar]
- Dume, B.; Hanc, A.; Svehla, P.; Michal, P.; Chane, A.D.; Nigussie, A. Composting and vermicomposting of sewage sludge at various C/N ratios: Technological feasibility and end-product quality. Ecotoxicol. Environ. Saf. 2023, 263, 115255. [Google Scholar] [CrossRef]
- Rékási, M.; Mazsu, N.; Draskovits, E.; Bernhardt, B.; Szabó, A.; Rivier, P.A.; Farkas, C.; Borsányi, B.; Pirkó, B.; Molnár, S.; et al. Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate. Bioresour. Technol. 2019, 291, 121861. [Google Scholar] [CrossRef]
- Hanc, A.; Dume, B.; Hrebeckova, T. Differences of enzymatic activity during composting and vermicomposting of sewage sludge mixed with straw pellets. Front. Microbiol. 2022, 12, 801107. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J.; Zhang, L. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung. Appl. Microbiol. Biotechnol. 2015, 99, 10703–10712. [Google Scholar] [CrossRef]
- Włóka, D.; Rorat, A.; Kacprzak, M.; Smol, M. The assessment of sewage sludge phytotoxicity changes during the processes of composting and vermicomposting. Desalin. Water Treat. 2020, 199, 119–127. [Google Scholar] [CrossRef]
- Idrovo-Novillo, J.; Gavilanes-Terán, I.; Angeles Bustamante, M.; Paredes, C. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic and economic assessment of composts. Process Saf. Environ. Protect. 2018, 116, 388–395. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Livestock. Sistema de Información Pública Agropecuaria-Precios de Agroquímicos. 2024. Available online: http://sinagap.mag.gob.ec/sina/PaginasCGSIN/Rep_Precios_Insumos_Agropecuarios.aspx (accessed on 23 May 2025).
- US Composting Council. Field Guide to Compost Use. 2001. Available online: http://www.mncompostingcouncil.org/uploads/1/5/6/0/15602762/fgcu.pdf (accessed on 23 May 2025).
- ISO 7251. 2005; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Presumptive Escherichia coli—Most Probable Number Technique. ISO: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/83209.html (accessed on 23 May 2025).
- ISO 6579. 2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/56712.html (accessed on 23 May 2025).
- EPA, United States Environment Protection Agency. Environmental Regulations and Technology Control of Pathogens and Vector Attraction in Sewage Sludge; EPA625-/R-92/-103; EPA: Cincinnati, OH, USA, 2003. [Google Scholar]
- Lasaridi, K.E.; Manios, T.; Stamatiadis, S.; Chroni, C.; Kyriacou, A. The evaluation of hazards to man and the environment during the composting of sewage sludge. Sustainability 2018, 10, 2618. [Google Scholar] [CrossRef]
- Arthurson, V. Proper sanitization of sewage sludge: A critical issue for a sustainable society. Appl. Environ. Microbiol. 2008, 74, 5267–5275. [Google Scholar] [CrossRef] [PubMed]
- Hanajima, D.; Aoyagi, T.; Hori, T. Dead bacterial biomass-assimilating bacterial populations in compost revealed by high sensitivity stable isotope probing. Environ. Int. 2019, 133, 105235. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Fornes, F.; Mendoza-Hernández, D.; García-de-la-Fuente, R.; Abad, M.; Belda, R.M. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol. 2012, 118, 296–305. [Google Scholar] [CrossRef]
- Srivastava, V.; Goel, G.; Thakur, V.K.; Singh, R.P.; Ferreira de Araujo, A.S.; Singh, P. Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J. Environ. Manag. 2020, 255, 109914. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V.K. Influence of stocking density on the vermicomposting of an effluent treatment plant sludge amended with cow dung. Environ. Sci. Pollut. Res. 2016, 23, 13317–13326. [Google Scholar] [CrossRef]
- Xing, M.; Lv, B.; Zhao, C.; Yang, J. Towards understanding the effects of additives on the vermicomposting of sewage sludge. Environ. Sci. Pollut. Res. 2015, 22, 4644–4653. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Bernal, M.P.; Paredes, C.; Sánchez-Monedero, M.A.; Cegarra, J. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 1998, 63, 91–99. [Google Scholar] [CrossRef]
- Khwairakpam, M.; Bhargava, R. Vermitechnology for sewage sludge recycling. J. Hazard. Mater. 2009, 161, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Soobhany, N.; Mohee, R.; Garg, V.K. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Manag. 2017, 64, 51–62. [Google Scholar] [CrossRef]
- Valverde-Orozco, V.; Gavilanes-Terán, I.; Idrovo-Novillo, J.; Carrera-Beltrán, L.; Basantes-Cascante, C.; Bustamante, M.A.; Paredes, C. Agronomic, Economic and Environmental Comparative of Different Aeration Systems for On-Farm Composting. Agronomy 2023, 13, 929. [Google Scholar] [CrossRef]
- BIOFIN. Manual de Operativización del Marco Legal Vigente Para la Tarifa de Agua Cruda-Fase II. Ecuador. 2020. Available online: https://www.biofin.org/es/node/819 (accessed on 31 July 2025).
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef]
- Ceyhan, V.; Akça, I.; Kızılkaya, R.; Veselova, A.; Novikova, K. The financial feasibility of hazelnut husk and sewage sludge based vermicompost production. Eurasian J. Soil. Sci. 2015, 4, 259–265. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Paredes, C.; López, M.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Calvopiña Morales, L.P. Proyecto Para la Creación de Una Microempresa Dedicada a la Producción y Comercialización de Vermicompost, Enriquecidos con Microorganismos Promotores del Crecimiento Vegetal en el Cantón Rumiñahui—Sangolquí. Master’s Thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2022. Available online: http://dspace.ups.edu.ec/handle/123456789/22676 (accessed on 31 July 2025).


| Parameter | BR | GW | SS |
|---|---|---|---|
| pH | 7.0 | 6.8 | 5.4 |
| EC (dS/m) | 3.63 | 5.83 | 1.07 |
| OM (%) | 92.4 | 85.0 | 53.6 |
| Corg (%) | 53.7 | 49.5 | 30.2 |
| Nt (%) | 0.51 | 1.55 | 3.08 |
| Corg/Nt | 105.0 | 31.9 | 9.8 |
| P (g/kg) | 0.20 | 0.63 | 5.51 |
| K (g/kg) | 11.4 | 15.2 | 2.2 |
| Fe (mg/kg) | 112 | 963 | 14,404 |
| Cu (mg/kg) | 6 | 10 | 24 |
| Mn (mg/kg) | 48 | 191 | 307 |
| Zn (mg/kg) | 16 | 77 | 190 |
| Cr (mg/kg) | 0.5 | 1.9 | 30.7 |
| Cd (mg/kg) | 0.03 | 0.04 | 0.95 |
| Pb (mg/kg) | 8 | 2 | 17 |
| Hg (mg/kg) | <0.05 | <0.05 | 0.23 |
| Time (Days) | pH | EC (dS/m) | OM (%) | Corg (%) | Nt (%) | Corg/Nt |
|---|---|---|---|---|---|---|
| Composting pile 1: 35% sewage sludge + 65% garden waste | ||||||
| 0 | 6.6 | 3.34 | 73.4 | 31.6 | 2.05 | 15.4 |
| 27 | 7.9 | 4.39 | 66.1 | 36.0 | 2.81 | 12.8 |
| 105 | 7.4 | 4.76 | 55.9 | 20.1 | 2.42 | 8.5 |
| Mature | 7.4 | 5.57 | 52.9 | 16.8 | 3.14 | 5.4 |
| LSD | 0.4 | 0.46 | 7.4 | 1.1 | 0.09 | 0.5 |
| Composting pile 2: 45% sewage sludge + 55% barley residue | ||||||
| 0 | 6.8 | 2.79 | 79.8 | 39.7 | 1.01 | 39.3 |
| 22 | 7.5 | 2.55 | 70.8 | 37.9 | 1.28 | 29.6 |
| 100 | 8.0 | 2.84 | 66.9 | 29.6 | 1.49 | 21.2 |
| Mature | 7.4 | 3.49 | 56.9 | 25.4 | 3.98 | 6.4 |
| LSD | 0.7 | 0.26 | 10.5 | 1.9 | 0.08 | 0.6 |
| Vermicomposting mixture 1: 35% sewage sludge + 65% garden waste | ||||||
| 0 | 7.7 | 4.25 | 65.8 | 35.6 | 2.77 | 12.9 |
| 23 | 7.3 | 3.75 | 59.5 | 34.7 | 1.96 | 17.7 |
| 101 | 7.4 | 3.13 | 58.7 | 34.3 | 2.12 | 16.2 |
| Final | 6.8 | 2.50 | 48.0 | 27.8 | 2.70 | 10.3 |
| LSD | 0.4 | 0.37 | 11.9 | 1.3 | 0.10 | 0.5 |
| Vermicomposting mixture 2: 45% sewage sludge + 55% barley residue | ||||||
| 0 | 7.6 | 2.62 | 71.4 | 38.4 | 1.35 | 28.4 |
| 24 | 7.8 | 2.16 | 63.9 | 37.1 | 3.01 | 12.2 |
| 99 | 6.1 | 1.14 | 59.8 | 34.8 | 2.30 | 15.1 |
| Final | 5.9 | 2.00 | 51.2 | 29.8 | 2.89 | 10.3 |
| LSD | 0.3 | 0.33 | 6.6 | 1.2 | 0.12 | 0.6 |
| Compost 1 | Compost 2 | Vermicompost 1 | Vermicompost 2 | F-ANOVA | US Guidelines | |
|---|---|---|---|---|---|---|
| pH | 7.4 c | 7.4 c | 6.8 b | 5.9 a | 32.10 *** | 6.0–7.5 i |
| EC (dS/m) | 5.57 c | 3.49 b | 2.50 a | 2.00 a | 253.54 *** | <5 i |
| OM (%) | 52.9 b | 56.9 c | 48.0 a | 51.2 ab | 21.56 *** | 50-60 i |
| Corg/Nt | 5.4 a | 6.4 a | 10.3 b | 10.3 b | 14.55 ** | |
| GI (%) | 69.4 a | 83.3 c | 68.8 a | 75.1 b | 24.78 *** | |
| Nt (%) | 3.14 a | 3.98 b | 2.70 a | 2.89 a | 10.27 * | ≥1.0 i |
| P (%) | 0.27 a | 0.26 a | 0.35 b | 0.33 b | 12.25 ** | ≥1.0 i |
| K (%) | 2.67 b | 2.29 a | 3.30 c | 3.40 c | 5915.77 *** | |
| Fe (mg/kg) | 12,712 c | 995 a | 15,800 d | 11,100 b | 309.03 *** | |
| Mn (mg/kg) | 385 c | 260 a | 400 d | 290 b | 406.16 *** | |
| Cu (mg/kg) | 52 a | 56 b | 100 c | 102 c | 3119.03 *** | 1500 i |
| Zn (mg/kg) | 41 b | 36 a | 150 d | 100 c | 8815.43 *** | 2800 i |
| Cd (mg/kg) | 0.24 b | 0.02 a | 0.01 a | 0.01 a | 160.88 *** | 39 i |
| Cr (mg/kg) | 38.5 c | 26.0 b | 20.0 a | 20.0 a | 179.11 *** | |
| Hg (mg/kg) | <0.05 | <0.05 | <0.05 | <0.05 | - | 17 i |
| Pb (mg/kg) | 3.4 | 4.2 | 5.0 | 5.0 | 1.70 NS | 300 i |
| E. coli (MPN/g) | <3 | <3 | <3 | <3 | - | <1000 ii |
| Salmonella (MPN/g) | ND | ND | ND | ND | - | <3 ii |
| Nutrient i | Compost 1 | Compost 2 | Vermicompost 1 | Vermicompost 2 | F-ANOVA |
|---|---|---|---|---|---|
| Nt | 23.81 a | 30.18 b | 20.47 a | 21.91 a | 12.33 * |
| P2O5 | 15.23 | 15.00 | 19.66 | 18.64 | 6.43 NS |
| K2O | 23.66 b | 20.31 a | 29.20 c | 29.20 c | 5283.00 *** |
| Total combined value | 62.69 | 65.50 | 69.33 | 69.76 |
| Costs Associated | Composting Process 1 | Composting Process 2 | Vermicomposting Process 1 | Vermicomposting Process 2 |
|---|---|---|---|---|
| Raw material transport | 33.33 | 23.81 | 16.81 | 15.04 |
| Earthworms | - | - | 58.82 | 52.63 |
| Labor for preparing the waste mixture, turning, and irrigation | 70.83 | 50.60 | 41.67 | 37.28 |
| Labor for monitoring the process | 33.45 | 23.89 | 25.30 | 22.63 |
| Indirect costs (water and energy used during process) | 6.88 | 4.91 | 5.94 | 5.31 |
| Total | 144.50 | 103.21 | 148.53 | 132.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armas-Vega, F.V.; Gavilanes-Terán, I.; Idrovo-Novillo, J.; Acosta, M.; Sánchez-Andrango, B.; Paredes, C. Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting. Agriculture 2025, 15, 2292. https://doi.org/10.3390/agriculture15212292
Armas-Vega FV, Gavilanes-Terán I, Idrovo-Novillo J, Acosta M, Sánchez-Andrango B, Paredes C. Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting. Agriculture. 2025; 15(21):2292. https://doi.org/10.3390/agriculture15212292
Chicago/Turabian StyleArmas-Vega, Fernando V., Irene Gavilanes-Terán, Julio Idrovo-Novillo, Mateo Acosta, Bryan Sánchez-Andrango, and Concepción Paredes. 2025. "Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting" Agriculture 15, no. 21: 2292. https://doi.org/10.3390/agriculture15212292
APA StyleArmas-Vega, F. V., Gavilanes-Terán, I., Idrovo-Novillo, J., Acosta, M., Sánchez-Andrango, B., & Paredes, C. (2025). Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting. Agriculture, 15(21), 2292. https://doi.org/10.3390/agriculture15212292

